์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ

๋‹ค์Œ์„ ์‚ฌ์šฉํ•˜์—ฌ ์šด๋™ ๋ชจ๋‹ˆํ„ฐ๋ง Ultralytics YOLO11

Open Workouts Monitoring In Colab

์ž์„ธ ์ถ”์ •์„ ํ†ตํ•œ ์šด๋™ ๋ชจ๋‹ˆํ„ฐ๋ง Ultralytics YOLO11 ๋Š” ์‹ ์ฒด์˜ ์ฃผ์š” ๋žœ๋“œ๋งˆํฌ์™€ ๊ด€์ ˆ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ ํ•˜์—ฌ ์šด๋™ ํ‰๊ฐ€๋ฅผ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ์ด ๊ธฐ์ˆ ์€ ์šด๋™ ์ž์„ธ์— ๋Œ€ํ•œ ์ฆ‰๊ฐ์ ์ธ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•˜๊ณ , ์šด๋™ ๋ฃจํ‹ด์„ ์ถ”์ ํ•˜๋ฉฐ, ์„ฑ๊ณผ ์ง€ํ‘œ๋ฅผ ์ธก์ •ํ•˜์—ฌ ์‚ฌ์šฉ์ž์™€ ํŠธ๋ ˆ์ด๋„ˆ ๋ชจ๋‘๋ฅผ ์œ„ํ•ด ํŠธ๋ ˆ์ด๋‹ ์„ธ์…˜์„ ์ตœ์ ํ™”ํ•ฉ๋‹ˆ๋‹ค.



Watch: Workouts Monitoring using Ultralytics YOLO11 | Push-ups, Pull-ups, Ab Workouts

์šด๋™ ๋ชจ๋‹ˆํ„ฐ๋ง์˜ ์žฅ์ ์€?

  • ์ตœ์ ํ™”๋œ ํผํฌ๋จผ์Šค: ๋” ๋‚˜์€ ๊ฒฐ๊ณผ๋ฅผ ์œ„ํ•œ ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ๋งž์ถคํ˜• ์šด๋™.
  • ๋ชฉํ‘œ ๋‹ฌ์„ฑ: ์ธก์ • ๊ฐ€๋Šฅํ•œ ์ง„ํ–‰ ์ƒํ™ฉ์„ ์œ„ํ•ด ํ”ผํŠธ๋‹ˆ์Šค ๋ชฉํ‘œ๋ฅผ ์ถ”์ ํ•˜๊ณ  ์กฐ์ •ํ•˜์„ธ์š”.
  • ๊ฐœ์ธํ™”: ๊ฐœ์ธ๋ณ„ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ๋งž์ถคํ˜• ์šด๋™ ๊ณ„ํš์œผ๋กœ ์šด๋™ ํšจ๊ณผ๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๊ฑด๊ฐ• ์ธ์‹: ๊ฑด๊ฐ• ๋ฌธ์ œ ๋˜๋Š” ๊ณผ๋„ํ•œ ํ›ˆ๋ จ์„ ๋‚˜ํƒ€๋‚ด๋Š” ํŒจํ„ด์„ ์กฐ๊ธฐ์— ๊ฐ์ง€ํ•ฉ๋‹ˆ๋‹ค.
  • ์ •๋ณด์— ๊ธฐ๋ฐ˜ํ•œ ์˜์‚ฌ ๊ฒฐ์ •: ๋ฃจํ‹ด์„ ์กฐ์ •ํ•˜๊ณ  ํ˜„์‹ค์ ์ธ ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์˜์‚ฌ ๊ฒฐ์ •.

์‹ค์ œ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜

์šด๋™ ๋ชจ๋‹ˆํ„ฐ๋ง ์šด๋™ ๋ชจ๋‹ˆํ„ฐ๋ง
ํ‘ธ์‹œ์—… ์นด์šดํŒ… ํ’€์—… ์นด์šดํŒ…
ํ‘ธ์‹œ์—… ์นด์šดํŒ… ํ’€์—… ์นด์šดํŒ…

์šด๋™ ๋ชจ๋‹ˆํ„ฐ๋ง ์˜ˆ์‹œ

# Run a workout example
yolo solutions workout show=True

# Pass a source video
yolo solutions workout source="path/to/video/file.mp4"

# Use keypoints for pushups
yolo solutions workout kpts=[6, 8, 10]
import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("workouts.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Init AIGym
gym = solutions.AIGym(
    show=True,  # Display the frame
    kpts=[6, 8, 10],  # keypoints index of person for monitoring specific exercise, by default it's for pushup
    model="yolo11n-pose.pt",  # Path to the YOLO11 pose estimation model file
    # line_width=2,  # Adjust the line width for bounding boxes and text display
)

# Process video
while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    im0 = gym.monitor(im0)
    video_writer.write(im0)

cv2.destroyAllWindows()
video_writer.release()

ํ‚คํฌ์ธํŠธ ๋งต

ํ‚คํฌ์ธํŠธ ์ฃผ๋ฌธ Ultralytics YOLO11  ํฌ์ฆˆ

์ธ์ˆ˜ AIGym

์ด๋ฆ„ ์œ ํ˜• ๊ธฐ๋ณธ๊ฐ’ ์„ค๋ช…
kpts list None ํŠน์ • ์šด๋™์„ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•œ ์„ธ ๊ฐ€์ง€ ํ‚คํฌ์ธํŠธ ์ธ๋ฑ์Šค ๋ชฉ๋ก๊ณผ ํ‚คํฌ์ธํŠธ ์ง€๋„
line_width int 2 ๊ทธ๋ ค์ง„ ์„ ์˜ ๋‘๊ป˜์ž…๋‹ˆ๋‹ค.
show bool False ํ”Œ๋ž˜๊ทธ๋ฅผ ํด๋ฆญํ•˜์—ฌ ์ด๋ฏธ์ง€๋ฅผ ํ‘œ์‹œํ•ฉ๋‹ˆ๋‹ค.
up_angle float 145.0 '์œ„๋กœ' ํฌ์ฆˆ์— ๋Œ€ํ•œ ๊ฐ๋„ ์ž„๊ณ„๊ฐ’์ž…๋‹ˆ๋‹ค.
down_angle float 90.0 '์•„๋ž˜' ํฌ์ฆˆ์— ๋Œ€ํ•œ ๊ฐ๋„ ์ž„๊ณ„๊ฐ’์ž…๋‹ˆ๋‹ค.
model str None Ultralytics YOLO ํฌ์ฆˆ ๋ชจ๋ธ ํŒŒ์ผ ๊ฒฝ๋กœ

์ธ์ˆ˜ model.predict

์ธ์ˆ˜ ์œ ํ˜• ๊ธฐ๋ณธ๊ฐ’ ์„ค๋ช…
source str 'ultralytics/assets' ์ถ”๋ก ํ•  ๋ฐ์ดํ„ฐ ์†Œ์Šค๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฏธ์ง€ ๊ฒฝ๋กœ, ๋™์˜์ƒ ํŒŒ์ผ, ๋””๋ ‰ํ† ๋ฆฌ, URL ๋˜๋Š” ์‹ค์‹œ๊ฐ„ ํ”ผ๋“œ์šฉ ๋””๋ฐ”์ด์Šค ID๊ฐ€ ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์–‘ํ•œ ํ˜•์‹๊ณผ ์†Œ์Šค๋ฅผ ์ง€์›ํ•˜๋ฏ€๋กœ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ์ž…๋ ฅ์— ์œ ์—ฐํ•˜๊ฒŒ ์ ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
conf float 0.25 ํƒ์ง€์— ๋Œ€ํ•œ ์ตœ์†Œ ์‹ ๋ขฐ๋„ ์ž„๊ณ„๊ฐ’์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ์ด ์ž„๊ณ„๊ฐ’๋ณด๋‹ค ๋‚ฎ์€ ์‹ ๋ขฐ๋„๋กœ ํƒ์ง€๋œ ๊ฐœ์ฒด๋Š” ๋ฌด์‹œ๋ฉ๋‹ˆ๋‹ค. ์ด ๊ฐ’์„ ์กฐ์ •ํ•˜๋ฉด ์˜คํƒ์ง€๋ฅผ ์ค„์ด๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
iou float 0.7 ๋น„์ตœ๋Œ€ ์–ต์ œ(NMS)์— ๋Œ€ํ•œ ๊ต์ฐจ์  ์ดˆ๊ณผ (IoU) ์ž„๊ณ„๊ฐ’์ž…๋‹ˆ๋‹ค. ๊ฐ’์ด ๋‚ฎ์„์ˆ˜๋ก ์ค‘๋ณต๋˜๋Š” ์ƒ์ž๋ฅผ ์ œ๊ฑฐํ•˜์—ฌ ํƒ์ง€ ํšŸ์ˆ˜๊ฐ€ ์ค„์–ด๋“ค์–ด ์ค‘๋ณต์„ ์ค„์ด๋Š” ๋ฐ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.
imgsz int ๋˜๋Š” tuple 640 ์ถ”๋ก ํ•  ์ด๋ฏธ์ง€ ํฌ๊ธฐ๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. ๋‹จ์ผ ์ •์ˆ˜์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 640 ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ •์‚ฌ๊ฐํ˜• ํฌ๊ธฐ ์กฐ์ • ๋˜๋Š” (๋†’์ด, ๋„ˆ๋น„) ํŠœํ”Œ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ ์ ˆํ•œ ํฌ๊ธฐ ์กฐ์ •์€ ๊ฐ์ง€์œจ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ •ํ™•์„ฑ ์ฒ˜๋ฆฌ ์†๋„.
half bool False ์ •ํ™•๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ ์ง€์›๋˜๋Š” GPU์—์„œ ๋ชจ๋ธ ์ถ”๋ก  ์†๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” ๋ฐ˜์ •ํ™•๋„ (FP16) ์ถ”๋ก ์„ ํ™œ์„ฑํ™”ํ•ฉ๋‹ˆ๋‹ค.
device str None ์ถ”๋ก ํ•  ์žฅ์น˜๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค(์˜ˆ, cpu, cuda:0 ๋˜๋Š” 0). ์‚ฌ์šฉ์ž๊ฐ€ ๋ชจ๋ธ ์‹คํ–‰์„ ์œ„ํ•ด CPU, ํŠน์ • GPU, ๋˜๋Š” ๊ธฐํƒ€ ์ปดํ“จํŒ… ์žฅ์น˜ ์ค‘์—์„œ ์„ ํƒํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
batch int 1 ์ถ”๋ก ํ•  ๋ฐฐ์น˜ ํฌ๊ธฐ๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค(์†Œ์Šค๊ฐ€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฝ์šฐ์—๋งŒ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. ๋””๋ ‰ํ† ๋ฆฌ, ๋น„๋””์˜ค ํŒŒ์ผ ๋˜๋Š” .txt ํŒŒ์ผ). ๋ฐฐ์น˜ ํฌ๊ธฐ๊ฐ€ ํด์ˆ˜๋ก ์ฒ˜๋ฆฌ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜์—ฌ ์ถ”๋ก ์— ํ•„์š”ํ•œ ์ด ์‹œ๊ฐ„์„ ๋‹จ์ถ•ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
max_det int 300 ์ด๋ฏธ์ง€๋‹น ํ—ˆ์šฉ๋˜๋Š” ์ตœ๋Œ€ ๊ฐ์ง€ ํšŸ์ˆ˜. ๋ชจ๋ธ์ด ํ•œ ๋ฒˆ์˜ ์ถ”๋ก ์—์„œ ๊ฐ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ์ด ์˜ค๋ธŒ์ ํŠธ ์ˆ˜๋ฅผ ์ œํ•œํ•˜์—ฌ ๋ฐ€์ง‘๋œ ์žฅ๋ฉด์—์„œ ๊ณผ๋„ํ•œ ์ถœ๋ ฅ์„ ๋ฐฉ์ง€ํ•ฉ๋‹ˆ๋‹ค.
vid_stride int 1 ๋น„๋””์˜ค ์ž…๋ ฅ์˜ ํ”„๋ ˆ์ž„ ๋ณดํญ. ๋™์˜์ƒ์—์„œ ํ”„๋ ˆ์ž„์„ ๊ฑด๋„ˆ๋›ฐ์–ด ์‹œ๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ํฌ์ƒํ•˜๋ฉด์„œ ์ฒ˜๋ฆฌ ์†๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ฐ’์ด 1์ด๋ฉด ๋ชจ๋“  ํ”„๋ ˆ์ž„์„ ์ฒ˜๋ฆฌํ•˜๊ณ , ๊ฐ’์ด ํด์ˆ˜๋ก ํ”„๋ ˆ์ž„์„ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.
stream_buffer bool False ๋น„๋””์˜ค ์ŠคํŠธ๋ฆผ์— ๋Œ€ํ•ด ์ˆ˜์‹  ํ”„๋ ˆ์ž„์„ ๋Œ€๊ธฐ์—ด์— ๋„ฃ์„์ง€ ์—ฌ๋ถ€๋ฅผ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค. ๋งŒ์•ฝ False, old frames get dropped to accommodate new frames (optimized for real-time applications). If `True', queues new frames in a buffer, ensuring no frames get skipped, but will cause latency if inference FPS is lower than stream FPS.
visualize bool False ์ถ”๋ก  ์ค‘์— ๋ชจ๋ธ ๊ธฐ๋Šฅ์˜ ์‹œ๊ฐํ™”๋ฅผ ํ™œ์„ฑํ™”ํ•˜์—ฌ ๋ชจ๋ธ์ด '๋ณด๊ณ  ์žˆ๋Š” ๊ฒƒ'์— ๋Œ€ํ•œ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋””๋ฒ„๊น… ๋ฐ ๋ชจ๋ธ ํ•ด์„์— ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.
augment bool False ์˜ˆ์ธก์„ ์œ„ํ•œ ํ…Œ์ŠคํŠธ ์‹œ๊ฐ„ ์ฆ๊ฐ•(TTA)์„ ์ง€์›ํ•˜์—ฌ ์ถ”๋ก  ์†๋„๋ฅผ ํฌ์ƒํ•˜๋ฉด์„œ ํƒ์ง€ ๊ฒฌ๊ณ ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
agnostic_nms bool False ์„œ๋กœ ๋‹ค๋ฅธ ํด๋ž˜์Šค์˜ ๊ฒน์น˜๋Š” ์ƒ์ž๋ฅผ ๋ณ‘ํ•ฉํ•˜๋Š” ํด๋ž˜์Šค ๋ฌด๊ด€ NMS(Non-Maximum Suppression)๋ฅผ ํ™œ์„ฑํ™”ํ•ฉ๋‹ˆ๋‹ค. ํด๋ž˜์Šค ์ค‘๋ณต์ด ์ผ๋ฐ˜์ ์ธ ๋‹ค์ค‘ ํด๋ž˜์Šค ํƒ์ง€ ์‹œ๋‚˜๋ฆฌ์˜ค์— ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.
classes list[int] None ํด๋ž˜์Šค ID ์ง‘ํ•ฉ์œผ๋กœ ์˜ˆ์ธก์„ ํ•„ํ„ฐ๋งํ•ฉ๋‹ˆ๋‹ค. ์ง€์ •๋œ ํด๋ž˜์Šค์— ์†ํ•˜๋Š” ํƒ์ง€๋งŒ ๋ฐ˜ํ™˜๋ฉ๋‹ˆ๋‹ค. ๋‹ค์ค‘ ํด๋ž˜์Šค ํƒ์ง€ ์ž‘์—…์—์„œ ๊ด€๋ จ ๊ฐœ์ฒด์— ์ง‘์ค‘ํ•˜๋Š” ๋ฐ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.
retina_masks bool False ๊ณ ํ•ด์ƒ๋„ ๋ถ„ํ•  ๋งˆ์Šคํฌ๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค. ๋ฐ˜ํ™˜๋œ ๋งˆ์Šคํฌ(masks.data)๋ฅผ ํ™œ์„ฑํ™”ํ•˜๋ฉด ์›๋ณธ ์ด๋ฏธ์ง€ ํฌ๊ธฐ์™€ ์ผ์น˜ํ•ฉ๋‹ˆ๋‹ค. ๋น„ํ™œ์„ฑํ™”ํ•˜๋ฉด ์ถ”๋ก  ์ค‘์— ์‚ฌ์šฉ๋˜๋Š” ์ด๋ฏธ์ง€ ํฌ๊ธฐ๊ฐ€ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
embed list[int] None ํŠน์ง• ๋ฒกํ„ฐ ๋˜๋Š” ์ž„๋ฒ ๋”ฉ์„ ์ถ”์ถœํ•  ๋ ˆ์ด์–ด๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. ํด๋Ÿฌ์Šคํ„ฐ๋ง์ด๋‚˜ ์œ ์‚ฌ๋„ ๊ฒ€์ƒ‰๊ณผ ๊ฐ™์€ ๋‹ค์šด์ŠคํŠธ๋ฆผ ์ž‘์—…์— ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.
project str None ์˜ˆ์ธก ์ถœ๋ ฅ์ด ์ €์žฅ๋˜๋Š” ํ”„๋กœ์ ํŠธ ๋””๋ ‰ํ„ฐ๋ฆฌ์˜ ์ด๋ฆ„(๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฝ์šฐ). save ๊ฐ€ ํ™œ์„ฑํ™”๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
name str None ์˜ˆ์ธก ์‹คํ–‰์˜ ์ด๋ฆ„์ž…๋‹ˆ๋‹ค. ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฝ์šฐ ์˜ˆ์ธก ์ถœ๋ ฅ์ด ์ €์žฅ๋˜๋Š” ํ”„๋กœ์ ํŠธ ํด๋” ๋‚ด์— ํ•˜์œ„ ๋””๋ ‰ํ„ฐ๋ฆฌ๋ฅผ ๋งŒ๋“œ๋Š” ๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. save ๊ฐ€ ํ™œ์„ฑํ™”๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

์ธ์ˆ˜ model.track

์ธ์ˆ˜ ์œ ํ˜• ๊ธฐ๋ณธ๊ฐ’ ์„ค๋ช…
source str None ์ด๋ฏธ์ง€ ๋˜๋Š” ๋™์˜์ƒ์˜ ์†Œ์Šค ๋””๋ ‰ํ„ฐ๋ฆฌ๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. ํŒŒ์ผ ๊ฒฝ๋กœ ๋ฐ URL์„ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค.
persist bool False ํ”„๋ ˆ์ž„ ๊ฐ„ ์˜ค๋ธŒ์ ํŠธ๋ฅผ ์ง€์†์ ์œผ๋กœ ์ถ”์ ํ•˜์—ฌ ๋น„๋””์˜ค ์‹œํ€€์Šค ์ „์ฒด์—์„œ ID๋ฅผ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
tracker str botsort.yaml ์‚ฌ์šฉํ•  ์ถ”์  ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค(์˜ˆ, bytetrack.yaml ๋˜๋Š” botsort.yaml.
conf float 0.3 ํƒ์ง€ ์‹ ๋ขฐ ์ž„๊ณ„๊ฐ’์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ฐ’์ด ๋‚ฎ์„์ˆ˜๋ก ๋” ๋งŽ์€ ๊ฐœ์ฒด๋ฅผ ์ถ”์ ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ์˜คํƒ์ด ํฌํ•จ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
iou float 0.5 ์ค‘๋ณต ๊ฐ์ง€๋ฅผ ํ•„ํ„ฐ๋งํ•˜๊ธฐ ์œ„ํ•œ IoU( Intersection over Union ) ์ž„๊ณ„๊ฐ’์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.
classes list None ํด๋ž˜์Šค ์ธ๋ฑ์Šค๋ณ„๋กœ ๊ฒฐ๊ณผ๋ฅผ ํ•„ํ„ฐ๋งํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด classes=[0, 2, 3] ์ง€์ •๋œ ํด๋ž˜์Šค๋งŒ ์ถ”์ ํ•ฉ๋‹ˆ๋‹ค.
verbose bool True ์ถ”์  ๊ฒฐ๊ณผ์˜ ํ‘œ์‹œ๋ฅผ ์ œ์–ดํ•˜์—ฌ ์ถ”์ ๋œ ๊ฐœ์ฒด์˜ ์‹œ๊ฐ์  ์ถœ๋ ฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ

Ultralytics YOLO11 ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‚ด ์šด๋™์„ ์–ด๋–ป๊ฒŒ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋‚˜์š”?

To monitor your workouts using Ultralytics YOLO11, you can utilize the pose estimation capabilities to track and analyze key body landmarks and joints in real-time. This allows you to receive instant feedback on your exercise form, count repetitions, and measure performance metrics. You can start by using the provided example code for push-ups, pull-ups, or ab workouts as shown:

import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

gym = solutions.AIGym(
    line_width=2,
    show=True,
    kpts=[6, 8, 10],
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    im0 = gym.monitor(im0)

cv2.destroyAllWindows()

์ถ”๊ฐ€ ์‚ฌ์šฉ์ž ์ง€์ • ๋ฐ ์„ค์ •์— ๋Œ€ํ•ด์„œ๋Š” ์„ค๋ช…์„œ์˜ AIGym ์„น์…˜์„ ์ฐธ์กฐํ•˜์„ธ์š”.

์šด๋™ ๋ชจ๋‹ˆํ„ฐ๋ง์— Ultralytics YOLO11 ์„ ์‚ฌ์šฉํ•˜๋ฉด ์–ด๋–ค ์ด์ ์ด ์žˆ๋‚˜์š”?

์šด๋™ ๋ชจ๋‹ˆํ„ฐ๋ง์— Ultralytics YOLO11 ์„ ์‚ฌ์šฉํ•˜๋ฉด ๋ช‡ ๊ฐ€์ง€ ์ฃผ์š” ์ด์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค:

  • ์ตœ์ ํ™”๋œ ํผํฌ๋จผ์Šค: ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์šด๋™์„ ๋งž์ถคํ™”ํ•˜๋ฉด ๋” ๋‚˜์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๋ชฉํ‘œ ๋‹ฌ์„ฑ: ์ธก์ • ๊ฐ€๋Šฅํ•œ ์ง„ํ–‰ ์ƒํ™ฉ์„ ์œ„ํ•ด ํ”ผํŠธ๋‹ˆ์Šค ๋ชฉํ‘œ๋ฅผ ์‰ฝ๊ฒŒ ์ถ”์ ํ•˜๊ณ  ์กฐ์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๊ฐœ์ธํ™”: ์ตœ์ ์˜ ํšจ๊ณผ๋ฅผ ์œ„ํ•ด ๊ฐœ์ธ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋งž์ถคํ˜• ์šด๋™ ๊ณ„ํš์„ ์„ธ์šฐ์„ธ์š”.
  • ๊ฑด๊ฐ• ์ธ์‹: ์ž ์žฌ์ ์ธ ๊ฑด๊ฐ• ๋ฌธ์ œ ๋˜๋Š” ๊ณผ๋„ํ•œ ํ›ˆ๋ จ์„ ๋‚˜ํƒ€๋‚ด๋Š” ํŒจํ„ด์„ ์กฐ๊ธฐ์— ๊ฐ์ง€ํ•ฉ๋‹ˆ๋‹ค.
  • ์ •๋ณด์— ๊ธฐ๋ฐ˜ํ•œ ์˜์‚ฌ ๊ฒฐ์ •: ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ์˜์‚ฌ ๊ฒฐ์ •์œผ๋กœ ๋ฃจํ‹ด์„ ์กฐ์ •ํ•˜๊ณ  ํ˜„์‹ค์ ์ธ ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•˜์„ธ์š”.

YouTube ๋™์˜์ƒ ๋ฐ๋ชจ๋ฅผ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ์ด์ ์ด ์‹ค์ œ๋กœ ์ž‘๋™ํ•˜๋Š” ๋ชจ์Šต์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์šด๋™ ๊ฐ์ง€ ๋ฐ ์ถ”์ ์— ์žˆ์–ด์„œ Ultralytics YOLO11 ์€ ์–ผ๋งˆ๋‚˜ ์ •ํ™•ํ•˜๋‚˜์š”?

Ultralytics YOLO11 is highly accurate in detecting and tracking exercises due to its state-of-the-art pose estimation capabilities. It can accurately track key body landmarks and joints, providing real-time feedback on exercise form and performance metrics. The model's pretrained weights and robust architecture ensure high precision and reliability. For real-world examples, check out the real-world applications section in the documentation, which showcases push-ups and pull-ups counting.

์‚ฌ์šฉ์ž ์ง€์ • ์šด๋™ ๋ฃจํ‹ด์— Ultralytics YOLO11 ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‚˜์š”?

์˜ˆ, Ultralytics YOLO11 ์‚ฌ์šฉ์ž ์ง€์ • ์šด๋™ ๋ฃจํ‹ด์— ๋งž๊ฒŒ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. The AIGym class supports different pose types such as pushup, pullup๋ฐ abworkout. You can specify keypoints and angles to detect specific exercises. Here is an example setup:

from ultralytics import solutions

gym = solutions.AIGym(
    line_width=2,
    show=True,
    kpts=[6, 8, 10],
)

์ธ์ˆ˜ ์„ค์ •์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ ์ธ์ˆ˜ AIGym ์„น์…˜์œผ๋กœ ์ด๋™ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์œ ์—ฐ์„ฑ์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์šด๋™์„ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ  ํ•„์š”์— ๋”ฐ๋ผ ๋ฃจํ‹ด์„ ์‚ฌ์šฉ์ž ์ง€์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Ultralytics YOLO11 ์„ ์‚ฌ์šฉํ•˜์—ฌ ์šด๋™ ๋ชจ๋‹ˆํ„ฐ๋ง ์ถœ๋ ฅ์„ ์ €์žฅํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•˜๋‚˜์š”?

์šด๋™ ๋ชจ๋‹ˆํ„ฐ๋ง ์ถœ๋ ฅ์„ ์ €์žฅํ•˜๋ ค๋ฉด ์ฒ˜๋ฆฌ๋œ ํ”„๋ ˆ์ž„์„ ์ €์žฅํ•˜๋Š” ๋น„๋””์˜ค ์ž‘์„ฑ๊ธฐ๋ฅผ ํฌํ•จํ•˜๋„๋ก ์ฝ”๋“œ๋ฅผ ์ˆ˜์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค:

import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

video_writer = cv2.VideoWriter("workouts.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

gym = solutions.AIGym(
    line_width=2,
    show=True,
    kpts=[6, 8, 10],
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    im0 = gym.monitor(im0)
    video_writer.write(im0)

cv2.destroyAllWindows()
video_writer.release()

์ด ์„ค์ •์€ ๋ชจ๋‹ˆํ„ฐ๋ง๋œ ๋™์˜์ƒ์„ ์ถœ๋ ฅ ํŒŒ์ผ์— ๊ธฐ๋กํ•ฉ๋‹ˆ๋‹ค. ์ž์„ธํ•œ ๋‚ด์šฉ์€ ์ถœ๋ ฅ ์ €์žฅ์„ ํ†ตํ•œ ์šด๋™ ๋ชจ๋‹ˆํ„ฐ๋ง ์„น์…˜์„ ์ฐธ์กฐํ•˜์„ธ์š”.

๐Ÿ“…1 ๋…„ ์ „ ์ƒ์„ฑ๋จ โœ๏ธ ์—…๋ฐ์ดํŠธ 4 ์ผ ์ „

๋Œ“๊ธ€