アフリカ野生生物データセット
このデータセットでは、南アフリカの自然保護区でよく見られる4種類の動物を紹介しています。バッファロー、ゾウ、サイ、シマウマなどのアフリカの野生動物の画像が含まれており、それらの特徴に関する貴重な洞察を提供します。コンピュータビジョンアルゴリズムの学習に不可欠なこのデータセットは、動物園から森林まで様々な生息地で動物を識別するのに役立ち、野生生物の研究をサポートします。
見るんだ: アフリカの野生動物検出Ultralytics YOLO11
データセット構造
アフリカの野生動物オブジェクト検出データセットは3つのサブセットに分かれている:
- トレーニングセット:1052枚の画像を含み、それぞれに対応する注釈がある。
- 検証セット:225枚の画像を含み、それぞれに対になった注釈がある。
- テストセット:227枚の画像で構成され、それぞれ対になったアノテーションがある。
アプリケーション
このデータセットは、物体検出、物体追跡、研究など、様々なコンピュータビジョンタスクに応用できる。具体的には、画像中のアフリカの野生動物のオブジェクトを識別するモデルの訓練と評価に使用することができ、これは野生動物の保護、生態学的研究、自然保護区や保護地域におけるモニタリングの取り組みに応用することができます。さらに、学生や研究者がさまざまな動物種の特徴や行動を研究・理解するための、教育目的の貴重なリソースとしても役立ちます。
データセット YAML
YAML (Yet Another Markup Language) ファイルは、パス、クラス、その他の関連する詳細を含むデータセットの設定を定義する。アフリカの野生動物のデータセットでは african-wildlife.yaml
ファイルは https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/african-wildlife.yaml.
ultralytics/cfg/datasets/african-wildlife.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# African-wildlife dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
# Example usage: yolo train data=african-wildlife.yaml
# parent
# ├── ultralytics
# └── datasets
# └── african-wildlife ← downloads here (100 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/african-wildlife # dataset root dir
train: train/images # train images (relative to 'path') 1052 images
val: valid/images # val images (relative to 'path') 225 images
test: test/images # test images (relative to 'path') 227 images
# Classes
names:
0: buffalo
1: elephant
2: rhino
3: zebra
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/african-wildlife.zip
使用方法
アフリカの野生動物データセットでYOLO11nモデルを画像サイズ640で100エポック学習させるには、提供されているコードサンプルを使ってください。利用可能なパラメータの包括的なリストについては、モデルのトレーニングページを参照してください。
列車の例
推論例
サンプル画像と注釈
アフリカの野生動物データセットは、多様な動物種とその生息地を紹介する多種多様な画像で構成されています。以下は、このデータセットの画像の例で、それぞれに対応する注釈が添えられています。
- モザイク画像:ここでは、モザイク処理されたデータセット画像からなるトレーニングバッチを紹介する。モザイク処理とは、複数の画像を1枚に合成し、バッチの多様性を豊かにする学習手法である。この方法は、異なるオブジェクトのサイズ、アスペクト比、コンテクストに渡ってモデルの一般化能力を高めるのに役立つ。
この例は、アフリカの野生動物データセットに含まれる画像の多様性と複雑性を示しており、学習プロセス中にモザイク処理を含めることの利点を強調している。
引用と謝辞
このデータセットは、AGPL-3.0 ライセンスの下で公開されている。
よくあるご質問
アフリカ野生動物データセットとは何ですか?また、コンピュータ・ビジョン・プロジェクトでどのように使用できますか?
African Wildlife Datasetには、南アフリカの自然保護区でよく見られる4種の動物(バッファロー、ゾウ、サイ、シマウマ)の画像が含まれています。このデータセットは、物体検出や動物識別のコンピュータビジョンアルゴリズムをトレーニングするための貴重なリソースです。このデータセットは、物体追跡、研究、保護活動などの様々なタスクをサポートしています。このデータセットの構造とアプリケーションの詳細については、データセットの構造のセクションとデータセットのアプリケーションを参照してください。
アフリカ野生動物データセットを使用してYOLO11 モデルをトレーニングするには?
アフリカ野生動物データセットでYOLO11 モデルをトレーニングするには、次のようにします。 african-wildlife.yaml
設定ファイルを参照してください。以下は、YOLO11nモデルを画像サイズ640で100エポック学習させる例である:
例
その他のトレーニングパラメータおよびオプションについては、トレーニングに関する文書を参照してください。
African Wildlife DatasetのYAML設定ファイルはどこにありますか?
African Wildlife DatasetのYAMLコンフィギュレーションファイル。 african-wildlife.yaml
詳細は以下を参照のこと。 このGitHubのリンク.このファイルは,パス,クラス,その他トレーニングに重要な詳細を含むデータセットの設定を定義する. 機械学習 モデルをご覧ください。をご覧ください。 データセット YAML セクションを参照されたい。
African Wildlife Datasetのサンプル画像や注釈を見ることはできますか?
アフリカ野生動物データセットには、多様な動物種の自然生息地を紹介するさまざまな画像が含まれています。サンプル画像と注釈のセクションでは、サンプル画像とそれに対応する注釈を見ることができます。また、このセクションでは、モデルの汎化能力を向上させるために、バッチ多様性を豊かにするために複数の画像を1つに結合するモザイキング技術の使用について説明します。
アフリカ野生生物データセットは、野生生物の保護と研究を支援するためにどのように利用できるのか?
African Wildlife Datasetは、さまざまな生息地におけるアフリカの野生生物を特定するモデルの訓練と評価を可能にすることで、野生生物の保全と研究を支援するのに理想的です。これらのモデルは、動物の個体数のモニタリング、行動の研究、保全の必要性の認識に役立ちます。さらに、このデータセットは教育目的にも利用でき、学生や研究者がさまざまな動物種の特徴や行動を理解するのに役立ちます。詳細はアプリケーションのセクションをご覧ください。