Skip to content

Reference for ultralytics/models/yolo/world/train_world.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/world/train_world.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.models.yolo.world.train_world.WorldTrainerFromScratch

WorldTrainerFromScratch(cfg=DEFAULT_CFG, overrides=None, _callbacks=None)

Bases: WorldTrainer

A class extending the WorldTrainer for training a world model from scratch on open-set datasets.

This trainer specializes in handling mixed datasets including both object detection and grounding datasets, supporting training YOLO-World models with combined vision-language capabilities.

Attributes:

Name Type Description
cfg dict

Configuration dictionary with default parameters for model training.

overrides dict

Dictionary of parameter overrides to customize the configuration.

_callbacks list

List of callback functions to be executed during different stages of training.

data dict

Final processed data configuration containing train/val paths and metadata.

training_data dict

Dictionary mapping training dataset paths to their configurations.

Methods:

Name Description
build_dataset

Build YOLO Dataset for training or validation with mixed dataset support.

get_dataset

Get train and validation paths from data dictionary.

plot_training_labels

Skip label plotting for YOLO-World training.

final_eval

Perform final evaluation and validation for the YOLO-World model.

Examples:

>>> from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
>>> from ultralytics import YOLOWorld
>>> data = dict(
...     train=dict(
...         yolo_data=["Objects365.yaml"],
...         grounding_data=[
...             dict(
...                 img_path="../datasets/flickr30k/images",
...                 json_file="../datasets/flickr30k/final_flickr_separateGT_train.json",
...             ),
...             dict(
...                 img_path="../datasets/GQA/images",
...                 json_file="../datasets/GQA/final_mixed_train_no_coco.json",
...             ),
...         ],
...     ),
...     val=dict(yolo_data=["lvis.yaml"]),
... )
>>> model = YOLOWorld("yolov8s-worldv2.yaml")
>>> model.train(data=data, trainer=WorldTrainerFromScratch)

This initializes a trainer for YOLO-World models from scratch, supporting mixed datasets including both object detection and grounding datasets for vision-language capabilities.

Parameters:

Name Type Description Default
cfg dict

Configuration dictionary with default parameters for model training.

DEFAULT_CFG
overrides dict

Dictionary of parameter overrides to customize the configuration.

None
_callbacks list

List of callback functions to be executed during different stages of training.

None

Examples:

>>> from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
>>> from ultralytics import YOLOWorld
>>> data = dict(
...     train=dict(
...         yolo_data=["Objects365.yaml"],
...         grounding_data=[
...             dict(
...                 img_path="../datasets/flickr30k/images",
...                 json_file="../datasets/flickr30k/final_flickr_separateGT_train.json",
...             ),
...         ],
...     ),
...     val=dict(yolo_data=["lvis.yaml"]),
... )
>>> model = YOLOWorld("yolov8s-worldv2.yaml")
>>> model.train(data=data, trainer=WorldTrainerFromScratch)
Source code in ultralytics/models/yolo/world/train_world.py
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
    """
    Initialize a WorldTrainerFromScratch object.

    This initializes a trainer for YOLO-World models from scratch, supporting mixed datasets including both
    object detection and grounding datasets for vision-language capabilities.

    Args:
        cfg (dict): Configuration dictionary with default parameters for model training.
        overrides (dict, optional): Dictionary of parameter overrides to customize the configuration.
        _callbacks (list, optional): List of callback functions to be executed during different stages of training.

    Examples:
        >>> from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
        >>> from ultralytics import YOLOWorld
        >>> data = dict(
        ...     train=dict(
        ...         yolo_data=["Objects365.yaml"],
        ...         grounding_data=[
        ...             dict(
        ...                 img_path="../datasets/flickr30k/images",
        ...                 json_file="../datasets/flickr30k/final_flickr_separateGT_train.json",
        ...             ),
        ...         ],
        ...     ),
        ...     val=dict(yolo_data=["lvis.yaml"]),
        ... )
        >>> model = YOLOWorld("yolov8s-worldv2.yaml")
        >>> model.train(data=data, trainer=WorldTrainerFromScratch)
    """
    if overrides is None:
        overrides = {}
    super().__init__(cfg, overrides, _callbacks)

build_dataset

build_dataset(img_path, mode='train', batch=None)

Build YOLO Dataset for training or validation.

This method constructs appropriate datasets based on the mode and input paths, handling both standard YOLO datasets and grounding datasets with different formats.

Parameters:

Name Type Description Default
img_path List[str] | str

Path to the folder containing images or list of paths.

required
mode str

'train' mode or 'val' mode, allowing customized augmentations for each mode.

'train'
batch int

Size of batches, used for rectangular training/validation.

None

Returns:

Type Description
YOLOConcatDataset | Dataset

The constructed dataset for training or validation.

Source code in ultralytics/models/yolo/world/train_world.py
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
def build_dataset(self, img_path, mode="train", batch=None):
    """
    Build YOLO Dataset for training or validation.

    This method constructs appropriate datasets based on the mode and input paths, handling both
    standard YOLO datasets and grounding datasets with different formats.

    Args:
        img_path (List[str] | str): Path to the folder containing images or list of paths.
        mode (str): 'train' mode or 'val' mode, allowing customized augmentations for each mode.
        batch (int, optional): Size of batches, used for rectangular training/validation.

    Returns:
        (YOLOConcatDataset | Dataset): The constructed dataset for training or validation.
    """
    gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
    if mode != "train":
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=False, stride=gs)
    datasets = [
        build_yolo_dataset(self.args, im_path, batch, self.training_data[im_path], stride=gs, multi_modal=True)
        if isinstance(im_path, str)
        else build_grounding(self.args, im_path["img_path"], im_path["json_file"], batch, stride=gs)
        for im_path in img_path
    ]
    self.set_text_embeddings(datasets, batch)  # cache text embeddings to accelerate training
    return YOLOConcatDataset(datasets) if len(datasets) > 1 else datasets[0]

final_eval

final_eval()

Perform final evaluation and validation for the YOLO-World model.

Configures the validator with appropriate dataset and split information before running evaluation.

Returns:

Type Description
dict

Dictionary containing evaluation metrics and results.

Source code in ultralytics/models/yolo/world/train_world.py
173
174
175
176
177
178
179
180
181
182
183
184
185
def final_eval(self):
    """
    Perform final evaluation and validation for the YOLO-World model.

    Configures the validator with appropriate dataset and split information before running evaluation.

    Returns:
        (dict): Dictionary containing evaluation metrics and results.
    """
    val = self.args.data["val"]["yolo_data"][0]
    self.validator.args.data = val
    self.validator.args.split = "minival" if isinstance(val, str) and "lvis" in val else "val"
    return super().final_eval()

get_dataset

get_dataset()

Get train and validation paths from data dictionary.

Processes the data configuration to extract paths for training and validation datasets, handling both YOLO detection datasets and grounding datasets.

Returns:

Name Type Description
train_path str

Train dataset path.

val_path str

Validation dataset path.

Raises:

Type Description
AssertionError

If train or validation datasets are not found, or if validation has multiple datasets.

Source code in ultralytics/models/yolo/world/train_world.py
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def get_dataset(self):
    """
    Get train and validation paths from data dictionary.

    Processes the data configuration to extract paths for training and validation datasets,
    handling both YOLO detection datasets and grounding datasets.

    Returns:
        train_path (str): Train dataset path.
        val_path (str): Validation dataset path.

    Raises:
        AssertionError: If train or validation datasets are not found, or if validation has multiple datasets.
    """
    final_data = {}
    data_yaml = self.args.data
    assert data_yaml.get("train", False), "train dataset not found"  # object365.yaml
    assert data_yaml.get("val", False), "validation dataset not found"  # lvis.yaml
    data = {k: [check_det_dataset(d) for d in v.get("yolo_data", [])] for k, v in data_yaml.items()}
    assert len(data["val"]) == 1, f"Only support validating on 1 dataset for now, but got {len(data['val'])}."
    val_split = "minival" if "lvis" in data["val"][0]["val"] else "val"
    for d in data["val"]:
        if d.get("minival") is None:  # for lvis dataset
            continue
        d["minival"] = str(d["path"] / d["minival"])
    for s in ["train", "val"]:
        final_data[s] = [d["train" if s == "train" else val_split] for d in data[s]]
        # save grounding data if there's one
        grounding_data = data_yaml[s].get("grounding_data")
        if grounding_data is None:
            continue
        grounding_data = grounding_data if isinstance(grounding_data, list) else [grounding_data]
        for g in grounding_data:
            assert isinstance(g, dict), f"Grounding data should be provided in dict format, but got {type(g)}"
        final_data[s] += grounding_data
    data["val"] = data["val"][0]  # assign the first val dataset as currently only one validation set is supported
    # NOTE: to make training work properly, set `nc` and `names`
    final_data["nc"] = data["val"]["nc"]
    final_data["names"] = data["val"]["names"]
    # NOTE: add path with lvis path
    final_data["path"] = data["val"]["path"]
    final_data["channels"] = data["val"]["channels"]
    self.data = final_data
    if self.args.single_cls:  # consistent with base trainer
        LOGGER.info("Overriding class names with single class.")
        self.data["names"] = {0: "object"}
        self.data["nc"] = 1
    self.training_data = {}
    for d in data["train"]:
        if self.args.single_cls:
            d["names"] = {0: "object"}
            d["nc"] = 1
        self.training_data[d["train"]] = d
    return final_data

plot_training_labels

plot_training_labels()

Skip label plotting for YOLO-World training.

Source code in ultralytics/models/yolo/world/train_world.py
169
170
171
def plot_training_labels(self):
    """Skip label plotting for YOLO-World training."""
    pass





📅 Created 1 year ago ✏️ Updated 8 months ago