Reference for ultralytics/models/yolo/world/train_world.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/world/train_world.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.models.yolo.world.train_world.WorldTrainerFromScratch
Bases: WorldTrainer
A class extending the WorldTrainer for training a world model from scratch on open-set datasets.
This trainer specializes in handling mixed datasets including both object detection and grounding datasets, supporting training YOLO-World models with combined vision-language capabilities.
Attributes:
Name | Type | Description |
---|---|---|
cfg |
dict
|
Configuration dictionary with default parameters for model training. |
overrides |
dict
|
Dictionary of parameter overrides to customize the configuration. |
_callbacks |
list
|
List of callback functions to be executed during different stages of training. |
Examples:
>>> from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
>>> from ultralytics import YOLOWorld
>>> data = dict(
... train=dict(
... yolo_data=["Objects365.yaml"],
... grounding_data=[
... dict(
... img_path="../datasets/flickr30k/images",
... json_file="../datasets/flickr30k/final_flickr_separateGT_train.json",
... ),
... dict(
... img_path="../datasets/GQA/images",
... json_file="../datasets/GQA/final_mixed_train_no_coco.json",
... ),
... ],
... ),
... val=dict(yolo_data=["lvis.yaml"]),
... )
>>> model = YOLOWorld("yolov8s-worldv2.yaml")
>>> model.train(data=data, trainer=WorldTrainerFromScratch)
Source code in ultralytics/models/yolo/world/train_world.py
build_dataset
Build YOLO Dataset for training or validation.
This method constructs appropriate datasets based on the mode and input paths, handling both standard YOLO datasets and grounding datasets with different formats.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img_path
|
List[str] | str
|
Path to the folder containing images or list of paths. |
required |
mode
|
str
|
'train' mode or 'val' mode, allowing customized augmentations for each mode. |
'train'
|
batch
|
int
|
Size of batches, used for rectangular training/validation. |
None
|
Returns:
Type | Description |
---|---|
YOLOConcatDataset | Dataset
|
The constructed dataset for training or validation. |
Source code in ultralytics/models/yolo/world/train_world.py
final_eval
Perform final evaluation and validation for the YOLO-World model.
Configures the validator with appropriate dataset and split information before running evaluation.
Returns:
Type | Description |
---|---|
dict
|
Dictionary containing evaluation metrics and results. |
Source code in ultralytics/models/yolo/world/train_world.py
get_dataset
Get train and validation paths from data dictionary.
Processes the data configuration to extract paths for training and validation datasets, handling both YOLO detection datasets and grounding datasets.
Returns:
Type | Description |
---|---|
str
|
Train dataset path. |
str
|
Validation dataset path. |
Raises:
Type | Description |
---|---|
AssertionError
|
If train or validation datasets are not found, or if validation has multiple datasets. |