İçeriğe geç

YOLOv5 Hızlı Başlangıç 🚀

YOLOv5 ile gerçek zamanlı nesne algılamanın dinamik dünyasına doğru yolculuğa çıkın! Bu kılavuz, YOLOv5'da ustalaşmayı hedefleyen yapay zeka meraklıları ve profesyoneller için kapsamlı bir başlangıç noktası olarak hizmet etmek üzere hazırlanmıştır. İlk kurulumdan gelişmiş eğitim tekniklerine kadar her şey elimizin altında. Bu kılavuzun sonunda, YOLOv5 'u projelerinize güvenle uygulayabilecek bilgiye sahip olacaksınız. Motorları ateşleyelim ve YOLOv5'a doğru yükselelim!

Kurulum

Depoyu klonlayarak ve ortamı kurarak başlatma için hazırlanın. Bu, gerekli tüm gereksinimlerin yüklenmesini sağlar. Şunlara sahip olduğunuzu kontrol edin Python>=3.8.0 ve PyTorch>=1.8 kalkışa hazır.

git clone https://github.com/ultralytics/yolov5  # clone repository
cd yolov5
pip install -r requirements.txt  # install dependencies

İle Çıkarım PyTorch Hub

Modellerin en son YOLOv5 sürümünden sorunsuz bir şekilde indirildiği YOLOv5 PyTorch Hub çıkarımının basitliğini deneyimleyin.

import torch

# Model loading
model = torch.hub.load("ultralytics/yolov5", "yolov5s")  # Can be 'yolov5n' - 'yolov5x6', or 'custom'

# Inference on images
img = "https://ultralytics.com/images/zidane.jpg"  # Can be a file, Path, PIL, OpenCV, numpy, or list of images

# Run inference
results = model(img)

# Display results
results.print()  # Other options: .show(), .save(), .crop(), .pandas(), etc.

detect.py ile çıkarım

Koşum takımı detect.py çeşitli kaynaklar üzerinde çok yönlü çıkarım için. Otomatik olarak getirir modeller en son gelen YOLOv5 serbest bırakma ve sonuçları kolaylıkla kaydeder.

python detect.py --weights yolov5s.pt --source 0                               # webcam
                                               image.jpg                       # image
                                               video.mp4                       # video
                                               screen                          # screenshot
                                               path/                           # directory
                                               list.txt                        # list of images
                                               list.streams                    # list of streams
                                               'path/*.jpg'                    # glob
                                               'https://youtu.be/LNwODJXcvt4'  # YouTube
                                               'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

Eğitim

Çoğaltın YOLOv5 COCO ölçütlerini aşağıdaki talimatlara göre belirleyin. Gerekli olan modeller ve veri kümeleri doğrudan en son YOLOv5 serbest bırakma. V100 üzerinde YOLOv5n/s/m/l/x eğitimi GPU tipik olarak sırasıyla 1/2/4/6/8 gün sürmelidir (şunu unutmayın ÇokluGPU kurulumlar daha hızlı çalışır). Mümkün olan en yüksek performansı kullanarak performansı en üst düzeye çıkarın --batch-size veya kullanın --batch-size -1 için YOLOv5 AutoBatch özellik. Aşağıdakiler parti boyutları V100-16GB GPU'lar için idealdir.

python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml  --batch-size 128
                                                                 yolov5s                    64
                                                                 yolov5m                    40
                                                                 yolov5l                    24
                                                                 yolov5x                    16

YOLO eği̇ti̇m eğri̇leri̇

Sonuç olarak, YOLOv5 yalnızca nesne algılama için son teknoloji ürünü bir araç değil, aynı zamanda görsel anlama yoluyla dünyayla etkileşim kurma şeklimizi dönüştürmede makine öğreniminin gücünün bir kanıtıdır. Bu kılavuzda ilerlerken ve YOLOv5 adresini projelerinize uygulamaya başlarken, olağanüstü başarılara imza atabilecek teknolojik bir devrimin ön saflarında yer aldığınızı unutmayın. Daha fazla içgörüye veya diğer vizyonerlerin desteğine ihtiyaç duyarsanız, gelişen bir geliştirici ve araştırmacı topluluğuna ev sahipliği yapan GitHub depomuza davetlisiniz. Keşfetmeye, yeniliklere devam edin ve YOLOv5'un mucizelerinin tadını çıkarın. Mutlu tespitler! 🌠🔍

📅1 yıl önce oluşturuldu ✏️ 3 ay önce güncellendi

Yorumlar