Skip to content

Reference for ultralytics/models/yolo/world/train_world.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/world/train_world.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.models.yolo.world.train_world.WorldTrainerFromScratch

WorldTrainerFromScratch(cfg=DEFAULT_CFG, overrides=None, _callbacks=None)

Bases: WorldTrainer

A class extending the WorldTrainer for training a world model from scratch on open-set datasets.

This trainer specializes in handling mixed datasets including both object detection and grounding datasets, supporting training YOLO-World models with combined vision-language capabilities.

Attributes:

Name Type Description
cfg dict

Configuration dictionary with default parameters for model training.

overrides dict

Dictionary of parameter overrides to customize the configuration.

_callbacks list

List of callback functions to be executed during different stages of training.

Examples:

>>> from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
>>> from ultralytics import YOLOWorld
>>> data = dict(
...     train=dict(
...         yolo_data=["Objects365.yaml"],
...         grounding_data=[
...             dict(
...                 img_path="../datasets/flickr30k/images",
...                 json_file="../datasets/flickr30k/final_flickr_separateGT_train.json",
...             ),
...             dict(
...                 img_path="../datasets/GQA/images",
...                 json_file="../datasets/GQA/final_mixed_train_no_coco.json",
...             ),
...         ],
...     ),
...     val=dict(yolo_data=["lvis.yaml"]),
... )
>>> model = YOLOWorld("yolov8s-worldv2.yaml")
>>> model.train(data=data, trainer=WorldTrainerFromScratch)
Source code in ultralytics/models/yolo/world/train_world.py
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
    """Initialize a WorldTrainerFromScratch object with given configuration and callbacks."""
    if overrides is None:
        overrides = {}
    super().__init__(cfg, overrides, _callbacks)

build_dataset

build_dataset(img_path, mode='train', batch=None)

Build YOLO Dataset for training or validation.

This method constructs appropriate datasets based on the mode and input paths, handling both standard YOLO datasets and grounding datasets with different formats.

Parameters:

Name Type Description Default
img_path List[str] | str

Path to the folder containing images or list of paths.

required
mode str

'train' mode or 'val' mode, allowing customized augmentations for each mode.

'train'
batch int

Size of batches, used for rectangular training/validation.

None

Returns:

Type Description
YOLOConcatDataset | Dataset

The constructed dataset for training or validation.

Source code in ultralytics/models/yolo/world/train_world.py
def build_dataset(self, img_path, mode="train", batch=None):
    """
    Build YOLO Dataset for training or validation.

    This method constructs appropriate datasets based on the mode and input paths, handling both
    standard YOLO datasets and grounding datasets with different formats.

    Args:
        img_path (List[str] | str): Path to the folder containing images or list of paths.
        mode (str): 'train' mode or 'val' mode, allowing customized augmentations for each mode.
        batch (int, optional): Size of batches, used for rectangular training/validation.

    Returns:
        (YOLOConcatDataset | Dataset): The constructed dataset for training or validation.
    """
    gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
    if mode != "train":
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
    dataset = [
        build_yolo_dataset(self.args, im_path, batch, self.data, stride=gs, multi_modal=True)
        if isinstance(im_path, str)
        else build_grounding(self.args, im_path["img_path"], im_path["json_file"], batch, stride=gs)
        for im_path in img_path
    ]
    return YOLOConcatDataset(dataset) if len(dataset) > 1 else dataset[0]

final_eval

final_eval()

Perform final evaluation and validation for the YOLO-World model.

Configures the validator with appropriate dataset and split information before running evaluation.

Returns:

Type Description
dict

Dictionary containing evaluation metrics and results.

Source code in ultralytics/models/yolo/world/train_world.py
def final_eval(self):
    """
    Perform final evaluation and validation for the YOLO-World model.

    Configures the validator with appropriate dataset and split information before running evaluation.

    Returns:
        (dict): Dictionary containing evaluation metrics and results.
    """
    val = self.args.data["val"]["yolo_data"][0]
    self.validator.args.data = val
    self.validator.args.split = "minival" if isinstance(val, str) and "lvis" in val else "val"
    return super().final_eval()

get_dataset

get_dataset()

Get train and validation paths from data dictionary.

Processes the data configuration to extract paths for training and validation datasets, handling both YOLO detection datasets and grounding datasets.

Returns:

Type Description
str

Train dataset path.

str

Validation dataset path.

Raises:

Type Description
AssertionError

If train or validation datasets are not found, or if validation has multiple datasets.

Source code in ultralytics/models/yolo/world/train_world.py
def get_dataset(self):
    """
    Get train and validation paths from data dictionary.

    Processes the data configuration to extract paths for training and validation datasets,
    handling both YOLO detection datasets and grounding datasets.

    Returns:
        (str): Train dataset path.
        (str): Validation dataset path.

    Raises:
        AssertionError: If train or validation datasets are not found, or if validation has multiple datasets.
    """
    final_data = {}
    data_yaml = self.args.data
    assert data_yaml.get("train", False), "train dataset not found"  # object365.yaml
    assert data_yaml.get("val", False), "validation dataset not found"  # lvis.yaml
    data = {k: [check_det_dataset(d) for d in v.get("yolo_data", [])] for k, v in data_yaml.items()}
    assert len(data["val"]) == 1, f"Only support validating on 1 dataset for now, but got {len(data['val'])}."
    val_split = "minival" if "lvis" in data["val"][0]["val"] else "val"
    for d in data["val"]:
        if d.get("minival") is None:  # for lvis dataset
            continue
        d["minival"] = str(d["path"] / d["minival"])
    for s in ["train", "val"]:
        final_data[s] = [d["train" if s == "train" else val_split] for d in data[s]]
        # save grounding data if there's one
        grounding_data = data_yaml[s].get("grounding_data")
        if grounding_data is None:
            continue
        grounding_data = grounding_data if isinstance(grounding_data, list) else [grounding_data]
        for g in grounding_data:
            assert isinstance(g, dict), f"Grounding data should be provided in dict format, but got {type(g)}"
        final_data[s] += grounding_data
    # NOTE: to make training work properly, set `nc` and `names`
    final_data["nc"] = data["val"][0]["nc"]
    final_data["names"] = data["val"][0]["names"]
    self.data = final_data
    return final_data["train"], final_data["val"][0]

plot_training_labels

plot_training_labels()

Do not plot labels for YOLO-World training.

Source code in ultralytics/models/yolo/world/train_world.py
def plot_training_labels(self):
    """Do not plot labels for YOLO-World training."""
    pass



📅 Created 12 months ago ✏️ Updated 6 months ago