Reference for ultralytics/trackers/bot_sort.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/bot_sort.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
class ultralytics.trackers.bot_sort.BOTrack
BOTrack(self, xywh: np.ndarray, score: float, cls: int, feat: np.ndarray | None = None, feat_history: int = 50)
Bases: STrack
An extended version of the STrack class for YOLO, adding object tracking features.
This class extends the STrack class to include additional functionalities for object tracking, such as feature smoothing, Kalman filter prediction, and reactivation of tracks.
Args
| Name | Type | Description | Default |
|---|---|---|---|
xywh | np.ndarray | Bounding box coordinates in xywh format (center x, center y, width, height). | required |
score | float | Confidence score of the detection. | required |
cls | int | Class ID of the detected object. | required |
feat | np.ndarray, optional | Feature vector associated with the detection. | None |
feat_history | int | Maximum length of the feature history deque. | 50 |
Attributes
| Name | Type | Description |
|---|---|---|
shared_kalman | KalmanFilterXYWH | A shared Kalman filter for all instances of BOTrack. |
smooth_feat | np.ndarray | Smoothed feature vector. |
curr_feat | np.ndarray | Current feature vector. |
features | deque | A deque to store feature vectors with a maximum length defined by feat_history. |
alpha | float | Smoothing factor for the exponential moving average of features. |
mean | np.ndarray | The mean state of the Kalman filter. |
covariance | np.ndarray | The covariance matrix of the Kalman filter. |
Methods
| Name | Description |
|---|---|
tlwh | Return the current bounding box position in (top left x, top left y, width, height) format. |
convert_coords | Convert tlwh bounding box coordinates to xywh format. |
multi_predict | Predict the mean and covariance for multiple object tracks using a shared Kalman filter. |
predict | Predict the object's future state using the Kalman filter to update its mean and covariance. |
re_activate | Reactivate a track with updated features and optionally assign a new ID. |
tlwh_to_xywh | Convert bounding box from tlwh (top-left-width-height) to xywh (center-x-center-y-width-height) format. |
update | Update the track with new detection information and the current frame ID. |
update_features | Update the feature vector and apply exponential moving average smoothing. |
Examples
Create a BOTrack instance and update its features
>>> bo_track = BOTrack(tlwh=[100, 50, 80, 40], score=0.9, cls=1, feat=np.random.rand(128))
>>> bo_track.predict()
>>> new_track = BOTrack(tlwh=[110, 60, 80, 40], score=0.85, cls=1, feat=np.random.rand(128))
>>> bo_track.update(new_track, frame_id=2)
Source code in ultralytics/trackers/bot_sort.py
View on GitHubclass BOTrack(STrack):
"""An extended version of the STrack class for YOLO, adding object tracking features.
This class extends the STrack class to include additional functionalities for object tracking, such as feature
smoothing, Kalman filter prediction, and reactivation of tracks.
Attributes:
shared_kalman (KalmanFilterXYWH): A shared Kalman filter for all instances of BOTrack.
smooth_feat (np.ndarray): Smoothed feature vector.
curr_feat (np.ndarray): Current feature vector.
features (deque): A deque to store feature vectors with a maximum length defined by `feat_history`.
alpha (float): Smoothing factor for the exponential moving average of features.
mean (np.ndarray): The mean state of the Kalman filter.
covariance (np.ndarray): The covariance matrix of the Kalman filter.
Methods:
update_features: Update features vector and smooth it using exponential moving average.
predict: Predict the mean and covariance using Kalman filter.
re_activate: Reactivate a track with updated features and optionally new ID.
update: Update the track with new detection and frame ID.
tlwh: Property that gets the current position in tlwh format `(top left x, top left y, width, height)`.
multi_predict: Predict the mean and covariance of multiple object tracks using shared Kalman filter.
convert_coords: Convert tlwh bounding box coordinates to xywh format.
tlwh_to_xywh: Convert bounding box to xywh format `(center x, center y, width, height)`.
Examples:
Create a BOTrack instance and update its features
>>> bo_track = BOTrack(tlwh=[100, 50, 80, 40], score=0.9, cls=1, feat=np.random.rand(128))
>>> bo_track.predict()
>>> new_track = BOTrack(tlwh=[110, 60, 80, 40], score=0.85, cls=1, feat=np.random.rand(128))
>>> bo_track.update(new_track, frame_id=2)
"""
shared_kalman = KalmanFilterXYWH()
def __init__(
self, xywh: np.ndarray, score: float, cls: int, feat: np.ndarray | None = None, feat_history: int = 50
):
"""Initialize a BOTrack object with temporal parameters, such as feature history, alpha, and current features.
Args:
xywh (np.ndarray): Bounding box coordinates in xywh format (center x, center y, width, height).
score (float): Confidence score of the detection.
cls (int): Class ID of the detected object.
feat (np.ndarray, optional): Feature vector associated with the detection.
feat_history (int): Maximum length of the feature history deque.
"""
super().__init__(xywh, score, cls)
self.smooth_feat = None
self.curr_feat = None
if feat is not None:
self.update_features(feat)
self.features = deque([], maxlen=feat_history)
self.alpha = 0.9
property ultralytics.trackers.bot_sort.BOTrack.tlwh
def tlwh(self) -> np.ndarray
Return the current bounding box position in (top left x, top left y, width, height) format.
Source code in ultralytics/trackers/bot_sort.py
View on GitHub@property
def tlwh(self) -> np.ndarray:
"""Return the current bounding box position in `(top left x, top left y, width, height)` format."""
if self.mean is None:
return self._tlwh.copy()
ret = self.mean[:4].copy()
ret[:2] -= ret[2:] / 2
return ret
method ultralytics.trackers.bot_sort.BOTrack.convert_coords
def convert_coords(self, tlwh: np.ndarray) -> np.ndarray
Convert tlwh bounding box coordinates to xywh format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tlwh | np.ndarray | required |
Source code in ultralytics/trackers/bot_sort.py
View on GitHubdef convert_coords(self, tlwh: np.ndarray) -> np.ndarray:
"""Convert tlwh bounding box coordinates to xywh format."""
return self.tlwh_to_xywh(tlwh)
method ultralytics.trackers.bot_sort.BOTrack.multi_predict
def multi_predict(stracks: list[BOTrack]) -> None
Predict the mean and covariance for multiple object tracks using a shared Kalman filter.
Args
| Name | Type | Description | Default |
|---|---|---|---|
stracks | list[BOTrack] | required |
Source code in ultralytics/trackers/bot_sort.py
View on GitHub@staticmethod
def multi_predict(stracks: list[BOTrack]) -> None:
"""Predict the mean and covariance for multiple object tracks using a shared Kalman filter."""
if len(stracks) <= 0:
return
multi_mean = np.asarray([st.mean.copy() for st in stracks])
multi_covariance = np.asarray([st.covariance for st in stracks])
for i, st in enumerate(stracks):
if st.state != TrackState.Tracked:
multi_mean[i][6] = 0
multi_mean[i][7] = 0
multi_mean, multi_covariance = BOTrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
stracks[i].mean = mean
stracks[i].covariance = cov
method ultralytics.trackers.bot_sort.BOTrack.predict
def predict(self) -> None
Predict the object's future state using the Kalman filter to update its mean and covariance.
Source code in ultralytics/trackers/bot_sort.py
View on GitHubdef predict(self) -> None:
"""Predict the object's future state using the Kalman filter to update its mean and covariance."""
mean_state = self.mean.copy()
if self.state != TrackState.Tracked:
mean_state[6] = 0
mean_state[7] = 0
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
method ultralytics.trackers.bot_sort.BOTrack.re_activate
def re_activate(self, new_track: BOTrack, frame_id: int, new_id: bool = False) -> None
Reactivate a track with updated features and optionally assign a new ID.
Args
| Name | Type | Description | Default |
|---|---|---|---|
new_track | BOTrack | required | |
frame_id | int | required | |
new_id | bool | False |
Source code in ultralytics/trackers/bot_sort.py
View on GitHubdef re_activate(self, new_track: BOTrack, frame_id: int, new_id: bool = False) -> None:
"""Reactivate a track with updated features and optionally assign a new ID."""
if new_track.curr_feat is not None:
self.update_features(new_track.curr_feat)
super().re_activate(new_track, frame_id, new_id)
method ultralytics.trackers.bot_sort.BOTrack.tlwh_to_xywh
def tlwh_to_xywh(tlwh: np.ndarray) -> np.ndarray
Convert bounding box from tlwh (top-left-width-height) to xywh (center-x-center-y-width-height) format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tlwh | np.ndarray | required |
Source code in ultralytics/trackers/bot_sort.py
View on GitHub@staticmethod
def tlwh_to_xywh(tlwh: np.ndarray) -> np.ndarray:
"""Convert bounding box from tlwh (top-left-width-height) to xywh (center-x-center-y-width-height) format."""
ret = np.asarray(tlwh).copy()
ret[:2] += ret[2:] / 2
return ret
method ultralytics.trackers.bot_sort.BOTrack.update
def update(self, new_track: BOTrack, frame_id: int) -> None
Update the track with new detection information and the current frame ID.
Args
| Name | Type | Description | Default |
|---|---|---|---|
new_track | BOTrack | required | |
frame_id | int | required |
Source code in ultralytics/trackers/bot_sort.py
View on GitHubdef update(self, new_track: BOTrack, frame_id: int) -> None:
"""Update the track with new detection information and the current frame ID."""
if new_track.curr_feat is not None:
self.update_features(new_track.curr_feat)
super().update(new_track, frame_id)
method ultralytics.trackers.bot_sort.BOTrack.update_features
def update_features(self, feat: np.ndarray) -> None
Update the feature vector and apply exponential moving average smoothing.
Args
| Name | Type | Description | Default |
|---|---|---|---|
feat | np.ndarray | required |
Source code in ultralytics/trackers/bot_sort.py
View on GitHubdef update_features(self, feat: np.ndarray) -> None:
"""Update the feature vector and apply exponential moving average smoothing."""
feat /= np.linalg.norm(feat)
self.curr_feat = feat
if self.smooth_feat is None:
self.smooth_feat = feat
else:
self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat
self.features.append(feat)
self.smooth_feat /= np.linalg.norm(self.smooth_feat)
class ultralytics.trackers.bot_sort.BOTSORT
BOTSORT(self, args: Any, frame_rate: int = 30)
Bases: BYTETracker
An extended version of the BYTETracker class for YOLO, designed for object tracking with ReID and GMC algorithm.
Args
| Name | Type | Description | Default |
|---|---|---|---|
args | Any | Parsed command-line arguments containing tracking parameters. | required |
frame_rate | int | Frame rate of the video being processed. | 30 |
Attributes
| Name | Type | Description |
|---|---|---|
proximity_thresh | float | Threshold for spatial proximity (IoU) between tracks and detections. |
appearance_thresh | float | Threshold for appearance similarity (ReID embeddings) between tracks and detections. |
encoder | Any | Object to handle ReID embeddings, set to None if ReID is not enabled. |
gmc | GMC | An instance of the GMC algorithm for data association. |
args | Any | Parsed command-line arguments containing tracking parameters. |
Methods
| Name | Description |
|---|---|
get_dists | Calculate distances between tracks and detections using IoU and optionally ReID embeddings. |
get_kalmanfilter | Return an instance of KalmanFilterXYWH for predicting and updating object states in the tracking process. |
init_track | Initialize object tracks using detection bounding boxes, scores, class labels, and optional ReID features. |
multi_predict | Predict the mean and covariance of multiple object tracks using a shared Kalman filter. |
reset | Reset the BOTSORT tracker to its initial state, clearing all tracked objects and internal states. |
Examples
Initialize BOTSORT and process detections
>>> bot_sort = BOTSORT(args, frame_rate=30)
>>> bot_sort.init_track(dets, scores, cls, img)
>>> bot_sort.multi_predict(tracks)
Notes
The class is designed to work with a YOLO object detection model and supports ReID only if enabled via args.
Source code in ultralytics/trackers/bot_sort.py
View on GitHubclass BOTSORT(BYTETracker):
"""An extended version of the BYTETracker class for YOLO, designed for object tracking with ReID and GMC algorithm.
Attributes:
proximity_thresh (float): Threshold for spatial proximity (IoU) between tracks and detections.
appearance_thresh (float): Threshold for appearance similarity (ReID embeddings) between tracks and detections.
encoder (Any): Object to handle ReID embeddings, set to None if ReID is not enabled.
gmc (GMC): An instance of the GMC algorithm for data association.
args (Any): Parsed command-line arguments containing tracking parameters.
Methods:
get_kalmanfilter: Return an instance of KalmanFilterXYWH for object tracking.
init_track: Initialize track with detections, scores, and classes.
get_dists: Get distances between tracks and detections using IoU and (optionally) ReID.
multi_predict: Predict and track multiple objects with a YOLO model.
reset: Reset the BOTSORT tracker to its initial state.
Examples:
Initialize BOTSORT and process detections
>>> bot_sort = BOTSORT(args, frame_rate=30)
>>> bot_sort.init_track(dets, scores, cls, img)
>>> bot_sort.multi_predict(tracks)
Notes:
The class is designed to work with a YOLO object detection model and supports ReID only if enabled via args.
"""
def __init__(self, args: Any, frame_rate: int = 30):
"""Initialize BOTSORT object with ReID module and GMC algorithm.
Args:
args (Any): Parsed command-line arguments containing tracking parameters.
frame_rate (int): Frame rate of the video being processed.
"""
super().__init__(args, frame_rate)
self.gmc = GMC(method=args.gmc_method)
# ReID module
self.proximity_thresh = args.proximity_thresh
self.appearance_thresh = args.appearance_thresh
self.encoder = (
(lambda feats, s: [f.cpu().numpy() for f in feats]) # native features do not require any model
if args.with_reid and self.args.model == "auto"
else ReID(args.model)
if args.with_reid
else None
)
method ultralytics.trackers.bot_sort.BOTSORT.get_dists
def get_dists(self, tracks: list[BOTrack], detections: list[BOTrack]) -> np.ndarray
Calculate distances between tracks and detections using IoU and optionally ReID embeddings.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tracks | list[BOTrack] | required | |
detections | list[BOTrack] | required |
Source code in ultralytics/trackers/bot_sort.py
View on GitHubdef get_dists(self, tracks: list[BOTrack], detections: list[BOTrack]) -> np.ndarray:
"""Calculate distances between tracks and detections using IoU and optionally ReID embeddings."""
dists = matching.iou_distance(tracks, detections)
dists_mask = dists > (1 - self.proximity_thresh)
if self.args.fuse_score:
dists = matching.fuse_score(dists, detections)
if self.args.with_reid and self.encoder is not None:
emb_dists = matching.embedding_distance(tracks, detections) / 2.0
emb_dists[emb_dists > (1 - self.appearance_thresh)] = 1.0
emb_dists[dists_mask] = 1.0
dists = np.minimum(dists, emb_dists)
return dists
method ultralytics.trackers.bot_sort.BOTSORT.get_kalmanfilter
def get_kalmanfilter(self) -> KalmanFilterXYWH
Return an instance of KalmanFilterXYWH for predicting and updating object states in the tracking process.
Source code in ultralytics/trackers/bot_sort.py
View on GitHubdef get_kalmanfilter(self) -> KalmanFilterXYWH:
"""Return an instance of KalmanFilterXYWH for predicting and updating object states in the tracking process."""
return KalmanFilterXYWH()
method ultralytics.trackers.bot_sort.BOTSORT.init_track
def init_track(self, results, img: np.ndarray | None = None) -> list[BOTrack]
Initialize object tracks using detection bounding boxes, scores, class labels, and optional ReID features.
Args
| Name | Type | Description | Default |
|---|---|---|---|
results | required | ||
img | np.ndarray | None | None |
Source code in ultralytics/trackers/bot_sort.py
View on GitHubdef init_track(self, results, img: np.ndarray | None = None) -> list[BOTrack]:
"""Initialize object tracks using detection bounding boxes, scores, class labels, and optional ReID features."""
if len(results) == 0:
return []
bboxes = results.xywhr if hasattr(results, "xywhr") else results.xywh
bboxes = np.concatenate([bboxes, np.arange(len(bboxes)).reshape(-1, 1)], axis=-1)
if self.args.with_reid and self.encoder is not None:
features_keep = self.encoder(img, bboxes)
return [BOTrack(xywh, s, c, f) for (xywh, s, c, f) in zip(bboxes, results.conf, results.cls, features_keep)]
else:
return [BOTrack(xywh, s, c) for (xywh, s, c) in zip(bboxes, results.conf, results.cls)]
method ultralytics.trackers.bot_sort.BOTSORT.multi_predict
def multi_predict(self, tracks: list[BOTrack]) -> None
Predict the mean and covariance of multiple object tracks using a shared Kalman filter.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tracks | list[BOTrack] | required |
Source code in ultralytics/trackers/bot_sort.py
View on GitHubdef multi_predict(self, tracks: list[BOTrack]) -> None:
"""Predict the mean and covariance of multiple object tracks using a shared Kalman filter."""
BOTrack.multi_predict(tracks)
method ultralytics.trackers.bot_sort.BOTSORT.reset
def reset(self) -> None
Reset the BOTSORT tracker to its initial state, clearing all tracked objects and internal states.
Source code in ultralytics/trackers/bot_sort.py
View on GitHubdef reset(self) -> None:
"""Reset the BOTSORT tracker to its initial state, clearing all tracked objects and internal states."""
super().reset()
self.gmc.reset_params()
class ultralytics.trackers.bot_sort.ReID
ReID(self, model: str)
YOLO model as encoder for re-identification.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | str | Path to the YOLO model for re-identification. | required |
Methods
| Name | Description |
|---|---|
__call__ | Extract embeddings for detected objects. |
Source code in ultralytics/trackers/bot_sort.py
View on GitHubclass ReID:
"""YOLO model as encoder for re-identification."""
def __init__(self, model: str):
"""Initialize encoder for re-identification.
Args:
model (str): Path to the YOLO model for re-identification.
"""
from ultralytics import YOLO
self.model = YOLO(model)
self.model(embed=[len(self.model.model.model) - 2 if ".pt" in model else -1], verbose=False, save=False) # init
method ultralytics.trackers.bot_sort.ReID.__call__
def __call__(self, img: np.ndarray, dets: np.ndarray) -> list[np.ndarray]
Extract embeddings for detected objects.
Args
| Name | Type | Description | Default |
|---|---|---|---|
img | np.ndarray | required | |
dets | np.ndarray | required |
Source code in ultralytics/trackers/bot_sort.py
View on GitHubdef __call__(self, img: np.ndarray, dets: np.ndarray) -> list[np.ndarray]:
"""Extract embeddings for detected objects."""
feats = self.model.predictor(
[save_one_box(det, img, save=False) for det in xywh2xyxy(torch.from_numpy(dets[:, :4]))]
)
if len(feats) != dets.shape[0] and feats[0].shape[0] == dets.shape[0]:
feats = feats[0] # batched prediction with non-PyTorch backend
return [f.cpu().numpy() for f in feats]