Reference for ultralytics/utils/torch_utils.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/torch_utils.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
torch_distributed_zero_firstsmart_inference_modeautocastget_cpu_infoget_gpu_infoselect_devicetime_syncfuse_conv_and_bnfuse_deconv_and_bnmodel_infoget_num_paramsget_num_gradientsmodel_info_for_loggersget_flopsget_flops_with_torch_profilerinitialize_weightsscale_imgcopy_attrintersect_dictsis_parallelunwrap_modelone_cycleinit_seedsunset_deterministicstrip_optimizerconvert_optimizer_state_dict_to_fp16cuda_memory_usageprofile_opsattempt_compile
class ultralytics.utils.torch_utils.ModelEMA
ModelEMA(self, model, decay = 0.9999, tau = 2000, updates = 0)
Updated Exponential Moving Average (EMA) implementation.
Keeps a moving average of everything in the model state_dict (parameters and buffers). For EMA details see References.
To disable EMA set the enabled attribute to False.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | nn.Module | Model to create EMA for. | required |
decay | float, optional | Maximum EMA decay rate. | 0.9999 |
tau | int, optional | EMA decay time constant. | 2000 |
updates | int, optional | Initial number of updates. | 0 |
Attributes
| Name | Type | Description |
|---|---|---|
ema | nn.Module | Copy of the model in evaluation mode. |
updates | int | Number of EMA updates. |
decay | function | Decay function that determines the EMA weight. |
enabled | bool | Whether EMA is enabled. |
References | ||
- https://github.com/rwightman/pytorch-image-models | ||
- https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage |
Methods
| Name | Description |
|---|---|
update | Update EMA parameters. |
update_attr | Update attributes and save stripped model with optimizer removed. |
Source code in ultralytics/utils/torch_utils.py
View on GitHubclass ModelEMA:
"""Updated Exponential Moving Average (EMA) implementation.
Keeps a moving average of everything in the model state_dict (parameters and buffers). For EMA details see
References.
To disable EMA set the `enabled` attribute to `False`.
Attributes:
ema (nn.Module): Copy of the model in evaluation mode.
updates (int): Number of EMA updates.
decay (function): Decay function that determines the EMA weight.
enabled (bool): Whether EMA is enabled.
References:
- https://github.com/rwightman/pytorch-image-models
- https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
"""
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
"""Initialize EMA for 'model' with given arguments.
Args:
model (nn.Module): Model to create EMA for.
decay (float, optional): Maximum EMA decay rate.
tau (int, optional): EMA decay time constant.
updates (int, optional): Initial number of updates.
"""
self.ema = deepcopy(unwrap_model(model)).eval() # FP32 EMA
self.updates = updates # number of EMA updates
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
for p in self.ema.parameters():
p.requires_grad_(False)
self.enabled = True
method ultralytics.utils.torch_utils.ModelEMA.update
def update(self, model)
Update EMA parameters.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | nn.Module | Model to update EMA from. | required |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef update(self, model):
"""Update EMA parameters.
Args:
model (nn.Module): Model to update EMA from.
"""
if self.enabled:
self.updates += 1
d = self.decay(self.updates)
msd = unwrap_model(model).state_dict() # model state_dict
for k, v in self.ema.state_dict().items():
if v.dtype.is_floating_point: # true for FP16 and FP32
v *= d
v += (1 - d) * msd[k].detach()
method ultralytics.utils.torch_utils.ModelEMA.update_attr
def update_attr(self, model, include = (), exclude = ("process_group", "reducer"))
Update attributes and save stripped model with optimizer removed.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | nn.Module | Model to update attributes from. | required |
include | tuple, optional | Attributes to include. | () |
exclude | tuple, optional | Attributes to exclude. | ("process_group", "reducer") |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef update_attr(self, model, include=(), exclude=("process_group", "reducer")):
"""Update attributes and save stripped model with optimizer removed.
Args:
model (nn.Module): Model to update attributes from.
include (tuple, optional): Attributes to include.
exclude (tuple, optional): Attributes to exclude.
"""
if self.enabled:
copy_attr(self.ema, model, include, exclude)
class ultralytics.utils.torch_utils.EarlyStopping
EarlyStopping(self, patience = 50)
Early stopping class that stops training when a specified number of epochs have passed without improvement.
Args
| Name | Type | Description | Default |
|---|---|---|---|
patience | int, optional | Number of epochs to wait after fitness stops improving before stopping. | 50 |
Attributes
| Name | Type | Description |
|---|---|---|
best_fitness | float | Best fitness value observed. |
best_epoch | int | Epoch where best fitness was observed. |
patience | int | Number of epochs to wait after fitness stops improving before stopping. |
possible_stop | bool | Flag indicating if stopping may occur next epoch. |
Methods
| Name | Description |
|---|---|
__call__ | Check whether to stop training. |
Source code in ultralytics/utils/torch_utils.py
View on GitHubclass EarlyStopping:
"""Early stopping class that stops training when a specified number of epochs have passed without improvement.
Attributes:
best_fitness (float): Best fitness value observed.
best_epoch (int): Epoch where best fitness was observed.
patience (int): Number of epochs to wait after fitness stops improving before stopping.
possible_stop (bool): Flag indicating if stopping may occur next epoch.
"""
def __init__(self, patience=50):
"""Initialize early stopping object.
Args:
patience (int, optional): Number of epochs to wait after fitness stops improving before stopping.
"""
self.best_fitness = 0.0 # i.e. mAP
self.best_epoch = 0
self.patience = patience or float("inf") # epochs to wait after fitness stops improving to stop
self.possible_stop = False # possible stop may occur next epoch
method ultralytics.utils.torch_utils.EarlyStopping.__call__
def __call__(self, epoch, fitness)
Check whether to stop training.
Args
| Name | Type | Description | Default |
|---|---|---|---|
epoch | int | Current epoch of training | required |
fitness | float | Fitness value of current epoch | required |
Returns
| Type | Description |
|---|---|
bool | True if training should stop, False otherwise |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef __call__(self, epoch, fitness):
"""Check whether to stop training.
Args:
epoch (int): Current epoch of training
fitness (float): Fitness value of current epoch
Returns:
(bool): True if training should stop, False otherwise
"""
if fitness is None: # check if fitness=None (happens when val=False)
return False
if fitness > self.best_fitness or self.best_fitness == 0: # allow for early zero-fitness stage of training
self.best_epoch = epoch
self.best_fitness = fitness
delta = epoch - self.best_epoch # epochs without improvement
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
stop = delta >= self.patience # stop training if patience exceeded
if stop:
prefix = colorstr("EarlyStopping: ")
LOGGER.info(
f"{prefix}Training stopped early as no improvement observed in last {self.patience} epochs. "
f"Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n"
f"To update EarlyStopping(patience={self.patience}) pass a new patience value, "
f"i.e. `patience=300` or use `patience=0` to disable EarlyStopping."
)
return stop
function ultralytics.utils.torch_utils.torch_distributed_zero_first
def torch_distributed_zero_first(local_rank: int)
Ensure all processes in distributed training wait for the local master (rank 0) to complete a task first.
Args
| Name | Type | Description | Default |
|---|---|---|---|
local_rank | int | required |
Source code in ultralytics/utils/torch_utils.py
View on GitHub@contextmanager
def torch_distributed_zero_first(local_rank: int):
"""Ensure all processes in distributed training wait for the local master (rank 0) to complete a task first."""
initialized = dist.is_available() and dist.is_initialized()
use_ids = initialized and dist.get_backend() == "nccl"
if initialized and local_rank not in {-1, 0}:
dist.barrier(device_ids=[local_rank]) if use_ids else dist.barrier()
yield
if initialized and local_rank == 0:
dist.barrier(device_ids=[local_rank]) if use_ids else dist.barrier()
function ultralytics.utils.torch_utils.smart_inference_mode
def smart_inference_mode()
Apply torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator.
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef smart_inference_mode():
"""Apply torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator."""
def decorate(fn):
"""Apply appropriate torch decorator for inference mode based on torch version."""
if TORCH_1_9 and torch.is_inference_mode_enabled():
return fn # already in inference_mode, act as a pass-through
else:
return (torch.inference_mode if TORCH_1_9 else torch.no_grad)()(fn)
return decorate
function ultralytics.utils.torch_utils.autocast
def autocast(enabled: bool, device: str = "cuda")
Get the appropriate autocast context manager based on PyTorch version and AMP setting.
This function returns a context manager for automatic mixed precision (AMP) training that is compatible with both older and newer versions of PyTorch. It handles the differences in the autocast API between PyTorch versions.
Args
| Name | Type | Description | Default |
|---|---|---|---|
enabled | bool | Whether to enable automatic mixed precision. | required |
device | str, optional | The device to use for autocast. | "cuda" |
Returns
| Type | Description |
|---|---|
torch.amp.autocast | The appropriate autocast context manager. |
Examples
>>> with autocast(enabled=True):
... # Your mixed precision operations here
... pass
Notes
- For PyTorch versions 1.13 and newer, it uses
torch.amp.autocast. - For older versions, it uses
torch.cuda.autocast.
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef autocast(enabled: bool, device: str = "cuda"):
"""Get the appropriate autocast context manager based on PyTorch version and AMP setting.
This function returns a context manager for automatic mixed precision (AMP) training that is compatible with both
older and newer versions of PyTorch. It handles the differences in the autocast API between PyTorch versions.
Args:
enabled (bool): Whether to enable automatic mixed precision.
device (str, optional): The device to use for autocast.
Returns:
(torch.amp.autocast): The appropriate autocast context manager.
Examples:
>>> with autocast(enabled=True):
... # Your mixed precision operations here
... pass
Notes:
- For PyTorch versions 1.13 and newer, it uses `torch.amp.autocast`.
- For older versions, it uses `torch.cuda.autocast`.
"""
if TORCH_1_13:
return torch.amp.autocast(device, enabled=enabled)
else:
return torch.cuda.amp.autocast(enabled)
function ultralytics.utils.torch_utils.get_cpu_info
def get_cpu_info()
Return a string with system CPU information, i.e. 'Apple M2'.
Source code in ultralytics/utils/torch_utils.py
View on GitHub@functools.lru_cache
def get_cpu_info():
"""Return a string with system CPU information, i.e. 'Apple M2'."""
from ultralytics.utils import PERSISTENT_CACHE # avoid circular import error
if "cpu_info" not in PERSISTENT_CACHE:
try:
PERSISTENT_CACHE["cpu_info"] = CPUInfo.name()
except Exception:
pass
return PERSISTENT_CACHE.get("cpu_info", "unknown")
function ultralytics.utils.torch_utils.get_gpu_info
def get_gpu_info(index)
Return a string with system GPU information, i.e. 'Tesla T4, 15102MiB'.
Args
| Name | Type | Description | Default |
|---|---|---|---|
index | required |
Source code in ultralytics/utils/torch_utils.py
View on GitHub@functools.lru_cache
def get_gpu_info(index):
"""Return a string with system GPU information, i.e. 'Tesla T4, 15102MiB'."""
properties = torch.cuda.get_device_properties(index)
return f"{properties.name}, {properties.total_memory / (1 << 20):.0f}MiB"
function ultralytics.utils.torch_utils.select_device
def select_device(device = "", newline = False, verbose = True)
Select the appropriate PyTorch device based on the provided arguments.
The function takes a string specifying the device or a torch.device object and returns a torch.device object representing the selected device. The function also validates the number of available devices and raises an exception if the requested device(s) are not available.
Args
| Name | Type | Description | Default |
|---|---|---|---|
device | str | torch.device, optional | Device string or torch.device object. Options are 'None', 'cpu', or 'cuda', or '0' or '0,1,2,3'. Auto-selects the first available GPU, or CPU if no GPU is available. | "" |
newline | bool, optional | If True, adds a newline at the end of the log string. | False |
verbose | bool, optional | If True, logs the device information. | True |
Returns
| Type | Description |
|---|---|
torch.device | Selected device. |
Examples
>>> select_device("cuda:0")
device(type='cuda', index=0)
>>> select_device("cpu")
device(type='cpu')
Notes
Sets the 'CUDA_VISIBLE_DEVICES' environment variable for specifying which GPUs to use.
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef select_device(device="", newline=False, verbose=True):
"""Select the appropriate PyTorch device based on the provided arguments.
The function takes a string specifying the device or a torch.device object and returns a torch.device object
representing the selected device. The function also validates the number of available devices and raises an
exception if the requested device(s) are not available.
Args:
device (str | torch.device, optional): Device string or torch.device object. Options are 'None', 'cpu', or
'cuda', or '0' or '0,1,2,3'. Auto-selects the first available GPU, or CPU if no GPU is available.
newline (bool, optional): If True, adds a newline at the end of the log string.
verbose (bool, optional): If True, logs the device information.
Returns:
(torch.device): Selected device.
Examples:
>>> select_device("cuda:0")
device(type='cuda', index=0)
>>> select_device("cpu")
device(type='cpu')
Notes:
Sets the 'CUDA_VISIBLE_DEVICES' environment variable for specifying which GPUs to use.
"""
if isinstance(device, torch.device) or str(device).startswith(("tpu", "intel")):
return device
s = f"Ultralytics {__version__} 🚀 Python-{PYTHON_VERSION} torch-{TORCH_VERSION} "
device = str(device).lower()
for remove in "cuda:", "none", "(", ")", "[", "]", "'", " ":
device = device.replace(remove, "") # to string, 'cuda:0' -> '0' and '(0, 1)' -> '0,1'
# Auto-select GPUs
if "-1" in device:
from ultralytics.utils.autodevice import GPUInfo
# Replace each -1 with a selected GPU or remove it
parts = device.split(",")
selected = GPUInfo().select_idle_gpu(count=parts.count("-1"), min_memory_fraction=0.2)
for i in range(len(parts)):
if parts[i] == "-1":
parts[i] = str(selected.pop(0)) if selected else ""
device = ",".join(p for p in parts if p)
cpu = device == "cpu"
mps = device in {"mps", "mps:0"} # Apple Metal Performance Shaders (MPS)
if cpu or mps:
os.environ["CUDA_VISIBLE_DEVICES"] = "" # force torch.cuda.is_available() = False
elif device: # non-cpu device requested
if device == "cuda":
device = "0"
if "," in device:
device = ",".join([x for x in device.split(",") if x]) # remove sequential commas, i.e. "0,,1" -> "0,1"
visible = os.environ.get("CUDA_VISIBLE_DEVICES", None)
os.environ["CUDA_VISIBLE_DEVICES"] = device # set environment variable - must be before assert is_available()
if not (torch.cuda.is_available() and torch.cuda.device_count() >= len(device.split(","))):
LOGGER.info(s)
install = (
"See https://pytorch.org/get-started/locally/ for up-to-date torch install instructions if no "
"CUDA devices are seen by torch.\n"
if torch.cuda.device_count() == 0
else ""
)
raise ValueError(
f"Invalid CUDA 'device={device}' requested."
f" Use 'device=cpu' or pass valid CUDA device(s) if available,"
f" i.e. 'device=0' or 'device=0,1,2,3' for Multi-GPU.\n"
f"\ntorch.cuda.is_available(): {torch.cuda.is_available()}"
f"\ntorch.cuda.device_count(): {torch.cuda.device_count()}"
f"\nos.environ['CUDA_VISIBLE_DEVICES']: {visible}\n"
f"{install}"
)
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
devices = device.split(",") if device else "0" # i.e. "0,1" -> ["0", "1"]
space = " " * len(s)
for i, d in enumerate(devices):
s += f"{'' if i == 0 else space}CUDA:{d} ({get_gpu_info(i)})\n" # bytes to MB
arg = "cuda:0"
elif mps and TORCH_2_0 and torch.backends.mps.is_available():
# Prefer MPS if available
s += f"MPS ({get_cpu_info()})\n"
arg = "mps"
else: # revert to CPU
s += f"CPU ({get_cpu_info()})\n"
arg = "cpu"
if arg in {"cpu", "mps"}:
torch.set_num_threads(NUM_THREADS) # reset OMP_NUM_THREADS for cpu training
if verbose:
LOGGER.info(s if newline else s.rstrip())
return torch.device(arg)
function ultralytics.utils.torch_utils.time_sync
def time_sync()
Return PyTorch-accurate time.
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef time_sync():
"""Return PyTorch-accurate time."""
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
function ultralytics.utils.torch_utils.fuse_conv_and_bn
def fuse_conv_and_bn(conv, bn)
Fuse Conv2d and BatchNorm2d layers for inference optimization.
Args
| Name | Type | Description | Default |
|---|---|---|---|
conv | nn.Conv2d | Convolutional layer to fuse. | required |
bn | nn.BatchNorm2d | Batch normalization layer to fuse. | required |
Returns
| Type | Description |
|---|---|
nn.Conv2d | The fused convolutional layer with gradients disabled. |
Examples
>>> conv = nn.Conv2d(3, 16, 3)
>>> bn = nn.BatchNorm2d(16)
>>> fused_conv = fuse_conv_and_bn(conv, bn)
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef fuse_conv_and_bn(conv, bn):
"""Fuse Conv2d and BatchNorm2d layers for inference optimization.
Args:
conv (nn.Conv2d): Convolutional layer to fuse.
bn (nn.BatchNorm2d): Batch normalization layer to fuse.
Returns:
(nn.Conv2d): The fused convolutional layer with gradients disabled.
Examples:
>>> conv = nn.Conv2d(3, 16, 3)
>>> bn = nn.BatchNorm2d(16)
>>> fused_conv = fuse_conv_and_bn(conv, bn)
"""
# Compute fused weights
w_conv = conv.weight.view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
conv.weight.data = torch.mm(w_bn, w_conv).view(conv.weight.shape)
# Compute fused bias
b_conv = torch.zeros(conv.out_channels, device=conv.weight.device) if conv.bias is None else conv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fused_bias = torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn
if conv.bias is None:
conv.register_parameter("bias", nn.Parameter(fused_bias))
else:
conv.bias.data = fused_bias
return conv.requires_grad_(False)
function ultralytics.utils.torch_utils.fuse_deconv_and_bn
def fuse_deconv_and_bn(deconv, bn)
Fuse ConvTranspose2d and BatchNorm2d layers for inference optimization.
Args
| Name | Type | Description | Default |
|---|---|---|---|
deconv | nn.ConvTranspose2d | Transposed convolutional layer to fuse. | required |
bn | nn.BatchNorm2d | Batch normalization layer to fuse. | required |
Returns
| Type | Description |
|---|---|
nn.ConvTranspose2d | The fused transposed convolutional layer with gradients disabled. |
Examples
>>> deconv = nn.ConvTranspose2d(16, 3, 3)
>>> bn = nn.BatchNorm2d(3)
>>> fused_deconv = fuse_deconv_and_bn(deconv, bn)
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef fuse_deconv_and_bn(deconv, bn):
"""Fuse ConvTranspose2d and BatchNorm2d layers for inference optimization.
Args:
deconv (nn.ConvTranspose2d): Transposed convolutional layer to fuse.
bn (nn.BatchNorm2d): Batch normalization layer to fuse.
Returns:
(nn.ConvTranspose2d): The fused transposed convolutional layer with gradients disabled.
Examples:
>>> deconv = nn.ConvTranspose2d(16, 3, 3)
>>> bn = nn.BatchNorm2d(3)
>>> fused_deconv = fuse_deconv_and_bn(deconv, bn)
"""
# Compute fused weights
w_deconv = deconv.weight.view(deconv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
deconv.weight.data = torch.mm(w_bn, w_deconv).view(deconv.weight.shape)
# Compute fused bias
b_conv = torch.zeros(deconv.out_channels, device=deconv.weight.device) if deconv.bias is None else deconv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fused_bias = torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn
if deconv.bias is None:
deconv.register_parameter("bias", nn.Parameter(fused_bias))
else:
deconv.bias.data = fused_bias
return deconv.requires_grad_(False)
function ultralytics.utils.torch_utils.model_info
def model_info(model, detailed = False, verbose = True, imgsz = 640)
Print and return detailed model information layer by layer.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | nn.Module | Model to analyze. | required |
detailed | bool, optional | Whether to print detailed layer information. | False |
verbose | bool, optional | Whether to print model information. | True |
imgsz | int | list, optional | Input image size. | 640 |
Returns
| Type | Description |
|---|---|
n_l (int) | Number of layers. |
n_p (int) | Number of parameters. |
n_g (int) | Number of gradients. |
flops (float) | GFLOPs. |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef model_info(model, detailed=False, verbose=True, imgsz=640):
"""Print and return detailed model information layer by layer.
Args:
model (nn.Module): Model to analyze.
detailed (bool, optional): Whether to print detailed layer information.
verbose (bool, optional): Whether to print model information.
imgsz (int | list, optional): Input image size.
Returns:
n_l (int): Number of layers.
n_p (int): Number of parameters.
n_g (int): Number of gradients.
flops (float): GFLOPs.
"""
if not verbose:
return
n_p = get_num_params(model) # number of parameters
n_g = get_num_gradients(model) # number of gradients
layers = __import__("collections").OrderedDict((n, m) for n, m in model.named_modules() if len(m._modules) == 0)
n_l = len(layers) # number of layers
if detailed:
h = f"{'layer':>5}{'name':>40}{'type':>20}{'gradient':>10}{'parameters':>12}{'shape':>20}{'mu':>10}{'sigma':>10}"
LOGGER.info(h)
for i, (mn, m) in enumerate(layers.items()):
mn = mn.replace("module_list.", "")
mt = m.__class__.__name__
if len(m._parameters):
for pn, p in m.named_parameters():
LOGGER.info(
f"{i:>5g}{f'{mn}.{pn}':>40}{mt:>20}{p.requires_grad!r:>10}{p.numel():>12g}{list(p.shape)!s:>20}{p.mean():>10.3g}{p.std():>10.3g}{str(p.dtype).replace('torch.', ''):>15}"
)
else: # layers with no learnable params
LOGGER.info(f"{i:>5g}{mn:>40}{mt:>20}{False!r:>10}{0:>12g}{[]!s:>20}{'-':>10}{'-':>10}{'-':>15}")
flops = get_flops(model, imgsz) # imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320]
fused = " (fused)" if getattr(model, "is_fused", lambda: False)() else ""
fs = f", {flops:.1f} GFLOPs" if flops else ""
yaml_file = getattr(model, "yaml_file", "") or getattr(model, "yaml", {}).get("yaml_file", "")
model_name = Path(yaml_file).stem.replace("yolo", "YOLO") or "Model"
LOGGER.info(f"{model_name} summary{fused}: {n_l:,} layers, {n_p:,} parameters, {n_g:,} gradients{fs}")
return n_l, n_p, n_g, flops
function ultralytics.utils.torch_utils.get_num_params
def get_num_params(model)
Return the total number of parameters in a YOLO model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | required |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef get_num_params(model):
"""Return the total number of parameters in a YOLO model."""
return sum(x.numel() for x in model.parameters())
function ultralytics.utils.torch_utils.get_num_gradients
def get_num_gradients(model)
Return the total number of parameters with gradients in a YOLO model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | required |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef get_num_gradients(model):
"""Return the total number of parameters with gradients in a YOLO model."""
return sum(x.numel() for x in model.parameters() if x.requires_grad)
function ultralytics.utils.torch_utils.model_info_for_loggers
def model_info_for_loggers(trainer)
Return model info dict with useful model information.
Args
| Name | Type | Description | Default |
|---|---|---|---|
trainer | ultralytics.engine.trainer.BaseTrainer | The trainer object containing model and validation data. | required |
Returns
| Type | Description |
|---|---|
dict | Dictionary containing model parameters, GFLOPs, and inference speeds. |
Examples
YOLOv8n info for loggers
>>> results = {
... "model/parameters": 3151904,
... "model/GFLOPs": 8.746,
... "model/speed_ONNX(ms)": 41.244,
... "model/speed_TensorRT(ms)": 3.211,
... "model/speed_PyTorch(ms)": 18.755,
...}
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef model_info_for_loggers(trainer):
"""Return model info dict with useful model information.
Args:
trainer (ultralytics.engine.trainer.BaseTrainer): The trainer object containing model and validation data.
Returns:
(dict): Dictionary containing model parameters, GFLOPs, and inference speeds.
Examples:
YOLOv8n info for loggers
>>> results = {
... "model/parameters": 3151904,
... "model/GFLOPs": 8.746,
... "model/speed_ONNX(ms)": 41.244,
... "model/speed_TensorRT(ms)": 3.211,
... "model/speed_PyTorch(ms)": 18.755,
...}
"""
if trainer.args.profile: # profile ONNX and TensorRT times
from ultralytics.utils.benchmarks import ProfileModels
results = ProfileModels([trainer.last], device=trainer.device).run()[0]
results.pop("model/name")
else: # only return PyTorch times from most recent validation
results = {
"model/parameters": get_num_params(trainer.model),
"model/GFLOPs": round(get_flops(trainer.model), 3),
}
results["model/speed_PyTorch(ms)"] = round(trainer.validator.speed["inference"], 3)
return results
function ultralytics.utils.torch_utils.get_flops
def get_flops(model, imgsz = 640)
Calculate FLOPs (floating point operations) for a model in billions.
Attempts two calculation methods: first with a stride-based tensor for efficiency, then falls back to full image size if needed (e.g., for RTDETR models). Returns 0.0 if thop library is unavailable or calculation fails.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | nn.Module | The model to calculate FLOPs for. | required |
imgsz | int | list, optional | Input image size. | 640 |
Returns
| Type | Description |
|---|---|
float | The model FLOPs in billions. |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef get_flops(model, imgsz=640):
"""Calculate FLOPs (floating point operations) for a model in billions.
Attempts two calculation methods: first with a stride-based tensor for efficiency, then falls back to full image
size if needed (e.g., for RTDETR models). Returns 0.0 if thop library is unavailable or calculation fails.
Args:
model (nn.Module): The model to calculate FLOPs for.
imgsz (int | list, optional): Input image size.
Returns:
(float): The model FLOPs in billions.
"""
try:
import thop
except ImportError:
thop = None # conda support without 'ultralytics-thop' installed
if not thop:
return 0.0 # if not installed return 0.0 GFLOPs
try:
model = unwrap_model(model)
p = next(model.parameters())
if not isinstance(imgsz, list):
imgsz = [imgsz, imgsz] # expand if int/float
try:
# Method 1: Use stride-based input tensor
stride = max(int(model.stride.max()), 32) if hasattr(model, "stride") else 32 # max stride
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1e9 * 2 # stride GFLOPs
return flops * imgsz[0] / stride * imgsz[1] / stride # imgsz GFLOPs
except Exception:
# Method 2: Use actual image size (required for RTDETR models)
im = torch.empty((1, p.shape[1], *imgsz), device=p.device) # input image in BCHW format
return thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1e9 * 2 # imgsz GFLOPs
except Exception:
return 0.0
function ultralytics.utils.torch_utils.get_flops_with_torch_profiler
def get_flops_with_torch_profiler(model, imgsz = 640)
Compute model FLOPs using torch profiler (alternative to thop package, but 2-10x slower).
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | nn.Module | The model to calculate FLOPs for. | required |
imgsz | int | list, optional | Input image size. | 640 |
Returns
| Type | Description |
|---|---|
float | The model's FLOPs in billions. |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef get_flops_with_torch_profiler(model, imgsz=640):
"""Compute model FLOPs using torch profiler (alternative to thop package, but 2-10x slower).
Args:
model (nn.Module): The model to calculate FLOPs for.
imgsz (int | list, optional): Input image size.
Returns:
(float): The model's FLOPs in billions.
"""
if not TORCH_2_0: # torch profiler implemented in torch>=2.0
return 0.0
model = unwrap_model(model)
p = next(model.parameters())
if not isinstance(imgsz, list):
imgsz = [imgsz, imgsz] # expand if int/float
try:
# Use stride size for input tensor
stride = (max(int(model.stride.max()), 32) if hasattr(model, "stride") else 32) * 2 # max stride
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
with torch.profiler.profile(with_flops=True) as prof:
model(im)
flops = sum(x.flops for x in prof.key_averages()) / 1e9
flops = flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs
except Exception:
# Use actual image size for input tensor (i.e. required for RTDETR models)
im = torch.empty((1, p.shape[1], *imgsz), device=p.device) # input image in BCHW format
with torch.profiler.profile(with_flops=True) as prof:
model(im)
flops = sum(x.flops for x in prof.key_averages()) / 1e9
return flops
function ultralytics.utils.torch_utils.initialize_weights
def initialize_weights(model)
Initialize model weights to random values.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | required |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef initialize_weights(model):
"""Initialize model weights to random values."""
for m in model.modules():
t = type(m)
if t is nn.Conv2d:
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif t is nn.BatchNorm2d:
m.eps = 1e-3
m.momentum = 0.03
elif t in {nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU}:
m.inplace = True
function ultralytics.utils.torch_utils.scale_img
def scale_img(img, ratio = 1.0, same_shape = False, gs = 32)
Scale and pad an image tensor, optionally maintaining aspect ratio and padding to gs multiple.
Args
| Name | Type | Description | Default |
|---|---|---|---|
img | torch.Tensor | Input image tensor. | required |
ratio | float, optional | Scaling ratio. | 1.0 |
same_shape | bool, optional | Whether to maintain the same shape. | False |
gs | int, optional | Grid size for padding. | 32 |
Returns
| Type | Description |
|---|---|
torch.Tensor | Scaled and padded image tensor. |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef scale_img(img, ratio=1.0, same_shape=False, gs=32):
"""Scale and pad an image tensor, optionally maintaining aspect ratio and padding to gs multiple.
Args:
img (torch.Tensor): Input image tensor.
ratio (float, optional): Scaling ratio.
same_shape (bool, optional): Whether to maintain the same shape.
gs (int, optional): Grid size for padding.
Returns:
(torch.Tensor): Scaled and padded image tensor.
"""
if ratio == 1.0:
return img
h, w = img.shape[2:]
s = (int(h * ratio), int(w * ratio)) # new size
img = F.interpolate(img, size=s, mode="bilinear", align_corners=False) # resize
if not same_shape: # pad/crop img
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
function ultralytics.utils.torch_utils.copy_attr
def copy_attr(a, b, include = (), exclude = ())
Copy attributes from object 'b' to object 'a', with options to include/exclude certain attributes.
Args
| Name | Type | Description | Default |
|---|---|---|---|
a | Any | Destination object to copy attributes to. | required |
b | Any | Source object to copy attributes from. | required |
include | tuple, optional | Attributes to include. If empty, all attributes are included. | () |
exclude | tuple, optional | Attributes to exclude. | () |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef copy_attr(a, b, include=(), exclude=()):
"""Copy attributes from object 'b' to object 'a', with options to include/exclude certain attributes.
Args:
a (Any): Destination object to copy attributes to.
b (Any): Source object to copy attributes from.
include (tuple, optional): Attributes to include. If empty, all attributes are included.
exclude (tuple, optional): Attributes to exclude.
"""
for k, v in b.__dict__.items():
if (len(include) and k not in include) or k.startswith("_") or k in exclude:
continue
else:
setattr(a, k, v)
function ultralytics.utils.torch_utils.intersect_dicts
def intersect_dicts(da, db, exclude = ())
Return a dictionary of intersecting keys with matching shapes, excluding 'exclude' keys, using da values.
Args
| Name | Type | Description | Default |
|---|---|---|---|
da | dict | First dictionary. | required |
db | dict | Second dictionary. | required |
exclude | tuple, optional | Keys to exclude. | () |
Returns
| Type | Description |
|---|---|
dict | Dictionary of intersecting keys with matching shapes. |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef intersect_dicts(da, db, exclude=()):
"""Return a dictionary of intersecting keys with matching shapes, excluding 'exclude' keys, using da values.
Args:
da (dict): First dictionary.
db (dict): Second dictionary.
exclude (tuple, optional): Keys to exclude.
Returns:
(dict): Dictionary of intersecting keys with matching shapes.
"""
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
function ultralytics.utils.torch_utils.is_parallel
def is_parallel(model)
Return True if model is of type DP or DDP.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | nn.Module | Model to check. | required |
Returns
| Type | Description |
|---|---|
bool | True if model is DataParallel or DistributedDataParallel. |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef is_parallel(model):
"""Return True if model is of type DP or DDP.
Args:
model (nn.Module): Model to check.
Returns:
(bool): True if model is DataParallel or DistributedDataParallel.
"""
return isinstance(model, (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel))
function ultralytics.utils.torch_utils.unwrap_model
def unwrap_model(m: nn.Module) -> nn.Module
Unwrap compiled and parallel models to get the base model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
m | nn.Module | A model that may be wrapped by torch.compile (._orig_mod) or parallel wrappers such as DataParallel/DistributedDataParallel (.module). | required |
Returns
| Type | Description |
|---|---|
m (nn.Module) | The unwrapped base model without compile or parallel wrappers. |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef unwrap_model(m: nn.Module) -> nn.Module:
"""Unwrap compiled and parallel models to get the base model.
Args:
m (nn.Module): A model that may be wrapped by torch.compile (._orig_mod) or parallel wrappers such as
DataParallel/DistributedDataParallel (.module).
Returns:
m (nn.Module): The unwrapped base model without compile or parallel wrappers.
"""
while True:
if hasattr(m, "_orig_mod") and isinstance(m._orig_mod, nn.Module):
m = m._orig_mod
elif hasattr(m, "module") and isinstance(m.module, nn.Module):
m = m.module
else:
return m
function ultralytics.utils.torch_utils.one_cycle
def one_cycle(y1 = 0.0, y2 = 1.0, steps = 100)
Return a lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf.
Args
| Name | Type | Description | Default |
|---|---|---|---|
y1 | float, optional | Initial value. | 0.0 |
y2 | float, optional | Final value. | 1.0 |
steps | int, optional | Number of steps. | 100 |
Returns
| Type | Description |
|---|---|
function | Lambda function for computing the sinusoidal ramp. |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef one_cycle(y1=0.0, y2=1.0, steps=100):
"""Return a lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf.
Args:
y1 (float, optional): Initial value.
y2 (float, optional): Final value.
steps (int, optional): Number of steps.
Returns:
(function): Lambda function for computing the sinusoidal ramp.
"""
return lambda x: max((1 - math.cos(x * math.pi / steps)) / 2, 0) * (y2 - y1) + y1
function ultralytics.utils.torch_utils.init_seeds
def init_seeds(seed = 0, deterministic = False)
Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html.
Args
| Name | Type | Description | Default |
|---|---|---|---|
seed | int, optional | Random seed. | 0 |
deterministic | bool, optional | Whether to set deterministic algorithms. | False |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef init_seeds(seed=0, deterministic=False):
"""Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html.
Args:
seed (int, optional): Random seed.
deterministic (bool, optional): Whether to set deterministic algorithms.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe
# torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
if deterministic:
if TORCH_2_0:
torch.use_deterministic_algorithms(True, warn_only=True) # warn if deterministic is not possible
torch.backends.cudnn.deterministic = True
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
os.environ["PYTHONHASHSEED"] = str(seed)
else:
LOGGER.warning("Upgrade to torch>=2.0.0 for deterministic training.")
else:
unset_deterministic()
function ultralytics.utils.torch_utils.unset_deterministic
def unset_deterministic()
Unset all the configurations applied for deterministic training.
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef unset_deterministic():
"""Unset all the configurations applied for deterministic training."""
torch.use_deterministic_algorithms(False)
torch.backends.cudnn.deterministic = False
os.environ.pop("CUBLAS_WORKSPACE_CONFIG", None)
os.environ.pop("PYTHONHASHSEED", None)
function ultralytics.utils.torch_utils.strip_optimizer
def strip_optimizer(f: str | Path = "best.pt", s: str = "", updates: dict[str, Any] | None = None) -> dict[str, Any]
Strip optimizer from 'f' to finalize training, optionally save as 's'.
Args
| Name | Type | Description | Default |
|---|---|---|---|
f | str | Path | File path to model to strip the optimizer from. | "best.pt" |
s | str, optional | File path to save the model with stripped optimizer to. If not provided, 'f' will be overwritten. | "" |
updates | dict, optional | A dictionary of updates to overlay onto the checkpoint before saving. | None |
Returns
| Type | Description |
|---|---|
dict | The combined checkpoint dictionary. |
Examples
>>> from pathlib import Path
>>> from ultralytics.utils.torch_utils import strip_optimizer
>>> for f in Path("path/to/model/checkpoints").rglob("*.pt"):
>>> strip_optimizer(f)
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef strip_optimizer(f: str | Path = "best.pt", s: str = "", updates: dict[str, Any] | None = None) -> dict[str, Any]:
"""Strip optimizer from 'f' to finalize training, optionally save as 's'.
Args:
f (str | Path): File path to model to strip the optimizer from.
s (str, optional): File path to save the model with stripped optimizer to. If not provided, 'f' will be
overwritten.
updates (dict, optional): A dictionary of updates to overlay onto the checkpoint before saving.
Returns:
(dict): The combined checkpoint dictionary.
Examples:
>>> from pathlib import Path
>>> from ultralytics.utils.torch_utils import strip_optimizer
>>> for f in Path("path/to/model/checkpoints").rglob("*.pt"):
>>> strip_optimizer(f)
"""
try:
x = torch_load(f, map_location=torch.device("cpu"))
assert isinstance(x, dict), "checkpoint is not a Python dictionary"
assert "model" in x, "'model' missing from checkpoint"
except Exception as e:
LOGGER.warning(f"Skipping {f}, not a valid Ultralytics model: {e}")
return {}
metadata = {
"date": datetime.now().isoformat(),
"version": __version__,
"license": "AGPL-3.0 License (https://ultralytics.com/license)",
"docs": "https://docs.ultralytics.com",
}
# Update model
if x.get("ema"):
x["model"] = x["ema"] # replace model with EMA
if hasattr(x["model"], "args"):
x["model"].args = dict(x["model"].args) # convert from IterableSimpleNamespace to dict
if hasattr(x["model"], "criterion"):
x["model"].criterion = None # strip loss criterion
x["model"].half() # to FP16
for p in x["model"].parameters():
p.requires_grad = False
# Update other keys
args = {**DEFAULT_CFG_DICT, **x.get("train_args", {})} # combine args
for k in "optimizer", "best_fitness", "ema", "updates", "scaler": # keys
x[k] = None
x["epoch"] = -1
x["train_args"] = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # strip non-default keys
# x['model'].args = x['train_args']
# Save
combined = {**metadata, **x, **(updates or {})}
torch.save(combined, s or f) # combine dicts (prefer to the right)
mb = os.path.getsize(s or f) / 1e6 # file size
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
return combined
function ultralytics.utils.torch_utils.convert_optimizer_state_dict_to_fp16
def convert_optimizer_state_dict_to_fp16(state_dict)
Convert the state_dict of a given optimizer to FP16, focusing on the 'state' key for tensor conversions.
Args
| Name | Type | Description | Default |
|---|---|---|---|
state_dict | dict | Optimizer state dictionary. | required |
Returns
| Type | Description |
|---|---|
dict | Converted optimizer state dictionary with FP16 tensors. |
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef convert_optimizer_state_dict_to_fp16(state_dict):
"""Convert the state_dict of a given optimizer to FP16, focusing on the 'state' key for tensor conversions.
Args:
state_dict (dict): Optimizer state dictionary.
Returns:
(dict): Converted optimizer state dictionary with FP16 tensors.
"""
for state in state_dict["state"].values():
for k, v in state.items():
if k != "step" and isinstance(v, torch.Tensor) and v.dtype is torch.float32:
state[k] = v.half()
return state_dict
function ultralytics.utils.torch_utils.cuda_memory_usage
def cuda_memory_usage(device = None)
Monitor and manage CUDA memory usage.
This function checks if CUDA is available and, if so, empties the CUDA cache to free up unused memory. It then yields a dictionary containing memory usage information, which can be updated by the caller. Finally, it updates the dictionary with the amount of memory reserved by CUDA on the specified device.
Args
| Name | Type | Description | Default |
|---|---|---|---|
device | torch.device, optional | The CUDA device to query memory usage for. | None |
Yields
| Type | Description |
|---|---|
dict | A dictionary with a key 'memory' initialized to 0, which will be updated with the reserved memory. |
Source code in ultralytics/utils/torch_utils.py
View on GitHub@contextmanager
def cuda_memory_usage(device=None):
"""Monitor and manage CUDA memory usage.
This function checks if CUDA is available and, if so, empties the CUDA cache to free up unused memory. It then
yields a dictionary containing memory usage information, which can be updated by the caller. Finally, it updates the
dictionary with the amount of memory reserved by CUDA on the specified device.
Args:
device (torch.device, optional): The CUDA device to query memory usage for.
Yields:
(dict): A dictionary with a key 'memory' initialized to 0, which will be updated with the reserved memory.
"""
cuda_info = dict(memory=0)
if torch.cuda.is_available():
torch.cuda.empty_cache()
try:
yield cuda_info
finally:
cuda_info["memory"] = torch.cuda.memory_reserved(device)
else:
yield cuda_info
function ultralytics.utils.torch_utils.profile_ops
def profile_ops(input, ops, n = 10, device = None, max_num_obj = 0)
Ultralytics speed, memory and FLOPs profiler.
Args
| Name | Type | Description | Default |
|---|---|---|---|
input | torch.Tensor | list | Input tensor(s) to profile. | required |
ops | nn.Module | list | Model or list of operations to profile. | required |
n | int, optional | Number of iterations to average. | 10 |
device | str | torch.device, optional | Device to profile on. | None |
max_num_obj | int, optional | Maximum number of objects for simulation. | 0 |
Returns
| Type | Description |
|---|---|
list | Profile results for each operation. |
Examples
>>> from ultralytics.utils.torch_utils import profile_ops
>>> input = torch.randn(16, 3, 640, 640)
>>> m1 = lambda x: x * torch.sigmoid(x)
>>> m2 = nn.SiLU()
>>> profile_ops(input, [m1, m2], n=100) # profile over 100 iterations
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef profile_ops(input, ops, n=10, device=None, max_num_obj=0):
"""Ultralytics speed, memory and FLOPs profiler.
Args:
input (torch.Tensor | list): Input tensor(s) to profile.
ops (nn.Module | list): Model or list of operations to profile.
n (int, optional): Number of iterations to average.
device (str | torch.device, optional): Device to profile on.
max_num_obj (int, optional): Maximum number of objects for simulation.
Returns:
(list): Profile results for each operation.
Examples:
>>> from ultralytics.utils.torch_utils import profile_ops
>>> input = torch.randn(16, 3, 640, 640)
>>> m1 = lambda x: x * torch.sigmoid(x)
>>> m2 = nn.SiLU()
>>> profile_ops(input, [m1, m2], n=100) # profile over 100 iterations
"""
try:
import thop
except ImportError:
thop = None # conda support without 'ultralytics-thop' installed
results = []
if not isinstance(device, torch.device):
device = select_device(device)
LOGGER.info(
f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
f"{'input':>24s}{'output':>24s}"
)
gc.collect() # attempt to free unused memory
torch.cuda.empty_cache()
for x in input if isinstance(input, list) else [input]:
x = x.to(device)
x.requires_grad = True
for m in ops if isinstance(ops, list) else [ops]:
m = m.to(device) if hasattr(m, "to") else m # device
m = m.half() if hasattr(m, "half") and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
try:
flops = thop.profile(deepcopy(m), inputs=[x], verbose=False)[0] / 1e9 * 2 if thop else 0 # GFLOPs
except Exception:
flops = 0
try:
mem = 0
for _ in range(n):
with cuda_memory_usage(device) as cuda_info:
t[0] = time_sync()
y = m(x)
t[1] = time_sync()
try:
(sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
t[2] = time_sync()
except Exception: # no backward method
# print(e) # for debug
t[2] = float("nan")
mem += cuda_info["memory"] / 1e9 # (GB)
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
if max_num_obj: # simulate training with predictions per image grid (for AutoBatch)
with cuda_memory_usage(device) as cuda_info:
torch.randn(
x.shape[0],
max_num_obj,
int(sum((x.shape[-1] / s) * (x.shape[-2] / s) for s in m.stride.tolist())),
device=device,
dtype=torch.float32,
)
mem += cuda_info["memory"] / 1e9 # (GB)
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else "list" for x in (x, y)) # shapes
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
LOGGER.info(f"{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{s_in!s:>24s}{s_out!s:>24s}")
results.append([p, flops, mem, tf, tb, s_in, s_out])
except Exception as e:
LOGGER.info(e)
results.append(None)
finally:
gc.collect() # attempt to free unused memory
torch.cuda.empty_cache()
return results
function ultralytics.utils.torch_utils.attempt_compile
def attempt_compile(
model: torch.nn.Module,
device: torch.device,
imgsz: int = 640,
use_autocast: bool = False,
warmup: bool = False,
mode: bool | str = "default",
) -> torch.nn.Module
Compile a model with torch.compile and optionally warm up the graph to reduce first-iteration latency.
This utility attempts to compile the provided model using the inductor backend with dynamic shapes enabled and an autotuning mode. If compilation is unavailable or fails, the original model is returned unchanged. An optional warmup performs a single forward pass on a dummy input to prime the compiled graph and measure compile/warmup time.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | torch.nn.Module | Model to compile. | required |
device | torch.device | Inference device used for warmup and autocast decisions. | required |
imgsz | int, optional | Square input size to create a dummy tensor with shape (1, 3, imgsz, imgsz) for warmup. | 640 |
use_autocast | bool, optional | Whether to run warmup under autocast on CUDA or MPS devices. | False |
warmup | bool, optional | Whether to execute a single dummy forward pass to warm up the compiled model. | False |
mode | bool | str, optional | torch.compile mode. True → "default", False → no compile, or a string like "default", "reduce-overhead", "max-autotune-no-cudagraphs". | "default" |
Returns
| Type | Description |
|---|---|
model (torch.nn.Module) | Compiled model if compilation succeeds, otherwise the original unmodified model. |
Examples
>>> device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
>>> # Try to compile and warm up a model with a 640x640 input
>>> model = attempt_compile(model, device=device, imgsz=640, use_autocast=True, warmup=True)
Notes
- If the current PyTorch build does not provide torch.compile, the function returns the input model immediately.
- Warmup runs under torch.inference_mode and may use torch.autocast for CUDA/MPS to align compute precision.
- CUDA devices are synchronized after warmup to account for asynchronous kernel execution.
Source code in ultralytics/utils/torch_utils.py
View on GitHubdef attempt_compile(
model: torch.nn.Module,
device: torch.device,
imgsz: int = 640,
use_autocast: bool = False,
warmup: bool = False,
mode: bool | str = "default",
) -> torch.nn.Module:
"""Compile a model with torch.compile and optionally warm up the graph to reduce first-iteration latency.
This utility attempts to compile the provided model using the inductor backend with dynamic shapes enabled and an
autotuning mode. If compilation is unavailable or fails, the original model is returned unchanged. An optional
warmup performs a single forward pass on a dummy input to prime the compiled graph and measure compile/warmup time.
Args:
model (torch.nn.Module): Model to compile.
device (torch.device): Inference device used for warmup and autocast decisions.
imgsz (int, optional): Square input size to create a dummy tensor with shape (1, 3, imgsz, imgsz) for warmup.
use_autocast (bool, optional): Whether to run warmup under autocast on CUDA or MPS devices.
warmup (bool, optional): Whether to execute a single dummy forward pass to warm up the compiled model.
mode (bool | str, optional): torch.compile mode. True → "default", False → no compile, or a string like
"default", "reduce-overhead", "max-autotune-no-cudagraphs".
Returns:
model (torch.nn.Module): Compiled model if compilation succeeds, otherwise the original unmodified model.
Examples:
>>> device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
>>> # Try to compile and warm up a model with a 640x640 input
>>> model = attempt_compile(model, device=device, imgsz=640, use_autocast=True, warmup=True)
Notes:
- If the current PyTorch build does not provide torch.compile, the function returns the input model immediately.
- Warmup runs under torch.inference_mode and may use torch.autocast for CUDA/MPS to align compute precision.
- CUDA devices are synchronized after warmup to account for asynchronous kernel execution.
"""
if not hasattr(torch, "compile") or not mode:
return model
if mode is True:
mode = "default"
prefix = colorstr("compile:")
LOGGER.info(f"{prefix} starting torch.compile with '{mode}' mode...")
if mode == "max-autotune":
LOGGER.warning(f"{prefix} mode='{mode}' not recommended, using mode='max-autotune-no-cudagraphs' instead")
mode = "max-autotune-no-cudagraphs"
t0 = time.perf_counter()
try:
model = torch.compile(model, mode=mode, backend="inductor")
except Exception as e:
LOGGER.warning(f"{prefix} torch.compile failed, continuing uncompiled: {e}")
return model
t_compile = time.perf_counter() - t0
t_warm = 0.0
if warmup:
# Use a single dummy tensor to build the graph shape state and reduce first-iteration latency
dummy = torch.zeros(1, 3, imgsz, imgsz, device=device)
if use_autocast and device.type == "cuda":
dummy = dummy.half()
t1 = time.perf_counter()
with torch.inference_mode():
if use_autocast and device.type in {"cuda", "mps"}:
with torch.autocast(device.type):
_ = model(dummy)
else:
_ = model(dummy)
if device.type == "cuda":
torch.cuda.synchronize(device)
t_warm = time.perf_counter() - t1
total = t_compile + t_warm
if warmup:
LOGGER.info(f"{prefix} complete in {total:.1f}s (compile {t_compile:.1f}s + warmup {t_warm:.1f}s)")
else:
LOGGER.info(f"{prefix} compile complete in {t_compile:.1f}s (no warmup)")
return model