Vai al contenuto

YOLOv5 Model Ensembling

📚 Questa guida spiega come utilizzare l'ensemble di modelli Ultralytics YOLOv5 🚀 durante il testing e l'inferenza per migliorare la mAP e il Recall.

Da apprendimento di insieme:

La modellazione di ensemble è un processo in cui vengono creati più modelli diversi per prevedere un risultato, utilizzando molti algoritmi di modellazione diversi o utilizzando diversi set di dati di addestramento. Il modello di ensemble aggrega quindi la previsione di ciascun modello base e produce una previsione finale per i dati non visti. La motivazione per l'utilizzo di modelli di ensemble è ridurre l'errore di generalizzazione della previsione. Finché i modelli base sono diversi e indipendenti, l'errore di previsione del modello diminuisce quando viene utilizzato l'approccio di ensemble. L'approccio cerca la saggezza della folla nel fare una previsione. Anche se il modello di ensemble ha più modelli base all'interno del modello, agisce e si comporta come un singolo modello.

Prima di iniziare

Clona il repository e installa i requirements.txt in un ambiente Python>=3.8.0, incluso PyTorch>=1.8. I modelli e i dataset vengono scaricati automaticamente dall'ultima release di YOLOv5.

git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install

Test normale

Prima dell'assemblaggio, stabilisci le prestazioni di base di un singolo modello. Questo comando testa YOLOv5x su COCO val2017 con una dimensione dell'immagine di 640 pixel. yolov5x.pt è il modello più grande e preciso disponibile. Altre opzioni sono yolov5s.pt, yolov5m.pt e yolov5l.pt, o il tuo checkpoint derivante dall'addestramento di un dataset personalizzato ./weights/best.pt. Per dettagli su tutti i modelli disponibili, consultare il tabella dei checkpoint pre-addestrati.

python val.py --weights yolov5x.pt --data coco.yaml --img 640 --half

Output:

val: data=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True
YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Fusing layers...
Model Summary: 476 layers, 87730285 parameters, 0 gradients

val: Scanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2846.03it/s]
val: New cache created: ../datasets/coco/val2017.cache
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [02:30<00:00,  1.05it/s]
                 all       5000      36335      0.746      0.626       0.68       0.49
Speed: 0.1ms pre-process, 22.4ms inference, 1.4ms NMS per image at shape (32, 3, 640, 640)  # <--- baseline speed

Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.504  # <--- baseline mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.688
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.546
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.351
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.551
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.644
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.628
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.681  # <--- baseline mAR
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.826

Test di Ensemble

È possibile combinare più modelli pre-addestrati in fase di test e inferenza semplicemente aggiungendo modelli extra al --weights argomento in qualsiasi comando val.py o detect.py esistente. Questo esempio testa un insieme di 2 modelli insieme:

  • YOLOv5x
  • YOLOv5l6
python val.py --weights yolov5x.pt yolov5l6.pt --data coco.yaml --img 640 --half

Output:

val: data=./data/coco.yaml, weights=['yolov5x.pt', 'yolov5l6.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True
YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Fusing layers...
Model Summary: 476 layers, 87730285 parameters, 0 gradients  # Model 1
Fusing layers...
Model Summary: 501 layers, 77218620 parameters, 0 gradients  # Model 2
Ensemble created with ['yolov5x.pt', 'yolov5l6.pt']  # Ensemble notice

val: Scanning '../datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:00<00:00, 49695545.02it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [03:58<00:00,  1.52s/it]
                 all       5000      36335      0.747      0.637      0.692      0.502
Speed: 0.1ms pre-process, 39.5ms inference, 2.0ms NMS per image at shape (32, 3, 640, 640)  # <--- ensemble speed

Evaluating pycocotools mAP... saving runs/val/exp3/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.515  # <--- ensemble mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.699
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.557
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.356
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.563
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.668
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.387
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.638
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.689  # <--- ensemble mAR
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.743
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844

Inferenza di Ensemble

Aggiungi modelli extra al --weights argomento per eseguire l'inferenza di insieme:

python detect.py --weights yolov5x.pt yolov5l6.pt --img 640 --source data/images

Output:

YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Fusing layers...
Model Summary: 476 layers, 87730285 parameters, 0 gradients
Fusing layers...
Model Summary: 501 layers, 77218620 parameters, 0 gradients
Ensemble created with ['yolov5x.pt', 'yolov5l6.pt']

image 1/2 /content/yolov5/data/images/bus.jpg: 640x512 4 persons, 1 bus, 1 tie, Done. (0.063s)
image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 3 persons, 2 ties, Done. (0.056s)
Results saved to runs/detect/exp2
Done. (0.223s)

Risultato dell'inferenza YOLO

Vantaggi dell'Ensembling di Modelli

L'ensemble di modelli con YOLOv5 offre diversi vantaggi:

  1. Maggiore precisione: Come dimostrato negli esempi precedenti, l'ensemble di più modelli aumenta la mAP da 0.504 a 0.515 e la mAR da 0.681 a 0.689.
  2. Migliore Generalizzazione: La combinazione di modelli diversi aiuta a ridurre l'overfitting e migliora le prestazioni su dati variabili.
  3. Maggiore robustezza: Gli ensemble sono in genere più resistenti al rumore e ai valori anomali nei dati.
  4. Punti di forza complementari: Modelli diversi possono eccellere nel rilevamento di diversi tipi di oggetti o in diverse condizioni ambientali.

Il principale compromesso è l'aumento del tempo di inferenza, come mostrato nelle metriche di velocità (22.4ms per il modello singolo vs. 39.5ms per l'ensemble).

Quando utilizzare il Model Ensembling

Considera l'utilizzo dell'ensemble di modelli in questi scenari:

  • Quando la precisione è più importante della velocità di inferenza
  • Per applicazioni critiche in cui è necessario ridurre al minimo i falsi negativi
  • Quando si elaborano immagini complesse con illuminazione, occlusione o scala variabili
  • Durante competizioni o benchmark in cui è richiesta la massima performance

Per applicazioni in tempo reale con requisiti di latenza rigorosi, l'inferenza di un singolo modello potrebbe essere più appropriata.

Ambienti supportati

Ultralytics fornisce una gamma di ambienti pronti all'uso, ciascuno preinstallato con dipendenze essenziali come CUDA, CUDNN, Python e PyTorch, per avviare i tuoi progetti.

Stato del progetto

YOLOv5 CI

Questo badge indica che tutti i test di Integrazione Continua (CI) di YOLOv5 GitHub Actions vengono superati con successo. Questi test CI verificano rigorosamente la funzionalità e le prestazioni di YOLOv5 attraverso vari aspetti chiave: training, validation, inference, export e benchmarks. Garantiscono un funzionamento coerente e affidabile su macOS, Windows e Ubuntu, con test eseguiti ogni 24 ore e ad ogni nuovo commit.



📅 Creato 1 anno fa ✏️ Aggiornato 2 mesi fa

Commenti