COCO-Pose ããŒã¿ã»ãã
COCO-PoseããŒã¿ã»ããã¯ãCOCO (Common Objects in Context)ããŒã¿ã»ããã®ç¹å¥ããŒãžã§ã³ã§ãããŒãºæšå®ã¿ã¹ã¯çšã«èšèšãããŠãããCOCO Keypoints 2017ã®ç»åãšã©ãã«ã掻çšãã姿å¢æšå®ã¿ã¹ã¯ã®ããã®YOLO ã®ãããªã¢ãã«ã®åŠç¿ãå¯èœã«ããã
COCO-ããŒãºäºååŠç¿ã¢ãã«
ã¢ãã« | ãµã€ãº (ãã¯ã»ã«) |
mAPpose 50-95 |
mAPpose 50 |
é床 CPU ONNX (ms) |
é床 A100 TensorRT (ms) |
params (M) |
FLOPs (B) |
---|---|---|---|---|---|---|---|
YOLOv8n-ããŒãº | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
YOLOv8s-ããŒãº | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
YOLOv8m-ããŒãº | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
YOLOv8l-ããŒãº | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
YOLOv8x-ããŒãº | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
YOLOv8x-pose-p6 | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
äž»ãªç¹åŸŽ
- COCO-Poseã¯ãããŒãºæšå®ã¿ã¹ã¯ã®ããã®ããŒãã€ã³ãã§ã©ãã«ä»ãããã200Kç»åãå«ãCOCO Keypoints 2017ããŒã¿ã»ããã«åºã¥ããŠæ§ç¯ãããŠããã
- ãã®ããŒã¿ã»ããã¯ã人ç©ã®17ã®ããŒãã€ã³ãããµããŒãããŠããã詳现ãªããŒãºæšå®ã容æã«ããŠããã
- COCOãšåæ§ã«ãããŒãºæšå®ã¿ã¹ã¯ã®ããã®Object Keypoint Similarity (OKS)ãå«ãæšæºåãããè©äŸ¡ã¡ããªãã¯ãæäŸããã¢ãã«æ§èœã®æ¯èŒã«é©ããŠããã
ããŒã¿ã»ããæ§é
COCO-PoseããŒã¿ã»ããã¯3ã€ã®ãµãã»ããã«åå²ãããŠããïŒ
- Train2017ïŒãã®ãµãã»ããã«ã¯ãCOCOããŒã¿ã»ããã®118Kç»åã®äžéšãå«ãŸããããŒãºæšå®ã¢ãã«ã®ãã¬ãŒãã³ã°çšã«ã¢ãããŒã·ã§ã³ãããŠããã
- Val2017ïŒãã®ãµãã»ããã«ã¯ãã¢ãã«ã®ãã¬ãŒãã³ã°äžã«æ€èšŒç®çã§äœ¿çšãããç»åã®ã»ã¬ã¯ã·ã§ã³ããããŸãã
- Test2017ïŒãã®ãµãã»ããã¯ãåŠç¿æžã¿ã¢ãã«ã®ãã¹ããšãã³ãããŒã¯ã«äœ¿çšãããç»åã§æ§æãããããã®ãµãã»ããã®ã°ã©ã³ããã¥ã«ãŒã¹ã¢ãããŒã·ã§ã³ã¯å ¬éãããŠããããçµæã¯æ§èœè©äŸ¡ã®ããã«COCOè©äŸ¡ãµãŒãã«æåºãããã
ã¢ããªã±ãŒã·ã§ã³
COCO-PoseããŒã¿ã»ããã¯ãç¹ã«OpenPoseã®ãããªããŒãã€ã³ãæ€åºãšããŒãºæšå®ã¿ã¹ã¯ã«ããããã£ãŒãã©ãŒãã³ã°ã¢ãã«ã®ãã¬ãŒãã³ã°ãšè©äŸ¡ã«äœ¿çšãããŸãããã®ããŒã¿ã»ããã®å€æ°ã®æ³šéä»ãç»åãšæšæºåãããè©äŸ¡ææšã¯ãããŒãºæšå®ã«çŠç¹ãåœãŠãã³ã³ãã¥ãŒã¿ããžã§ã³ã®ç 究è ãå®å家ã«ãšã£ãŠäžå¯æ¬ ãªãªãœãŒã¹ãšãªã£ãŠããŸãã
ããŒã¿ã»ãã YAML
YAML (Yet Another Markup Language) ãã¡ã€ã«ã¯ããŒã¿ã»ããã®èšå®ãå®çŸ©ããããã«äœ¿ãããããã®ãã¡ã€ã«ã«ã¯ãããŒã¿ã»ããã®ãã¹ãã¯ã©ã¹ããã®ä»ã®é¢é£æ
å ±ãå«ãŸããŠãããCOCO-PoseããŒã¿ã»ããã®å Žå㯠coco-pose.yaml
ãã¡ã€ã«ã¯ https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco-pose.yaml.
ultralytics/cfg/datasets/coco-pose.yaml
# Ultralytics YOLO ð, AGPL-3.0 license
# COCO 2017 dataset https://cocodataset.org by Microsoft
# Documentation: https://docs.ultralytics.com/datasets/pose/coco/
# Example usage: yolo train data=coco-pose.yaml
# parent
# âââ ultralytics
# âââ datasets
# âââ coco-pose â downloads here (20.1 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco-pose # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# Keypoints
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
# Classes
names:
0: person
# Download script/URL (optional)
download: |
from ultralytics.utils.downloads import download
from pathlib import Path
# Download labels
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
urls = [url + 'coco2017labels-pose.zip'] # labels
download(urls, dir=dir.parent)
# Download data
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
download(urls, dir=dir / 'images', threads=3)
䜿çšæ¹æ³
COCO-PoseããŒã¿ã»ããã§YOLOv8n-pose ã¢ãã«ãç»åãµã€ãº640ã§100ãšããã¯åŠç¿ãããã«ã¯ã以äžã®ã³ãŒãã¹ããããã䜿çšã§ããŸããå©çšå¯èœãªåŒæ°ã®å æ¬çãªãªã¹ãã«ã€ããŠã¯ãã¢ãã«ã®ãã¬ãŒãã³ã°ããŒãžãåç §ããŠãã ããã
åè»ã®äŸ
ãµã³ãã«ç»åãšæ³šé
COCO-PoseããŒã¿ã»ããã«ã¯ãããŒãã€ã³ãã§ã¢ãããŒã·ã§ã³ããã人ç©ã®å€æ§ãªç»åã»ãããå«ãŸããŠããŸãããã®ããŒã¿ã»ããã«å«ãŸããç»åã®äŸãã察å¿ããã¢ãããŒã·ã§ã³ãšãšãã«çŽ¹ä»ããŸãïŒ
- ã¢ã¶ã€ã¯ç»åïŒãã®ç»åã¯ãã¢ã¶ã€ã¯åŠçãããããŒã¿ã»ããç»åã§æ§æããããã¬ãŒãã³ã°ãããã瀺ããã¢ã¶ã€ã¯åŠçãšã¯ãè€æ°ã®ç»åã1ã€ã®ç»åã«åæããåãã¬ãŒãã³ã°ãããå ã®ãªããžã§ã¯ããã·ãŒã³ã®çš®é¡ãå¢ãããã¬ãŒãã³ã°æã«äœ¿çšãããææ³ã§ããããã«ãããç°ãªããªããžã§ã¯ããµã€ãºãã¢ã¹ãã¯ãæ¯ãã³ã³ãã¯ã¹ãã«å¯Ÿããã¢ãã«ã®æ±åèœåãåäžãããããšãã§ããŸãã
ãã®äŸã§ã¯ãCOCO-PoseããŒã¿ã»ããã®ç»åã®å€æ§æ§ãšè€éããããã³åŠç¿ããã»ã¹ã§ã¢ã¶ã€ã¯åŠçã䜿çšããå©ç¹ã瀺ããŠããŸãã
åŒçšãšè¬èŸ
COCO-PoseããŒã¿ã»ãããç 究éçºã«äœ¿çšããå Žåã¯ã以äžã®è«æãåŒçšããŠãã ããïŒ
@misc{lin2015microsoft,
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
COCOã³ã³ãœãŒã·ã¢ã ããã³ã³ãã¥ãŒã¿ããžã§ã³ã³ãã¥ããã£ã®ããã«ãã®è²ŽéãªãªãœãŒã¹ãäœæããç¶æããŠãã ãã£ãŠããããšã«æè¬ããããŸããCOCO-PoseããŒã¿ã»ãããšãã®äœæè ã«ã€ããŠã®è©³çŽ°ã¯ãCOCOããŒã¿ã»ããã®ãŠã§ããµã€ããã芧ãã ããã
ããããã質å
COCO-PoseããŒã¿ã»ãããšã¯äœã§ããïŒãŸããUltralytics YOLO ãã©ã®ããã«ããŒãºæšå®ã«äœ¿ãããŠããŸããïŒ
COCO-PoseããŒã¿ã»ããã¯ãããŒãºæšå®ã¿ã¹ã¯çšã«èšèšãããCOCOïŒCommon Objects in ContextïŒããŒã¿ã»ããã®ç¹æ®ããŒãžã§ã³ã§ãããCOCO Keypoints 2017ã®ç»åãšã¢ãããŒã·ã§ã³ãããŒã¹ã«æ§ç¯ãããŠãããUltralytics YOLO ã®ãããªã¢ãã«ãåŠç¿ããŠè©³çŽ°ãªããŒãºæšå®ãè¡ãããšãã§ãããäŸãã°ãCOCO-PoseããŒã¿ã»ããã䜿çšããŠãäºåã«èšç·Žãããã¢ãã«ãããŒãããYAMLèšå®ã§ãããèšç·Žããããšã§ãYOLOv8n-pose ã¢ãã«ãèšç·Žããããšãã§ããŸãããã¬ãŒãã³ã°ã®äŸã«ã€ããŠã¯ããã¬ãŒãã³ã°ã®ããã¥ã¡ã³ããåç §ããŠãã ããã
COCO-PoseããŒã¿ã»ããã§YOLOv8 ã¢ãã«ããã¬ãŒãã³ã°ããã«ã¯ïŒ
COCO-PoseããŒã¿ã»ããã«å¯ŸããYOLOv8 ã¢ãã«ã®ãã¬ãŒãã³ã°ã¯ãPython ãŸãã¯CLI ã®ããããã®ã³ãã³ãã䜿çšããŠè¡ãããšãã§ããŸããäŸãã°ãYOLOv8n-pose ã¢ãã«ãç»åãµã€ãº640ã§100ãšããã¯èšç·Žããã«ã¯ã以äžã®æé ã«åŸããŸãïŒ
åè»ã®äŸ
ãã¬ãŒãã³ã°ã®ããã»ã¹ãå©çšå¯èœãªåŒæ°ã®è©³çŽ°ã«ã€ããŠã¯ããã¬ãŒãã³ã°ã®ããŒãžãã芧ãã ããã
COCO-PoseããŒã¿ã»ãããæäŸãããã¢ãã«ã®æ§èœãè©äŸ¡ããããã®ããŸããŸãªææšãšã¯ïŒ
COCO-PoseããŒã¿ã»ããã¯ããªãªãžãã«ã®COCOããŒã¿ã»ãããšåæ§ã«ãããŒãºæšå®ã¿ã¹ã¯ã®ããã®ããã€ãã®æšæºåãããè©äŸ¡ã¡ããªãã¯ãæäŸããŸããäž»ãªã¡ããªã¯ã¹ã«ã¯ãäºæž¬ãããããŒãã€ã³ãã®ç²ŸåºŠãã°ã©ã³ããã¥ã«ãŒã¹æ³šéã«å¯ŸããŠè©äŸ¡ãããªããžã§ã¯ãããŒãã€ã³ãã·ãã©ãŒãªãã£ïŒOKSïŒãå«ãŸããŸãããããã®ã¡ããªã¯ã¹ã«ãããç°ãªãã¢ãã«éã®åŸ¹åºçãªæ§èœæ¯èŒãå¯èœã«ãªããŸããäŸãã°ãYOLOv8n-pose,YOLOv8s-pose ãªã©ã®COCO-PoseäºååŠç¿ã¢ãã«ã«ã¯ãmAPpose50-95ãmAPpose50ã®ãããªç¹å®ã®ããã©ãŒãã³ã¹ã¡ããªã¯ã¹ãããã¥ã¡ã³ãã«èšèŒãããŠããŸãã
COCO-PoseããŒã¿ã»ããã®æ§é ãšåå²ã¯ã©ã®ããã«ãªã£ãŠããŸããïŒ
COCO-PoseããŒã¿ã»ããã¯3ã€ã®ãµãã»ããã«åå²ãããŠããïŒ
- Train2017ïŒ11äž8000æã®COCOç»åã®äžéšã§ãããŒãºæšå®ã¢ãã«ã®åŠç¿çšã«ã¢ãããŒã·ã§ã³ãããŠããã
- Val2017ïŒã¢ãã«åŠç¿æã®æ€èšŒçšã«éžæãããç»åã
- Test2017ïŒåŠç¿æžã¿ã¢ãã«ã®ãã¹ããšãã³ãããŒã¯ã«äœ¿çšãããç»åããã®ãµãã»ããã®ã°ã©ã³ããã¥ã«ãŒã¹ã¢ãããŒã·ã§ã³ã¯å ¬éãããŠããããçµæã¯æ§èœè©äŸ¡ã®ããã«COCOè©äŸ¡ãµãŒãã«æåºãããã
ãããã®ãµãã»ããã¯ããã¬ãŒãã³ã°ãæ€èšŒããã¹ãã®åãã§ãŒãºãå¹æçã«æŽçããã®ã«åœ¹ç«ã€ãèšå®ã®è©³çŽ°ã«ã€ããŠã¯ coco-pose.yaml
ãã¡ã€ã«ã¯ ã®ãããã.
COCO-PoseããŒã¿ã»ããã®äž»ãªç¹åŸŽãšçšéã¯ïŒ
COCO-PoseããŒã¿ã»ããã¯ãCOCO Keypoints 2017ã®ã¢ãããŒã·ã§ã³ãæ¡åŒµãã人ç©ã®17ã®ããŒãã€ã³ããå«ã¿ã詳现ãªããŒãºæšå®ãå¯èœã«ãããæšæºåãããè©äŸ¡ææšïŒOKSãªã©ïŒã«ãããç°ãªãã¢ãã«éã®æ¯èŒã容æã«ãªããŸããCOCO-PoseããŒã¿ã»ããã®çšéã¯ãã¹ããŒãåæããã«ã¹ã±ã¢ããã¥ãŒãã³ã³ã³ãã¥ãŒã¿ã€ã³ã¿ã©ã¯ã·ã§ã³ãªã©ã人ç©åã®è©³çŽ°ãªããŒãºæšå®ãå¿ èŠãšãããæ§ã ãªé åã«åã¶ãå®çšçãªäœ¿çšã«ãããŠã¯ãããã¥ã¡ã³ãã§æäŸãããŠãããããªäºååŠç¿æžã¿ã¢ãã«ïŒäŸãã°ãYOLOv8n-poseïŒã掻çšããããšã§ãããã»ã¹ãå€§å¹ ã«å¹çåããããšãã§ããŸãïŒKey FeaturesïŒã
COCO-PoseããŒã¿ã»ãããç 究ãŸãã¯éçºã§äœ¿çšããå Žåã¯ã以äžã®BibTeXãšã³ããªãŒã§è«æãåŒçšããŠãã ããã