Skip to content

Reference for ultralytics/models/yolo/pose/train.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/pose/train.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.models.yolo.pose.train.PoseTrainer

PoseTrainer(cfg=DEFAULT_CFG, overrides=None, _callbacks=None)

Bases: DetectionTrainer

A class extending the DetectionTrainer class for training based on a pose model.

Example
from ultralytics.models.yolo.pose import PoseTrainer

args = dict(model="yolov8n-pose.pt", data="coco8-pose.yaml", epochs=3)
trainer = PoseTrainer(overrides=args)
trainer.train()
Source code in ultralytics/models/yolo/pose/train.py
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
    """Initialize a PoseTrainer object with specified configurations and overrides."""
    if overrides is None:
        overrides = {}
    overrides["task"] = "pose"
    super().__init__(cfg, overrides, _callbacks)

    if isinstance(self.args.device, str) and self.args.device.lower() == "mps":
        LOGGER.warning(
            "WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
            "See https://github.com/ultralytics/ultralytics/issues/4031."
        )

get_model

get_model(cfg=None, weights=None, verbose=True)

Get pose estimation model with specified configuration and weights.

Source code in ultralytics/models/yolo/pose/train.py
def get_model(self, cfg=None, weights=None, verbose=True):
    """Get pose estimation model with specified configuration and weights."""
    model = PoseModel(cfg, ch=3, nc=self.data["nc"], data_kpt_shape=self.data["kpt_shape"], verbose=verbose)
    if weights:
        model.load(weights)

    return model

get_validator

get_validator()

Returns an instance of the PoseValidator class for validation.

Source code in ultralytics/models/yolo/pose/train.py
def get_validator(self):
    """Returns an instance of the PoseValidator class for validation."""
    self.loss_names = "box_loss", "pose_loss", "kobj_loss", "cls_loss", "dfl_loss"
    return yolo.pose.PoseValidator(
        self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
    )

plot_metrics

plot_metrics()

Plots training/val metrics.

Source code in ultralytics/models/yolo/pose/train.py
def plot_metrics(self):
    """Plots training/val metrics."""
    plot_results(file=self.csv, pose=True, on_plot=self.on_plot)  # save results.png

plot_training_samples

plot_training_samples(batch, ni)

Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints.

Source code in ultralytics/models/yolo/pose/train.py
def plot_training_samples(self, batch, ni):
    """Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints."""
    images = batch["img"]
    kpts = batch["keypoints"]
    cls = batch["cls"].squeeze(-1)
    bboxes = batch["bboxes"]
    paths = batch["im_file"]
    batch_idx = batch["batch_idx"]
    plot_images(
        images,
        batch_idx,
        cls,
        bboxes,
        kpts=kpts,
        paths=paths,
        fname=self.save_dir / f"train_batch{ni}.jpg",
        on_plot=self.on_plot,
    )

set_model_attributes

set_model_attributes()

Sets keypoints shape attribute of PoseModel.

Source code in ultralytics/models/yolo/pose/train.py
def set_model_attributes(self):
    """Sets keypoints shape attribute of PoseModel."""
    super().set_model_attributes()
    self.model.kpt_shape = self.data["kpt_shape"]



📅 Created 12 months ago ✏️ Updated 1 month ago