äžçã®å°éºŠé ããŒã¿ã»ãã
Global Wheat Head Datasetã¯ãå°éºŠã®è¡šçŸå解æãäœç©ç®¡çã«å¿çšããããã®ãæ£ç¢ºãªå°éºŠã®é éšæ€åºã¢ãã«ã®éçºããµããŒãããããã«èšèšãããç»åã³ã¬ã¯ã·ã§ã³ã§ããå°éºŠã®é éšã¯ãã¹ãã€ã¯ãšããŠãç¥ãããå°éºŠæ€ç©ã®ç©ç²ãã€ããéšåã§ããå°éºŠã®é éšã®å¯åºŠãšå€§ãããæ£ç¢ºã«æšå®ããããšã¯ãäœç©ã®å¥å šæ§ãæç床ãåéã®å¯èœæ§ãè©äŸ¡ããããã«äžå¯æ¬ ã§ããããã®ããŒã¿ã»ããã¯ã7ã«åœã®9ã€ã®ç 究æ©é¢ã®å ±åç 究ã«ãã£ãŠäœæããããã®ã§ãã¢ãã«ãç°ãªãç°å¢ã§ãããŸãäžè¬åã§ããããã«ãè€æ°ã®æ œå¹å°åãã«ããŒããŠããã
äž»ãªç¹åŸŽ
- ãã®ããŒã¿ã»ããã«ã¯ããšãŒãããïŒãã©ã³ã¹ãã€ã®ãªã¹ãã¹ã€ã¹ïŒãšåç±³ïŒã«ããïŒã®3,000æ以äžã®ãã¬ãŒãã³ã°ç»åãå«ãŸããŠããã
- ãªãŒã¹ãã©ãªã¢ãæ¥æ¬ãäžåœã§æ®åœ±ãããçŽ1,000æã®ãã¹ãç»åãåé²ãããŠããã
- ç»åã¯å±å€ã®ãã£ãŒã«ãç»åã§ãå°éºŠã®é ã®å€èŠ³ã®èªç¶ãªã°ãã€ããæããŠããã
- 泚éã¯ããªããžã§ã¯ãæ€åºã¿ã¹ã¯ããµããŒãããããã«ãå°éºŠã®é ã®ããŠã³ãã£ã³ã°ããã¯ã¹ãå«ãã
ããŒã¿ã»ããæ§é
Global Wheat Head Datasetã¯2ã€ã®ãµãã»ããã«åãããŠããïŒ
- ãã¬ãŒãã³ã°ã»ããïŒãã®ãµãã»ããã«ã¯ããšãŒããããšåç±³ã®3,000æ以äžã®ç»åãå«ãŸããŠãããç»åã«ã¯å°éºŠã®é éšã®ããŠã³ãã£ã³ã°ããã¯ã¹ãã©ãã«ä»ããããŠãããç©äœæ€åºã¢ãã«ã®ãã¬ãŒãã³ã°ã®ããã®ã°ã©ã³ããã¥ã«ãŒã¹ãšãªãã
- ãã¹ãã»ããïŒãã®ãµãã»ããã¯ããªãŒã¹ãã©ãªã¢ãæ¥æ¬ãäžåœã®ç»åçŽ1,000æããæ§æãããããããã®ç»åã¯ãæªç¥ã®éºäŒååãç°å¢ã芳å¯æ¡ä»¶ã«å¯ŸããåŠç¿æžã¿ã¢ãã«ã®æ§èœãè©äŸ¡ããããã«äœ¿çšãããã
ã¢ããªã±ãŒã·ã§ã³
Global Wheat Head Datasetã¯ãå°éºŠã®é éšæ€åºã¿ã¹ã¯ã«ããããã£ãŒãã©ãŒãã³ã°ã¢ãã«ã®ãã¬ãŒãã³ã°ãšè©äŸ¡ã«åºã䜿çšãããŠããŸãããã®ããŒã¿ã»ããã®å€æ§ãªç»åã»ããã¯ãå¹ åºãå€èŠ³ãç°å¢ãæ¡ä»¶ãæããŠãããæ€ç©è¡šçŸåãäœç©ç®¡çã®åéã®ç 究è ãå®å家ã«ãšã£ãŠè²ŽéãªãªãœãŒã¹ãšãªã£ãŠããã
ããŒã¿ã»ãã YAML
YAML (Yet Another Markup Language) ãã¡ã€ã«ã¯ããŒã¿ã»ããã®èšå®ãå®çŸ©ããããã«äœ¿ãããããã®ãã¡ã€ã«ã«ã¯ãããŒã¿ã»ããã®ãã¹ãã¯ã©ã¹ããã®ä»ã®é¢é£æ
å ±ãå«ãŸããŠãããGlobal Wheat Head Datasetã®å Žå㯠GlobalWheat2020.yaml
ãã¡ã€ã«ã¯ https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/GlobalWheat2020.yaml.
ultralytics/cfg/datasets/GlobalWheat2020.yaml
# Ultralytics YOLO ð, AGPL-3.0 license
# Global Wheat 2020 dataset https://www.global-wheat.com/ by University of Saskatchewan
# Documentation: https://docs.ultralytics.com/datasets/detect/globalwheat2020/
# Example usage: yolo train data=GlobalWheat2020.yaml
# parent
# âââ ultralytics
# âââ datasets
# âââ GlobalWheat2020 â downloads here (7.0 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/GlobalWheat2020 # dataset root dir
train: # train images (relative to 'path') 3422 images
- images/arvalis_1
- images/arvalis_2
- images/arvalis_3
- images/ethz_1
- images/rres_1
- images/inrae_1
- images/usask_1
val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
- images/ethz_1
test: # test images (optional) 1276 images
- images/utokyo_1
- images/utokyo_2
- images/nau_1
- images/uq_1
# Classes
names:
0: wheat_head
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from ultralytics.utils.downloads import download
from pathlib import Path
# Download
dir = Path(yaml['path']) # dataset root dir
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
'https://github.com/ultralytics/assets/releases/download/v0.0.0/GlobalWheat2020_labels.zip']
download(urls, dir=dir)
# Make Directories
for p in 'annotations', 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
# Move
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
(dir / 'global-wheat-codalab-official' / p).rename(dir / 'images' / p) # move to /images
f = (dir / 'global-wheat-codalab-official' / p).with_suffix('.json') # json file
if f.exists():
f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
䜿çšæ¹æ³
Global Wheat Head Datasetã§YOLO11nã¢ãã«ãç»åãµã€ãº640ã§100ãšããã¯åŠç¿ãããã«ã¯ã以äžã®ã³ãŒãã»ã¹ããããã䜿ããŸããå©çšå¯èœãªåŒæ°ã®å æ¬çãªãªã¹ãã«ã€ããŠã¯ãã¢ãã«ã®ãã¬ãŒãã³ã°ããŒãžãåç §ããŠãã ããã
åè»ã®äŸ
ãµã³ãã«ããŒã¿ãšæ³šé
Global Wheat Head Datasetã«ã¯ãå°éºŠã®é éšã®å€èŠ³ãç°å¢ãæ¡ä»¶ã«ãããèªç¶ãªã°ãã€ããæãããå±å€ã®ãã£ãŒã«ãç»åã®å€æ§ãªã»ãããå«ãŸããŠããŸãããã®ããŒã¿ã»ããã«å«ãŸããããŒã¿ã®äŸãã察å¿ããã¢ãããŒã·ã§ã³ãšãšãã«çŽ¹ä»ããŸãïŒ
- å°éºŠã®é ã®æ€åºïŒãã®ç»åã¯å°éºŠã®é éšæ€åºã®äŸã瀺ããŠãããå°éºŠã®é éšã¯ããŠã³ãã£ã³ã°ããã¯ã¹ã§æ³šéãããŠãããããŒã¿ã»ããã¯ããã®ã¿ã¹ã¯ã®ã¢ãã«éçºã容æã«ããããã«ãæ§ã ãªç»åãæäŸããã
ãã®äŸã¯ãGlobal Wheat Head Datasetã«å«ãŸããããŒã¿ã®å€æ§æ§ãšè€éæ§ã瀺ããå°éºŠã®è¡šçŸå解æãäœç©ç®¡çãžã®å¿çšã«ããããæ£ç¢ºãªå°éºŠã®é éšæ€åºã®éèŠæ§ã匷調ããŠããã
åŒçšãšè¬èŸ
ç 究éçºã«ãããŠGlobal Wheat Head Datasetã䜿çšããå Žåã¯ã以äžã®è«æãåŒçšããŠãã ããïŒ
@article{david2020global,
title={Global Wheat Head Detection (GWHD) Dataset: A Large and Diverse Dataset of High-Resolution RGB-Labelled Images to Develop and Benchmark Wheat Head Detection Methods},
author={David, Etienne and Madec, Simon and Sadeghi-Tehran, Pouria and Aasen, Helge and Zheng, Bangyou and Liu, Shouyang and Kirchgessner, Norbert and Ishikawa, Goro and Nagasawa, Koichi and Badhon, Minhajul and others},
journal={arXiv preprint arXiv:2005.02162},
year={2020}
}
æ€ç©è¡šçŸå解æããã³äœç©ç®¡çç 究ã³ãã¥ããã£ã®è²ŽéãªãªãœãŒã¹ãšããŠãGlobal Wheat Head Datasetã®äœæãšç¶æã«ãååããã ããç 究è ããã³ç 究æ©é¢ã«æè¬ããããŸããããŒã¿ã»ãããšãã®äœæè ã«ã€ããŠã®è©³çŽ°ã¯ãGlobal Wheat Head Datasetã®ãŠã§ããµã€ããã芧ãã ããã
ããããã質å
ã°ããŒãã«å°éºŠãããã»ããŒã¿ã»ããã¯äœã«äœ¿ãããã®ãïŒ
Global Wheat Head Datasetã¯ãäž»ã«å°éºŠã®é éšæ€åºãç®çãšãããã£ãŒãã©ãŒãã³ã°ã¢ãã«ã®éçºãšãã¬ãŒãã³ã°ã«äœ¿çšããããããã¯ãå°éºŠã®è¡šçŸååé¡ãšäœç©ç®¡çã«ãããã¢ããªã±ãŒã·ã§ã³ã«ãšã£ãŠæ¥µããŠéèŠã§ãããå°éºŠã®é éšå¯åºŠããµã€ãºãããã³äœç©å šäœã®æœåšåéãããæ£ç¢ºã«æšå®ããããšãå¯èœã«ãããæ£ç¢ºãªæ€åºæ¹æ³ã¯ãå¹ççãªäœç©ç®¡çã«äžå¯æ¬ ãªäœç©ã®å¥å šæ§ãšæç床ã®è©äŸ¡ã«åœ¹ç«ã¡ãŸãã
Global Wheat Head Datasetã§YOLO11nã¢ãã«ããã¬ãŒãã³ã°ããã«ã¯ïŒ
Global Wheat Head Datasetã§YOLO11nã¢ãã«ãåŠç¿ããã«ã¯ã以äžã®ã³ãŒãã»ã¹ããããã䜿çšã§ããŸããå¿
ã GlobalWheat2020.yaml
ããŒã¿ã»ããã®ãã¹ãšã¯ã©ã¹ãæå®ããèšå®ãã¡ã€ã«ïŒ
åè»ã®äŸ
å©çšå¯èœãªåŒæ°ã®å æ¬çãªãªã¹ãã«ã€ããŠã¯ãã¢ãã«ã®ãã¬ãŒãã³ã°ããŒãžãåç §ããŠãã ããã
äžçã®å°éºŠé ããŒã¿ã»ããã®äž»ãªç¹åŸŽã¯ïŒ
äžçå°éºŠé ããŒã¿ã»ããã®äž»ãªç¹åŸŽã¯ä»¥äžã®éãïŒ
- ãšãŒãããïŒãã©ã³ã¹ãã€ã®ãªã¹ãã¹ã€ã¹ïŒãšåç±³ïŒã«ããïŒã®3,000以äžã®ãã¬ãŒãã³ã°ç»åã
- ãªãŒã¹ãã©ãªã¢ãæ¥æ¬ãäžåœã§æ®åœ±ãããçŽ1,000æã®ãã¹ãç»åã
- çè²ç°å¢ã®éãã«ããå°éºŠã®é éšå€èŠ³ã®ã°ãã€ãã倧ããã
- ç©äœæ€åºã¢ãã«ãæ¯æŽããããã®ãå°éºŠã®é éšã®ããŠã³ãã£ã³ã°ããã¯ã¹ã«ãã詳现ãªæ³šéã
ãããã®ç¹åŸŽã«ãããè€æ°ã®é åã«ãŸãããæ±åãå¯èœãªããã¹ãã¢ãã«ã®éçºã容æã«ãªãã
Global Wheat Head Datasetã®èšå®YAMLãã¡ã€ã«ã¯ã©ãã«ãããŸããïŒ
Global Wheat Head Datasetã®ã³ã³ãã£ã®ã¥ã¬ãŒã·ã§ã³YAMLãã¡ã€ã«ã GlobalWheat2020.yaml
ãGitHubã§å
¬éããŠããããã¡ãããã¢ã¯ã»ã¹ã§ããã ãªã³ã¯.ãã®ãã¡ã€ã«ã«ã¯ïŒUltralytics YOLO ã®ã¢ãã«åŠç¿ã«å¿
èŠãªããŒã¿ã»ãããã¹ïŒã¯ã©ã¹ïŒãã®ä»ã®èšå®è©³çŽ°ã«é¢ããå¿
èŠãªæ
å ±ãå«ãŸããŠããŸãïŒ
ãªãå°éºŠã®é éšæ€åºãäœç©ç®¡çã§éèŠãªã®ãïŒ
å°éºŠã®é éšæ€åºã¯ãäœç©ã®å¥å šæ§ãæç床ãåéã®å¯èœæ§ãè©äŸ¡ããããã«äžå¯æ¬ ãªãå°éºŠã®é éšã®å¯åºŠãšãµã€ãºãæ£ç¢ºã«æšå®ã§ãããããäœç©ç®¡çã«ãããŠéåžžã«éèŠã§ãããGlobal Wheat Head Datasetã®ãããªããŒã¿ã»ããã§èšç·Žããããã£ãŒãã©ãŒãã³ã°ã¢ãã«ã掻çšããããšã§ã蟲家ãç 究è ã¯äœç©ãããããç£èŠã»ç®¡çã§ããããã«ãªãã蟲æ¥å®è·µã«ãããçç£æ§ã®åäžãšè³æºå©çšã®æé©åã«ã€ãªãããŸãããã®æè¡çé²æ©ã¯ãæç¶å¯èœãªèŸ²æ¥ãšé£æå®å šä¿éã®åãçµã¿ãæ¯æŽããã
蟲æ¥ã«ãããAIã®å¿çšã«ã€ããŠã®è©³çŽ°ã¯ã蟲æ¥ã«ãããAIãã芧ãã ããã