COCO8-Segデータセット
はじめに
Ultralytics COCO8-Seg is a small, but versatile instance segmentation dataset composed of the first 8 images of the COCO train 2017 set, 4 for training and 4 for validation. This dataset is ideal for testing and debugging segmentation models, or for experimenting with new detection approaches. With 8 images, it is small enough to be easily manageable, yet diverse enough to test training pipelines for errors and act as a sanity check before training larger datasets.
This dataset is intended for use with Ultralytics HUB and YOLO11.
データセット YAML
YAML (Yet Another Markup Language) ファイルはデータセットの設定を定義するために使われる。このファイルには、データセットのパス、クラス、その他の関連情報が含まれている。COCO8-Segデータセットの場合は coco8-seg.yaml
ファイルは https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco8-seg.yaml.
ultralytics/cfg/datasets/coco8-seg.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
# Example usage: yolo train data=coco8-seg.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco8-seg ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8-seg # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-seg.zip
使用方法
To train a YOLO11n-seg model on the COCO8-Seg dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.
列車の例
サンプル画像と注釈
COCO8-Segデータセットの画像の例を、対応するアノテーションとともに紹介する:
- モザイク画像:この画像は、モザイク処理されたデータセット画像で構成されたトレーニングバッチを示す。モザイク処理とは、複数の画像を1つの画像に合成し、各トレーニングバッチ内のオブジェクトやシーンの種類を増やすトレーニング時に使用される手法です。これにより、異なるオブジェクトサイズ、アスペクト比、コンテクストに対するモデルの汎化能力を向上させることができます。
この例では、COCO8-Segデータセットに含まれる画像の多様性と複雑さ、および学習プロセスでモザイク処理を使用する利点を紹介しています。
引用と謝辞
COCOデータセットを研究開発に使用する場合は、以下の論文を引用してください:
@misc{lin2015microsoft,
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
We would like to acknowledge the COCO Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the COCO dataset and its creators, visit the COCO dataset website.
よくあるご質問
What is the COCO8-Seg dataset, and how is it used in Ultralytics YOLO11?
The COCO8-Seg dataset is a compact instance segmentation dataset by Ultralytics, consisting of the first 8 images from the COCO train 2017 set—4 images for training and 4 for validation. This dataset is tailored for testing and debugging segmentation models or experimenting with new detection methods. It is particularly useful with Ultralytics YOLO11 and HUB for rapid iteration and pipeline error-checking before scaling to larger datasets. For detailed usage, refer to the model Training page.
How can I train a YOLO11n-seg model using the COCO8-Seg dataset?
To train a YOLO11n-seg model on the COCO8-Seg dataset for 100 epochs with an image size of 640, you can use Python or CLI commands. Here's a quick example:
列車の例
使用可能な引数や設定オプションの詳細については、トレーニングのドキュメントをご覧ください。
なぜCOCO8-Segデータセットがモデル開発とデバッグに重要なのですか?
COCO8-Segデータセットは、小さなサイズでの管理性と多様性の点で理想的である。わずか8枚の画像から構成され、大規模なデータセットのオーバーヘッドなしに、セグメンテーションモデルや新しい検出アプローチのテストやデバッグを迅速に行うことができます。このため、大規模なデータセットで大規模なトレーニングを行う前に、サニティチェックやパイプラインエラーの特定を行うための効率的なツールとなります。データセットフォーマットの詳細はこちら
COCO8-SegデータセットのYAML設定ファイルはどこにありますか?
COCO8-SegデータセットのYAML設定ファイルはUltralytics リポジトリにあります。このファイルに直接アクセスできます。YAMLファイルには、データセットのパス、クラス、モデルの学習と検証に必要な設定に関する重要な情報が含まれています。
COCO8-Segデータセットのトレーニングでモザイク処理を行う利点は何ですか?
Using mosaicing during training helps increase the diversity and variety of objects and scenes in each training batch. This technique combines multiple images into a single composite image, enhancing the model's ability to generalize to different object sizes, aspect ratios, and contexts within the scene. Mosaicing is beneficial for improving a model's robustness and accuracy, especially when working with small datasets like COCO8-Seg. For an example of mosaiced images, see the Sample Images and Annotations section.