ã¢ã«ãŽããŒã¹ã»ããŒã¿ã»ãã
ArgoverseããŒã¿ã»ããã¯ã3Dãã©ããã³ã°ãã¢ãŒã·ã§ã³äºæž¬ãã¹ãã¬ãªæ·±åºŠæšå®ãªã©ã®èªåŸèµ°è¡ã¿ã¹ã¯ã®ç 究ããµããŒãããããã«èšèšãããããŒã¿éã§ããArgo AIã«ãã£ãŠéçºããããã®ããŒã¿ã»ããã¯ãé«è§£å床ç»åãLiDARç¹çŸ€ãå°å³ããŒã¿ãªã©ãå¹ åºãé«å質ã»ã³ãµãŒããŒã¿ãæäŸããŸãã
泚
ã¢ã«ãŽããŒã¹ã»ããŒã¿ã»ãã *.zip
ãã¬ãŒãã³ã°ã«å¿
èŠãªãã¡ã€ã«ã¯ããã©ãŒãã«ããã¢ã«ãŽAIã®ã·ã£ããããŠã³åŸãAmazon S3ããåé€ãããŸããã Google ãã©ã€ã.
äž»ãªç¹åŸŽ
- Argoverseã«ã¯ãã©ãã«ä»ãããã29äžä»¥äžã®3Dãªããžã§ã¯ããã©ãã¯ãšã1263ã®ç°ãªãã·ãŒã³ã«ããã500äžã®ãªããžã§ã¯ãã€ã³ã¹ã¿ã³ã¹ãå«ãŸããŠããŸãã
- ããŒã¿ã»ããã«ã¯ãé«è§£å床ã«ã¡ã©ç»åãLiDARç¹çŸ€ãè±å¯ãªæ³šéä»ãHDå°å³ãå«ãŸããã
- 泚éã«ã¯ããªããžã§ã¯ãã®3DããŠã³ãã£ã³ã°ããã¯ã¹ããªããžã§ã¯ãã®è»è·¡ãè»è·¡æ å ±ãªã©ãå«ãŸããã
- Argoverseã¯ã3Dãã©ããã³ã°ãã¢ãŒã·ã§ã³äºæž¬ãã¹ãã¬ãªæ·±åºŠæšå®ã®ãããªç°ãªãã¿ã¹ã¯ã®ããã®è€æ°ã®ãµãã»ãããæäŸããŸãã
ããŒã¿ã»ããæ§é
ArgoverseããŒã¿ã»ããã¯3ã€ã®ãµãã»ããã«åãããŠããïŒ
- Argoverse 3Dãã©ããã³ã°ïŒãã®ãµãã»ããã«ã¯ã3Dãªããžã§ã¯ã远跡ã¿ã¹ã¯ã«çŠç¹ãåœãŠãã290K以äžã®ã©ãã«ä»ã3Dãªããžã§ã¯ããã©ãã¯ãæã€113ã®ã·ãŒã³ãå«ãŸããŸããLiDARç¹çŸ€ãã«ã¡ã©ç»åãã»ã³ãµãŒãã£ãªãã¬ãŒã·ã§ã³æ å ±ãå«ãŸããŠããŸãã
- Argoverseã¢ãŒã·ã§ã³äºæž¬ïŒãã®ãµãã»ããã¯ã60æéã®èµ°è¡ããŒã¿ããåéããã324Kã®è»äž¡è»è·¡ããæ§æãããã¢ãŒã·ã§ã³äºæž¬ã¿ã¹ã¯ã«é©ããŠããŸãã
- Argoverseã¹ãã¬ãªæ·±åºŠæšå®ïŒãã®ãµãã»ããã¯ã¹ãã¬ãªæ·±åºŠæšå®ã¿ã¹ã¯çšã«èšèšãããŠãããã°ã©ã³ããã¥ã«ãŒã¹ã®æ·±åºŠæšå®çšã«å¯Ÿå¿ããLiDARç¹çŸ€ãšãšãã«10K以äžã®ã¹ãã¬ãªç»åãã¢ãå«ãŸããŠããŸãã
ã¢ããªã±ãŒã·ã§ã³
ArgoverseããŒã¿ã»ããã¯ã3Dãªããžã§ã¯ããã©ããã³ã°ãã¢ãŒã·ã§ã³äºæž¬ãã¹ãã¬ãªæ·±åºŠæšå®ãªã©ã®èªåŸèµ°è¡ã¿ã¹ã¯ã«ããããã£ãŒãã©ãŒãã³ã°ã¢ãã«ã®ãã¬ãŒãã³ã°ãšè©äŸ¡ã«åºã䜿çšãããŠããŸãããã®ããŒã¿ã»ããã®ã»ã³ãµãŒããŒã¿ããªããžã§ã¯ãã¢ãããŒã·ã§ã³ãå°å³æ å ±ã®å€æ§ãªã»ããã¯ãèªåŸèµ°è¡åéã®ç 究è ãå®å家ã«ãšã£ãŠè²ŽéãªãªãœãŒã¹ãšãªã£ãŠããã
ããŒã¿ã»ãã YAML
YAML (Yet Another Markup Language) ãã¡ã€ã«ã¯ããŒã¿ã»ããã®èšå®ãå®çŸ©ããããã«äœ¿ãããããã®ãã¡ã€ã«ã«ã¯ãããŒã¿ã»ããã®ãã¹ãã¯ã©ã¹ããã®ä»ã®é¢é£æ
å ±ãå«ãŸããŠãããArgoverseããŒã¿ã»ããã®å Žå㯠Argoverse.yaml
ãã¡ã€ã«ã¯ https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/Argoverse.yaml.
ultralytics/cfg/datasets/Argoverse.yaml
# Ultralytics YOLO ð, AGPL-3.0 license
# Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
# Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
# Example usage: yolo train data=Argoverse.yaml
# parent
# âââ ultralytics
# âââ datasets
# âââ Argoverse â downloads here (31.5 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Argoverse # dataset root dir
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: bus
5: truck
6: traffic_light
7: stop_sign
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import json
from tqdm import tqdm
from ultralytics.utils.downloads import download
from pathlib import Path
def argoverse2yolo(set):
labels = {}
a = json.load(open(set, "rb"))
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
img_id = annot['image_id']
img_name = a['images'][img_id]['name']
img_label_name = f'{img_name[:-3]}txt'
cls = annot['category_id'] # instance class id
x_center, y_center, width, height = annot['bbox']
x_center = (x_center + width / 2) / 1920.0 # offset and scale
y_center = (y_center + height / 2) / 1200.0 # offset and scale
width /= 1920.0 # scale
height /= 1200.0 # scale
img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
if not img_dir.exists():
img_dir.mkdir(parents=True, exist_ok=True)
k = str(img_dir / img_label_name)
if k not in labels:
labels[k] = []
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
for k in labels:
with open(k, "w") as f:
f.writelines(labels[k])
# Download 'https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip' (deprecated S3 link)
dir = Path(yaml['path']) # dataset root dir
urls = ['https://drive.google.com/file/d/1st9qW3BeIwQsnR0t8mRpvbsSWIo16ACi/view?usp=drive_link']
print("\n\nWARNING: Argoverse dataset MUST be downloaded manually, autodownload will NOT work.")
print(f"WARNING: Manually download Argoverse dataset '{urls[0]}' to '{dir}' and re-run your command.\n\n")
# download(urls, dir=dir)
# Convert
annotations_dir = 'Argoverse-HD/annotations/'
(dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
for d in "train.json", "val.json":
argoverse2yolo(dir / annotations_dir / d) # convert Argoverse annotations to YOLO labels
䜿çšæ¹æ³
ArgoverseããŒã¿ã»ããã§YOLO11nã¢ãã«ãç»åãµã€ãº640ã§100ãšããã¯åŠç¿ãããã«ã¯ã以äžã®ã³ãŒãã¹ããããã䜿çšããŸããå©çšå¯èœãªåŒæ°ã®å æ¬çãªãªã¹ãã«ã€ããŠã¯ãã¢ãã«ã®ãã¬ãŒãã³ã°ããŒãžãåç §ããŠãã ããã
åè»ã®äŸ
ãµã³ãã«ããŒã¿ãšæ³šé
ArgoverseããŒã¿ã»ããã«ã¯ãã«ã¡ã©ç»åãLiDARãã€ã³ãã¯ã©ãŠããHDãããæ å ±ãªã©ã®å€æ§ãªã»ã³ãµãŒããŒã¿ãå«ãŸããŠãããèªåŸèµ°è¡ã¿ã¹ã¯ã«è±å¯ãªã³ã³ããã¹ããæäŸããŸãã以äžã¯ãããŒã¿ã»ããã«å«ãŸããããŒã¿ã®äŸãšãããã«å¯Ÿå¿ããã¢ãããŒã·ã§ã³ã§ãïŒ
- Argoverse 3Dãã©ããã³ã°ïŒãã®ç»åã¯3Dãªããžã§ã¯ããã©ããã³ã°ã®äŸã瀺ããŠããããªããžã§ã¯ãã¯3DããŠã³ãã£ã³ã°ããã¯ã¹ã§æ³šéãããŠããŸããããŒã¿ã»ããã¯LiDARã®ç¹çŸ€ãšã«ã¡ã©ç»åãæäŸãããã®ã¿ã¹ã¯ã®ã¢ãã«éçºã容æã«ããŸãã
ãã®äŸã¯ãArgoverseããŒã¿ã»ããã®ããŒã¿ã®å€æ§æ§ãšè€éæ§ã瀺ããèªåŸèµ°è¡ã¿ã¹ã¯ã«ãããé«å質ã»ã³ãµãŒããŒã¿ã®éèŠæ§ã匷調ããŠããã
åŒçšãšè¬èŸ
ArgoverseããŒã¿ã»ãããç 究ãŸãã¯éçºã§äœ¿çšããå Žåã¯ã以äžã®è«æãåŒçšããŠãã ããïŒ
@inproceedings{chang2019argoverse,
title={Argoverse: 3D Tracking and Forecasting with Rich Maps},
author={Chang, Ming-Fang and Lambert, John and Sangkloy, Patsorn and Singh, Jagjeet and Bak, Slawomir and Hartnett, Andrew and Wang, Dequan and Carr, Peter and Lucey, Simon and Ramanan, Deva and others},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={8748--8757},
year={2019}
}
Argoverse ããŒã¿ã»ãããèªåŸèµ°è¡ç 究ã³ãã¥ããã£ã®è²ŽéãªãªãœãŒã¹ãšããŠäœæããç¶æããŠãã Argo AI ã«æè¬ããããArgoverseããŒã¿ã»ãããšãã®äœæè ã«ã€ããŠã®è©³çŽ°ã¯ãArgoverseããŒã¿ã»ããã®ãŠã§ããµã€ããã芧ãã ããã
ããããã質å
ArgoverseããŒã¿ã»ãããšãã®äž»ãªç¹åŸŽãšã¯ïŒ
ArgoAIãéçºããArgoverseããŒã¿ã»ããã¯ãèªåŸèµ°è¡ç 究ããµããŒãããŠããããã®ããŒã¿ã»ããã«ã¯ã1,263ã®ç°ãªãã·ãŒã³ã«ããã29äžä»¥äžã®ã©ãã«ä»ã3Dãªããžã§ã¯ããã©ãã¯ãš500äžã®ãªããžã§ã¯ãã€ã³ã¹ã¿ã³ã¹ãå«ãŸããŠããŸãããã®ããŒã¿ã»ããã¯ãé«è§£å床ã«ã¡ã©ç»åãLiDARãã€ã³ãã¯ã©ãŠãã泚éä»ãHDããããæäŸãã3Dãã©ããã³ã°ãã¢ãŒã·ã§ã³äºæž¬ãã¹ãã¬ãªå¥¥è¡ãæšå®ãªã©ã®ã¿ã¹ã¯ã«å©çšäŸ¡å€ãããã
Argoverse ããŒã¿ã»ããã䜿ã£ãŠUltralytics YOLO ã¢ãã«ããã¬ãŒãã³ã°ããã«ã¯ïŒ
Argoverse ããŒã¿ã»ããã䜿ã£ãŠYOLO11 ã¢ãã«ãåŠç¿ããã«ã¯ãæäŸããã YAML èšå®ãã¡ã€ã«ãšä»¥äžã®ã³ãŒãã䜿ãïŒ
åè»ã®äŸ
åŒæ°ã®è©³çŽ°ã«ã€ããŠã¯ãã¢ãã«ã®ãã¬ãŒãã³ã°ããŒãžãåç §ã
ArgoverseããŒã¿ã»ããã«ã¯ã©ã®ãããªçš®é¡ã®ããŒã¿ãã¢ãããŒã·ã§ã³ããããŸããïŒ
Argoverse ããŒã¿ã»ããã«ã¯ãé«è§£å床ã«ã¡ã©ç»åãLiDAR ç¹çŸ€ãHD ãããããŒã¿ãªã©ãããŸããŸãªã»ã³ãµãŒããŒã¿ãå«ãŸããŠããŸããã¢ãããŒã·ã§ã³ã«ã¯ã3DããŠã³ãã£ã³ã°ããã¯ã¹ããªããžã§ã¯ããã©ãã¯ãè»è·¡æ å ±ãå«ãŸããŸãããããã®å æ¬çãªã¢ãããŒã·ã§ã³ã¯ã3Dãªããžã§ã¯ããã©ããã³ã°ãã¢ãŒã·ã§ã³äºæž¬ãã¹ãã¬ãªããã¹æšå®ãªã©ã®ã¿ã¹ã¯ã«ãããæ£ç¢ºãªã¢ãã«ãã¬ãŒãã³ã°ã«äžå¯æ¬ ã§ãã
ArgoverseããŒã¿ã»ããã®æ§é ã¯ïŒ
ããŒã¿ã»ããã¯äž»ã«3ã€ã®ãµãã»ããã«åãããŠããïŒ
- Argoverse 3Dãã©ããã³ã°ïŒ3Dãªããžã§ã¯ã远跡ã¿ã¹ã¯ã«çŠç¹ãåœãŠãã290K以äžã®ã©ãã«ä»ã3Dãªããžã§ã¯ããã©ãã¯ãå«ã113ã®ã·ãŒã³ãå«ãŸããŠããŸããLiDARç¹çŸ€ãã«ã¡ã©ç»åãã»ã³ãµãŒãã£ãªãã¬ãŒã·ã§ã³æ å ±ãå«ãŸããŠããŸãã
- Argoverseã¢ãŒã·ã§ã³äºæž¬ïŒ60æéã®èµ°è¡ããŒã¿ããåéããã324Kã®è»äž¡è»è·¡ããæ§æãããã¢ãŒã·ã§ã³äºæž¬ã¿ã¹ã¯ã«é©ããŠããŸãã
- Argoverseã¹ãã¬ãªæ·±åºŠæšå®ïŒå¯Ÿå¿ããLiDARãã€ã³ãã¯ã©ãŠããš10K以äžã®ã¹ãã¬ãªç»åãã¢ãå«ãŸããŠãããã°ã©ãŠã³ããã¥ã«ãŒã¹ã®æ·±åºŠæšå®ãå¯èœã§ãã
Argoverse ã®ããŒã¿ã»ããã Amazon S3 ããåé€ãããŸããããã©ãã§ããŠã³ããŒãã§ããŸããïŒ
ã¢ã«ãŽããŒã¹ã»ããŒã¿ã»ãã *.zip
以åã¯Amazon S3ã§å
¥æã§ããããçŸåšã¯ä»¥äžããæåã§ããŠã³ããŒãã§ããã Google ãã©ã€ã.
ArgoverseããŒã¿ã»ããã§äœ¿çšãããYAMLèšå®ãã¡ã€ã«ãšã¯äœã§ããïŒ
YAMLãã¡ã€ã«ã«ã¯ãããŒã¿ã»ããã®ãã¹ãã¯ã©ã¹ããã®ä»ã®éèŠãªæ
å ±ãå«ãŸããŠãããArgoverseããŒã¿ã»ããã®å Žåã¯ãèšå®ãã¡ã€ã«ã§ãã Argoverse.yaml
以äžã®ãªã³ã¯ããã芧ããã ããŸãïŒ Argoverse.yaml.
YAMLèšå®ã®è©³çŽ°ã«ã€ããŠã¯ãããŒã¿ã»ããã¬ã€ããåç §ããŠãã ããã