Reference for ultralytics/models/yolo/world/train_world.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/world/train_world.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.models.yolo.world.train_world.WorldTrainerFromScratch
WorldTrainerFromScratch(cfg=DEFAULT_CFG, overrides=None, _callbacks=None)
Bases: WorldTrainer
A class extending the WorldTrainer for training a world model from scratch on open-set datasets.
This trainer specializes in handling mixed datasets including both object detection and grounding datasets, supporting training YOLO-World models with combined vision-language capabilities.
Attributes:
Name | Type | Description |
---|---|---|
cfg |
dict
|
Configuration dictionary with default parameters for model training. |
overrides |
dict
|
Dictionary of parameter overrides to customize the configuration. |
_callbacks |
list
|
List of callback functions to be executed during different stages of training. |
data |
dict
|
Final processed data configuration containing train/val paths and metadata. |
training_data |
dict
|
Dictionary mapping training dataset paths to their configurations. |
Methods:
Name | Description |
---|---|
build_dataset |
Build YOLO Dataset for training or validation with mixed dataset support. |
get_dataset |
Get train and validation paths from data dictionary. |
plot_training_labels |
Skip label plotting for YOLO-World training. |
final_eval |
Perform final evaluation and validation for the YOLO-World model. |
Examples:
>>> from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
>>> from ultralytics import YOLOWorld
>>> data = dict(
... train=dict(
... yolo_data=["Objects365.yaml"],
... grounding_data=[
... dict(
... img_path="../datasets/flickr30k/images",
... json_file="../datasets/flickr30k/final_flickr_separateGT_train.json",
... ),
... dict(
... img_path="../datasets/GQA/images",
... json_file="../datasets/GQA/final_mixed_train_no_coco.json",
... ),
... ],
... ),
... val=dict(yolo_data=["lvis.yaml"]),
... )
>>> model = YOLOWorld("yolov8s-worldv2.yaml")
>>> model.train(data=data, trainer=WorldTrainerFromScratch)
This initializes a trainer for YOLO-World models from scratch, supporting mixed datasets including both object detection and grounding datasets for vision-language capabilities.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
dict
|
Configuration dictionary with default parameters for model training. |
DEFAULT_CFG
|
overrides
|
dict
|
Dictionary of parameter overrides to customize the configuration. |
None
|
_callbacks
|
list
|
List of callback functions to be executed during different stages of training. |
None
|
Examples:
>>> from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
>>> from ultralytics import YOLOWorld
>>> data = dict(
... train=dict(
... yolo_data=["Objects365.yaml"],
... grounding_data=[
... dict(
... img_path="../datasets/flickr30k/images",
... json_file="../datasets/flickr30k/final_flickr_separateGT_train.json",
... ),
... ],
... ),
... val=dict(yolo_data=["lvis.yaml"]),
... )
>>> model = YOLOWorld("yolov8s-worldv2.yaml")
>>> model.train(data=data, trainer=WorldTrainerFromScratch)
Source code in ultralytics/models/yolo/world/train_world.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
build_dataset
build_dataset(img_path, mode='train', batch=None)
Build YOLO Dataset for training or validation.
This method constructs appropriate datasets based on the mode and input paths, handling both standard YOLO datasets and grounding datasets with different formats.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img_path
|
List[str] | str
|
Path to the folder containing images or list of paths. |
required |
mode
|
str
|
'train' mode or 'val' mode, allowing customized augmentations for each mode. |
'train'
|
batch
|
int
|
Size of batches, used for rectangular training/validation. |
None
|
Returns:
Type | Description |
---|---|
YOLOConcatDataset | Dataset
|
The constructed dataset for training or validation. |
Source code in ultralytics/models/yolo/world/train_world.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
final_eval
final_eval()
Perform final evaluation and validation for the YOLO-World model.
Configures the validator with appropriate dataset and split information before running evaluation.
Returns:
Type | Description |
---|---|
dict
|
Dictionary containing evaluation metrics and results. |
Source code in ultralytics/models/yolo/world/train_world.py
173 174 175 176 177 178 179 180 181 182 183 184 185 |
|
get_dataset
get_dataset()
Get train and validation paths from data dictionary.
Processes the data configuration to extract paths for training and validation datasets, handling both YOLO detection datasets and grounding datasets.
Returns:
Name | Type | Description |
---|---|---|
train_path |
str
|
Train dataset path. |
val_path |
str
|
Validation dataset path. |
Raises:
Type | Description |
---|---|
AssertionError
|
If train or validation datasets are not found, or if validation has multiple datasets. |
Source code in ultralytics/models/yolo/world/train_world.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
|
plot_training_labels
plot_training_labels()
Skip label plotting for YOLO-World training.
Source code in ultralytics/models/yolo/world/train_world.py
169 170 171 |
|