Skip to content

Augmentation du temps d'essai (TTA)

📚 Ce guide explique comment utiliser l'augmentation du temps de test (TTA) pendant les tests et l'inférence pour améliorer le mAP et le rappel avec YOLOv5 🚀.

Avant de commencer

Cloner le repo et installer le fichier requirements.txt dans un fichier Python>=3.8.0 incluant PyTorch>=1.8. Les modèles et les ensembles de données sont téléchargés automatiquement à partir de la dernièreversion de YOLOv5 .

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Test normal

Avant d'essayer TTA, nous voulons établir une performance de base à laquelle nous pouvons nous comparer. Cette commande teste YOLOv5x sur COCO val2017 à une taille d'image de 640 pixels. yolov5x.pt est le modèle le plus grand et le plus précis disponible. Les autres options sont yolov5s.pt, yolov5m.pt et yolov5l.ptou votre propre point de contrôle à partir de l'entraînement d'un ensemble de données personnalisé ./weights/best.pt. Pour plus de détails sur tous les modèles disponibles, veuillez consulter notre README. table.

python val.py --weights yolov5x.pt --data coco.yaml --img 640 --half

Sortie :

val: data=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True
YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Fusing layers...
Model Summary: 476 layers, 87730285 parameters, 0 gradients

val: Scanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2846.03it/s]
val: New cache created: ../datasets/coco/val2017.cache
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [02:30<00:00,  1.05it/s]
                 all       5000      36335      0.746      0.626       0.68       0.49
Speed: 0.1ms pre-process, 22.4ms inference, 1.4ms NMS per image at shape (32, 3, 640, 640)  # <--- baseline speed

Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.504  # <--- baseline mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.688
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.546
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.351
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.551
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.644
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.628
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.681  # <--- baseline mAR
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.826

Test avec TTA

Ajouter --augment à tous les val.py pour activer TTA, et augmenter la taille de l'image d'environ 30% pour de meilleurs résultats. Notez que l'inférence avec TTA activée prend généralement 2 à 3 fois plus de temps que l'inférence normale, car les images sont retournées gauche-droite et traitées à 3 résolutions différentes, les résultats étant fusionnés avant le NMS. Une partie de la diminution de la vitesse est simplement due à la plus grande taille des images (832 contre 640), tandis qu'une autre partie est due aux opérations TTA proprement dites.

python val.py --weights yolov5x.pt --data coco.yaml --img 832 --augment --half

Sortie :

val: data=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=832, conf_thres=0.001, iou_thres=0.6, task=val, device=, single_cls=False, augment=True, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True
YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Fusing layers...
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  /pytorch/c10/core/TensorImpl.h:1156.)
  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
Model Summary: 476 layers, 87730285 parameters, 0 gradients
val: Scanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2885.61it/s]
val: New cache created: ../datasets/coco/val2017.cache
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [07:29<00:00,  2.86s/it]
                 all       5000      36335      0.718      0.656      0.695      0.503
Speed: 0.2ms pre-process, 80.6ms inference, 2.7ms NMS per image at shape (32, 3, 832, 832)  # <--- TTA speed

Evaluating pycocotools mAP... saving runs/val/exp2/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.516  # <--- TTA mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.701
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.562
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.361
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.564
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.656
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.388
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.640
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.696  # <--- TTA mAR
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.553
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.744
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.833

Inférence avec TTA

detect.py L'inférence TTA fonctionne de manière identique à val.py TTA : il suffit d'ajouter --augment à tous les detect.py commande :

python detect.py --weights yolov5s.pt --img 832 --source data/images --augment

Sortie :

YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 81.9MB/s]

Fusing layers...
Model Summary: 224 layers, 7266973 parameters, 0 gradients
image 1/2 /content/yolov5/data/images/bus.jpg: 832x640 4 persons, 1 bus, 1 fire hydrant, Done. (0.029s)
image 2/2 /content/yolov5/data/images/zidane.jpg: 480x832 3 persons, 3 ties, Done. (0.024s)
Results saved to runs/detect/exp
Done. (0.156s)

YOLOv5 augmentation de la durée des essais

PyTorch Hub TTA

TTA est automatiquement intégré dans tous les YOLOv5 PyTorch Hub et on peut y accéder en passant la commande augment=True au moment de l'inférence.

import torch

# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s")  # or yolov5m, yolov5x, custom

# Images
img = "https://ultralytics.com/images/zidane.jpg"  # or file, PIL, OpenCV, numpy, multiple

# Inference
results = model(img, augment=True)  # <--- TTA inference

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

Personnaliser

Vous pouvez personnaliser les opérations TTA appliquées dans l'onglet YOLOv5 forward_augment() méthode ici.

Environnements pris en charge

Ultralytics fournit une série d'environnements prêts à l'emploi, chacun étant préinstallé avec des dépendances essentielles telles que CUDACUDNN, Pythonet PyTorchpour lancer vos projets.

État d'avancement du projet

YOLOv5 CI

Ce badge indique que tous les tests d'intégration continue (CI) deYOLOv5 GitHub Actions ont été passés avec succès. Ces tests d'intégration continue vérifient rigoureusement la fonctionnalité et les performances de YOLOv5 sur différents aspects clés : formation, validation, inférence, exportation et tests de référence. Ils garantissent un fonctionnement cohérent et fiable sur macOS, Windows et Ubuntu, avec des tests effectués toutes les 24 heures et à chaque nouveau commit.

📅C réé il y a 1 an ✏️ Mis à jour il y a 2 mois

Commentaires