データ集合 COCO128
はじめに
UltralyticsCOCO128は、COCO train 2017セットの最初の128枚の画像で構成された、小さいが汎用性の高い物体検出データセットである。このデータセットは、物体検出モデルのテストやデバッグ、または新しい検出アプローチの実験に最適です。128枚の画像は、簡単に管理できるほど十分に小さく、かつトレーニングパイプラインのエラーをテストし、より大きなデータセットをトレーニングする前のサニティチェックとして機能するのに十分な多様性を備えています。
見るんだ: Ultralytics COCOデータセットの概要
このデータセットは、Ultralytics HUB および YOLO11.
データセット YAML
YAML (Yet Another Markup Language) ファイルはデータセットの設定を定義するために使われる。このファイルには、データセットのパス、クラス、その他の関連情報が含まれている。COCO128データセットの場合は coco128.yaml
ファイルは https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco128.yaml.
ultralytics.yaml
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco128 ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128 # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip
使用方法
COCO128データセットでYOLO11nモデルを画像サイズ640で100エポック学習させるには、以下のコードスニペットを使用します。利用可能な引数の包括的なリストについては、モデルのトレーニングページを参照してください。
列車の例
サンプル画像と注釈
COCO128データセットの画像の例と、それに対応するアノテーションを紹介する:
- モザイク画像:この画像はモザイク処理されたデータセット画像で構成されたトレーニングバッチを示す。モザイク処理とは、複数の画像を1つの画像に合成することで、各トレーニングバッチ内のオブジェクトやシーンの種類を増やす手法です。これにより、異なるオブジェクトサイズ、アスペクト比、コンテクストに対するモデルの汎化能力を向上させることができます。
この例では、COCO128データセットの画像の多様性と複雑さ、および学習プロセスでモザイク処理を使用する利点を示している。
引用と謝辞
COCOデータセットを研究開発に使用する場合は、以下の論文を引用してください:
@misc{lin2015microsoft,
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
COCOコンソーシアムが、コンピュータビジョンコミュニティのためにこの貴重なリソースを作成し、維持してくれていることに感謝したい。COCOデータセットとその作成者についての詳細は、COCOデータセットのウェブサイトをご覧ください。
よくあるご質問
Ultralytics COCO128データセットは何に使われていますか?
Ultralytics COCO128データセットは、COCO train 2017データセットからの最初の128枚の画像を含むコンパクトなサブセットです。主に物体検出モデルのテストとデバッグ、新しい検出アプローチの実験、より大きなデータセットに拡張する前のトレーニングパイプラインの検証に使用されます。管理しやすいサイズなので、意味のあるテストケースとして十分な多様性を提供しながらも、迅速な反復に最適です。
COCO128データセットを使ってYOLO11 モデルをトレーニングするには?
COCO128データセットでYOLO11 モデルをトレーニングするには、Python またはCLI コマンドのいずれかを使用できます。以下はその方法です:
from ultralytics import YOLO
# Load a pretrained model
model = YOLO("yolo11n.pt")
# Train the model
results = model.train(data="coco128.yaml", epochs=100, imgsz=640)
```
=== "CLI"
`bash
yolo detect train data=coco128.yaml model=yolo11n.pt epochs=100 imgsz=640
`
For more training options and parameters, refer to the [Training](../../modes/train.md) documentation.
### What are the benefits of using mosaic augmentation with COCO128?
Mosaic augmentation, as shown in the sample images, combines multiple training images into a single composite image. This technique offers several benefits when training with COCO128:
- Increases the variety of objects and contexts within each training batch
- Improves model generalization across different object sizes and aspect ratios
- Enhances detection performance for objects at various scales
- Maximizes the utility of a small dataset by creating more diverse training samples
This technique is particularly valuable for smaller datasets like COCO128, helping models learn more robust features from limited data.
### How does COCO128 compare to other COCO dataset variants?
COCO128 (128 images) sits between [COCO8](../detect/coco8.md) (8 images) and the full [COCO](../detect/coco.md) dataset (118K+ images) in terms of size:
- **COCO8**: Contains just 8 images (4 train, 4 val) - ideal for quick tests and debugging
- **COCO128**: Contains 128 images - balanced between size and diversity
- **Full COCO**: Contains 118K+ training images - comprehensive but resource-intensive
COCO128 provides a good middle ground, offering more diversity than COCO8 while remaining much more manageable than the full COCO dataset for experimentation and initial model development.
### Can I use COCO128 for tasks other than object detection?
While COCO128 is primarily designed for object detection, the dataset's annotations can be adapted for other computer vision tasks:
- **Instance segmentation**: Using the segmentation masks provided in the annotations
- **Keypoint detection**: For images containing people with keypoint annotations
- **Transfer learning**: As a starting point for fine-tuning models for custom tasks
For specialized tasks like [segmentation](../../tasks/segment.md), consider using purpose-built variants like [COCO8-seg](../segment/coco8-seg.md) which include the appropriate annotations.