Reference for ultralytics/trackers/byte_tracker.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/byte_tracker.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
STrack.predictSTrack.multi_predictSTrack.multi_gmcSTrack.activateSTrack.re_activateSTrack.updateSTrack.convert_coordsSTrack.tlwh_to_xyahSTrack.__repr__BYTETracker.updateBYTETracker.get_kalmanfilterBYTETracker.init_trackBYTETracker.get_distsBYTETracker.multi_predictBYTETracker.reset_idBYTETracker.resetBYTETracker.joint_stracksBYTETracker.sub_stracksBYTETracker.remove_duplicate_stracks
class ultralytics.trackers.byte_tracker.STrack
STrack(self, xywh: list[float], score: float, cls: Any)
Bases: BaseTrack
Single object tracking representation that uses Kalman filtering for state estimation.
This class is responsible for storing all the information regarding individual tracklets and performs state updates and predictions based on Kalman filter.
Args
| Name | Type | Description | Default |
|---|---|---|---|
xywh | list[float] | Bounding box coordinates and dimensions in the format (x, y, w, h, [a], idx), where (x, y) is the center, (w, h) are width and height, [a] is optional aspect ratio, and idx is the id. | required |
score | float | Confidence score of the detection. | required |
cls | Any | Class label for the detected object. | required |
Attributes
| Name | Type | Description |
|---|---|---|
shared_kalman | KalmanFilterXYAH | Shared Kalman filter used across all STrack instances for prediction. |
_tlwh | np.ndarray | Private attribute to store top-left corner coordinates and width and height of bounding box. |
kalman_filter | KalmanFilterXYAH | Instance of Kalman filter used for this particular object track. |
mean | np.ndarray | Mean state estimate vector. |
covariance | np.ndarray | Covariance of state estimate. |
is_activated | bool | Boolean flag indicating if the track has been activated. |
score | float | Confidence score of the track. |
tracklet_len | int | Length of the tracklet. |
cls | Any | Class label for the object. |
idx | int | Index or identifier for the object. |
frame_id | int | Current frame ID. |
start_frame | int | Frame where the object was first detected. |
angle | float | None | Optional angle information for oriented bounding boxes. |
Methods
| Name | Description |
|---|---|
tlwh | Get the bounding box in top-left-width-height format from the current state estimate. |
xyxy | Convert bounding box from (top left x, top left y, width, height) to (min x, min y, max x, max y) format. |
xywh | Get the current position of the bounding box in (center x, center y, width, height) format. |
xywha | Get position in (center x, center y, width, height, angle) format, warning if angle is missing. |
result | Get the current tracking results in the appropriate bounding box format. |
__repr__ | Return a string representation of the STrack object including start frame, end frame, and track ID. |
activate | Activate a new tracklet using the provided Kalman filter and initialize its state and covariance. |
convert_coords | Convert a bounding box's top-left-width-height format to its x-y-aspect-height equivalent. |
multi_gmc | Update state tracks positions and covariances using a homography matrix for multiple tracks. |
multi_predict | Perform multi-object predictive tracking using Kalman filter for the provided list of STrack instances. |
predict | Predict the next state (mean and covariance) of the object using the Kalman filter. |
re_activate | Reactivate a previously lost track using new detection data and update its state and attributes. |
tlwh_to_xyah | Convert bounding box from tlwh format to center-x-center-y-aspect-height (xyah) format. |
update | Update the state of a matched track. |
Examples
Initialize and activate a new track
>>> track = STrack(xywh=[100, 200, 50, 80, 0], score=0.9, cls="person")
>>> track.activate(kalman_filter=KalmanFilterXYAH(), frame_id=1)
Source code in ultralytics/trackers/byte_tracker.py
View on GitHubclass STrack(BaseTrack):
"""Single object tracking representation that uses Kalman filtering for state estimation.
This class is responsible for storing all the information regarding individual tracklets and performs state updates
and predictions based on Kalman filter.
Attributes:
shared_kalman (KalmanFilterXYAH): Shared Kalman filter used across all STrack instances for prediction.
_tlwh (np.ndarray): Private attribute to store top-left corner coordinates and width and height of bounding box.
kalman_filter (KalmanFilterXYAH): Instance of Kalman filter used for this particular object track.
mean (np.ndarray): Mean state estimate vector.
covariance (np.ndarray): Covariance of state estimate.
is_activated (bool): Boolean flag indicating if the track has been activated.
score (float): Confidence score of the track.
tracklet_len (int): Length of the tracklet.
cls (Any): Class label for the object.
idx (int): Index or identifier for the object.
frame_id (int): Current frame ID.
start_frame (int): Frame where the object was first detected.
angle (float | None): Optional angle information for oriented bounding boxes.
Methods:
predict: Predict the next state of the object using Kalman filter.
multi_predict: Predict the next states for multiple tracks.
multi_gmc: Update multiple track states using a homography matrix.
activate: Activate a new tracklet.
re_activate: Reactivate a previously lost tracklet.
update: Update the state of a matched track.
convert_coords: Convert bounding box to x-y-aspect-height format.
tlwh_to_xyah: Convert tlwh bounding box to xyah format.
Examples:
Initialize and activate a new track
>>> track = STrack(xywh=[100, 200, 50, 80, 0], score=0.9, cls="person")
>>> track.activate(kalman_filter=KalmanFilterXYAH(), frame_id=1)
"""
shared_kalman = KalmanFilterXYAH()
def __init__(self, xywh: list[float], score: float, cls: Any):
"""Initialize a new STrack instance.
Args:
xywh (list[float]): Bounding box coordinates and dimensions in the format (x, y, w, h, [a], idx), where (x,
y) is the center, (w, h) are width and height, [a] is optional aspect ratio, and idx is the id.
score (float): Confidence score of the detection.
cls (Any): Class label for the detected object.
"""
super().__init__()
# xywh+idx or xywha+idx
assert len(xywh) in {5, 6}, f"expected 5 or 6 values but got {len(xywh)}"
self._tlwh = np.asarray(xywh2ltwh(xywh[:4]), dtype=np.float32)
self.kalman_filter = None
self.mean, self.covariance = None, None
self.is_activated = False
self.score = score
self.tracklet_len = 0
self.cls = cls
self.idx = xywh[-1]
self.angle = xywh[4] if len(xywh) == 6 else None
property ultralytics.trackers.byte_tracker.STrack.tlwh
def tlwh(self) -> np.ndarray
Get the bounding box in top-left-width-height format from the current state estimate.
Source code in ultralytics/trackers/byte_tracker.py
View on GitHub@property
def tlwh(self) -> np.ndarray:
"""Get the bounding box in top-left-width-height format from the current state estimate."""
if self.mean is None:
return self._tlwh.copy()
ret = self.mean[:4].copy()
ret[2] *= ret[3]
ret[:2] -= ret[2:] / 2
return ret
property ultralytics.trackers.byte_tracker.STrack.xyxy
def xyxy(self) -> np.ndarray
Convert bounding box from (top left x, top left y, width, height) to (min x, min y, max x, max y) format.
Source code in ultralytics/trackers/byte_tracker.py
View on GitHub@property
def xyxy(self) -> np.ndarray:
"""Convert bounding box from (top left x, top left y, width, height) to (min x, min y, max x, max y) format."""
ret = self.tlwh.copy()
ret[2:] += ret[:2]
return ret
property ultralytics.trackers.byte_tracker.STrack.xywh
def xywh(self) -> np.ndarray
Get the current position of the bounding box in (center x, center y, width, height) format.
Source code in ultralytics/trackers/byte_tracker.py
View on GitHub@property
def xywh(self) -> np.ndarray:
"""Get the current position of the bounding box in (center x, center y, width, height) format."""
ret = np.asarray(self.tlwh).copy()
ret[:2] += ret[2:] / 2
return ret
property ultralytics.trackers.byte_tracker.STrack.xywha
def xywha(self) -> np.ndarray
Get position in (center x, center y, width, height, angle) format, warning if angle is missing.
Source code in ultralytics/trackers/byte_tracker.py
View on GitHub@property
def xywha(self) -> np.ndarray:
"""Get position in (center x, center y, width, height, angle) format, warning if angle is missing."""
if self.angle is None:
LOGGER.warning("`angle` attr not found, returning `xywh` instead.")
return self.xywh
return np.concatenate([self.xywh, self.angle[None]])
property ultralytics.trackers.byte_tracker.STrack.result
def result(self) -> list[float]
Get the current tracking results in the appropriate bounding box format.
Source code in ultralytics/trackers/byte_tracker.py
View on GitHub@property
def result(self) -> list[float]:
"""Get the current tracking results in the appropriate bounding box format."""
coords = self.xyxy if self.angle is None else self.xywha
return [*coords.tolist(), self.track_id, self.score, self.cls, self.idx]
method ultralytics.trackers.byte_tracker.STrack.__repr__
def __repr__(self) -> str
Return a string representation of the STrack object including start frame, end frame, and track ID.
Source code in ultralytics/trackers/byte_tracker.py
View on GitHubdef __repr__(self) -> str:
"""Return a string representation of the STrack object including start frame, end frame, and track ID."""
return f"OT_{self.track_id}_({self.start_frame}-{self.end_frame})"
method ultralytics.trackers.byte_tracker.STrack.activate
def activate(self, kalman_filter: KalmanFilterXYAH, frame_id: int)
Activate a new tracklet using the provided Kalman filter and initialize its state and covariance.
Args
| Name | Type | Description | Default |
|---|---|---|---|
kalman_filter | KalmanFilterXYAH | required | |
frame_id | int | required |
Source code in ultralytics/trackers/byte_tracker.py
View on GitHubdef activate(self, kalman_filter: KalmanFilterXYAH, frame_id: int):
"""Activate a new tracklet using the provided Kalman filter and initialize its state and covariance."""
self.kalman_filter = kalman_filter
self.track_id = self.next_id()
self.mean, self.covariance = self.kalman_filter.initiate(self.convert_coords(self._tlwh))
self.tracklet_len = 0
self.state = TrackState.Tracked
if frame_id == 1:
self.is_activated = True
self.frame_id = frame_id
self.start_frame = frame_id
method ultralytics.trackers.byte_tracker.STrack.convert_coords
def convert_coords(self, tlwh: np.ndarray) -> np.ndarray
Convert a bounding box's top-left-width-height format to its x-y-aspect-height equivalent.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tlwh | np.ndarray | required |
Source code in ultralytics/trackers/byte_tracker.py
View on GitHubdef convert_coords(self, tlwh: np.ndarray) -> np.ndarray:
"""Convert a bounding box's top-left-width-height format to its x-y-aspect-height equivalent."""
return self.tlwh_to_xyah(tlwh)
method ultralytics.trackers.byte_tracker.STrack.multi_gmc
def multi_gmc(stracks: list[STrack], H: np.ndarray = np.eye(2, 3))
Update state tracks positions and covariances using a homography matrix for multiple tracks.
Args
| Name | Type | Description | Default |
|---|---|---|---|
stracks | list[STrack] | required | |
H | np.ndarray | np.eye(2, 3) |
Source code in ultralytics/trackers/byte_tracker.py
View on GitHub@staticmethod
def multi_gmc(stracks: list[STrack], H: np.ndarray = np.eye(2, 3)):
"""Update state tracks positions and covariances using a homography matrix for multiple tracks."""
if stracks:
multi_mean = np.asarray([st.mean.copy() for st in stracks])
multi_covariance = np.asarray([st.covariance for st in stracks])
R = H[:2, :2]
R8x8 = np.kron(np.eye(4, dtype=float), R)
t = H[:2, 2]
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
mean = R8x8.dot(mean)
mean[:2] += t
cov = R8x8.dot(cov).dot(R8x8.transpose())
stracks[i].mean = mean
stracks[i].covariance = cov
method ultralytics.trackers.byte_tracker.STrack.multi_predict
def multi_predict(stracks: list[STrack])
Perform multi-object predictive tracking using Kalman filter for the provided list of STrack instances.
Args
| Name | Type | Description | Default |
|---|---|---|---|
stracks | list[STrack] | required |
Source code in ultralytics/trackers/byte_tracker.py
View on GitHub@staticmethod
def multi_predict(stracks: list[STrack]):
"""Perform multi-object predictive tracking using Kalman filter for the provided list of STrack instances."""
if len(stracks) <= 0:
return
multi_mean = np.asarray([st.mean.copy() for st in stracks])
multi_covariance = np.asarray([st.covariance for st in stracks])
for i, st in enumerate(stracks):
if st.state != TrackState.Tracked:
multi_mean[i][7] = 0
multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
stracks[i].mean = mean
stracks[i].covariance = cov
method ultralytics.trackers.byte_tracker.STrack.predict
def predict(self)
Predict the next state (mean and covariance) of the object using the Kalman filter.
Source code in ultralytics/trackers/byte_tracker.py
View on GitHubdef predict(self):
"""Predict the next state (mean and covariance) of the object using the Kalman filter."""
mean_state = self.mean.copy()
if self.state != TrackState.Tracked:
mean_state[7] = 0
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
method ultralytics.trackers.byte_tracker.STrack.re_activate
def re_activate(self, new_track: STrack, frame_id: int, new_id: bool = False)
Reactivate a previously lost track using new detection data and update its state and attributes.
Args
| Name | Type | Description | Default |
|---|---|---|---|
new_track | STrack | required | |
frame_id | int | required | |
new_id | bool | False |
Source code in ultralytics/trackers/byte_tracker.py
View on GitHubdef re_activate(self, new_track: STrack, frame_id: int, new_id: bool = False):
"""Reactivate a previously lost track using new detection data and update its state and attributes."""
self.mean, self.covariance = self.kalman_filter.update(
self.mean, self.covariance, self.convert_coords(new_track.tlwh)
)
self.tracklet_len = 0
self.state = TrackState.Tracked
self.is_activated = True
self.frame_id = frame_id
if new_id:
self.track_id = self.next_id()
self.score = new_track.score
self.cls = new_track.cls
self.angle = new_track.angle
self.idx = new_track.idx
method ultralytics.trackers.byte_tracker.STrack.tlwh_to_xyah
def tlwh_to_xyah(tlwh: np.ndarray) -> np.ndarray
Convert bounding box from tlwh format to center-x-center-y-aspect-height (xyah) format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tlwh | np.ndarray | required |
Source code in ultralytics/trackers/byte_tracker.py
View on GitHub@staticmethod
def tlwh_to_xyah(tlwh: np.ndarray) -> np.ndarray:
"""Convert bounding box from tlwh format to center-x-center-y-aspect-height (xyah) format."""
ret = np.asarray(tlwh).copy()
ret[:2] += ret[2:] / 2
ret[2] /= ret[3]
return ret
method ultralytics.trackers.byte_tracker.STrack.update
def update(self, new_track: STrack, frame_id: int)
Update the state of a matched track.
Args
| Name | Type | Description | Default |
|---|---|---|---|
new_track | STrack | The new track containing updated information. | required |
frame_id | int | The ID of the current frame. | required |
Examples
Update the state of a track with new detection information
>>> track = STrack([100, 200, 50, 80, 0.9, 1])
>>> new_track = STrack([105, 205, 55, 85, 0.95, 1])
>>> track.update(new_track, 2)
Source code in ultralytics/trackers/byte_tracker.py
View on GitHubdef update(self, new_track: STrack, frame_id: int):
"""Update the state of a matched track.
Args:
new_track (STrack): The new track containing updated information.
frame_id (int): The ID of the current frame.
Examples:
Update the state of a track with new detection information
>>> track = STrack([100, 200, 50, 80, 0.9, 1])
>>> new_track = STrack([105, 205, 55, 85, 0.95, 1])
>>> track.update(new_track, 2)
"""
self.frame_id = frame_id
self.tracklet_len += 1
new_tlwh = new_track.tlwh
self.mean, self.covariance = self.kalman_filter.update(
self.mean, self.covariance, self.convert_coords(new_tlwh)
)
self.state = TrackState.Tracked
self.is_activated = True
self.score = new_track.score
self.cls = new_track.cls
self.angle = new_track.angle
self.idx = new_track.idx
class ultralytics.trackers.byte_tracker.BYTETracker
BYTETracker(self, args, frame_rate: int = 30)
BYTETracker: A tracking algorithm built on top of YOLOv8 for object detection and tracking.
This class encapsulates the functionality for initializing, updating, and managing the tracks for detected objects in a video sequence. It maintains the state of tracked, lost, and removed tracks over frames, utilizes Kalman filtering for predicting the new object locations, and performs data association.
Args
| Name | Type | Description | Default |
|---|---|---|---|
args | Namespace | Command-line arguments containing tracking parameters. | required |
frame_rate | int | Frame rate of the video sequence. | 30 |
Attributes
| Name | Type | Description |
|---|---|---|
tracked_stracks | list[STrack] | List of successfully activated tracks. |
lost_stracks | list[STrack] | List of lost tracks. |
removed_stracks | list[STrack] | List of removed tracks. |
frame_id | int | The current frame ID. |
args | Namespace | Command-line arguments. |
max_time_lost | int | The maximum frames for a track to be considered as 'lost'. |
kalman_filter | KalmanFilterXYAH | Kalman Filter object. |
Methods
| Name | Description |
|---|---|
get_dists | Calculate the distance between tracks and detections using IoU and optionally fuse scores. |
get_kalmanfilter | Return a Kalman filter object for tracking bounding boxes using KalmanFilterXYAH. |
init_track | Initialize object tracking with given detections, scores, and class labels using the STrack algorithm. |
joint_stracks | Combine two lists of STrack objects into a single list, ensuring no duplicates based on track IDs. |
multi_predict | Predict the next states for multiple tracks using Kalman filter. |
remove_duplicate_stracks | Remove duplicate stracks from two lists based on Intersection over Union (IoU) distance. |
reset | Reset the tracker by clearing all tracked, lost, and removed tracks and reinitializing the Kalman filter. |
reset_id | Reset the ID counter for STrack instances to ensure unique track IDs across tracking sessions. |
sub_stracks | Filter out the stracks present in the second list from the first list. |
update | Update the tracker with new detections and return the current list of tracked objects. |
Examples
Initialize BYTETracker and update with detection results
>>> tracker = BYTETracker(args, frame_rate=30)
>>> results = yolo_model.detect(image)
>>> tracked_objects = tracker.update(results)
Source code in ultralytics/trackers/byte_tracker.py
View on GitHubclass BYTETracker:
"""BYTETracker: A tracking algorithm built on top of YOLOv8 for object detection and tracking.
This class encapsulates the functionality for initializing, updating, and managing the tracks for detected objects
in a video sequence. It maintains the state of tracked, lost, and removed tracks over frames, utilizes Kalman
filtering for predicting the new object locations, and performs data association.
Attributes:
tracked_stracks (list[STrack]): List of successfully activated tracks.
lost_stracks (list[STrack]): List of lost tracks.
removed_stracks (list[STrack]): List of removed tracks.
frame_id (int): The current frame ID.
args (Namespace): Command-line arguments.
max_time_lost (int): The maximum frames for a track to be considered as 'lost'.
kalman_filter (KalmanFilterXYAH): Kalman Filter object.
Methods:
update: Update object tracker with new detections.
get_kalmanfilter: Return a Kalman filter object for tracking bounding boxes.
init_track: Initialize object tracking with detections.
get_dists: Calculate the distance between tracks and detections.
multi_predict: Predict the location of tracks.
reset_id: Reset the ID counter of STrack.
reset: Reset the tracker by clearing all tracks.
joint_stracks: Combine two lists of stracks.
sub_stracks: Filter out the stracks present in the second list from the first list.
remove_duplicate_stracks: Remove duplicate stracks based on IoU.
Examples:
Initialize BYTETracker and update with detection results
>>> tracker = BYTETracker(args, frame_rate=30)
>>> results = yolo_model.detect(image)
>>> tracked_objects = tracker.update(results)
"""
def __init__(self, args, frame_rate: int = 30):
"""Initialize a BYTETracker instance for object tracking.
Args:
args (Namespace): Command-line arguments containing tracking parameters.
frame_rate (int): Frame rate of the video sequence.
"""
self.tracked_stracks = [] # type: list[STrack]
self.lost_stracks = [] # type: list[STrack]
self.removed_stracks = [] # type: list[STrack]
self.frame_id = 0
self.args = args
self.max_time_lost = int(frame_rate / 30.0 * args.track_buffer)
self.kalman_filter = self.get_kalmanfilter()
self.reset_id()
method ultralytics.trackers.byte_tracker.BYTETracker.get_dists
def get_dists(self, tracks: list[STrack], detections: list[STrack]) -> np.ndarray
Calculate the distance between tracks and detections using IoU and optionally fuse scores.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tracks | list[STrack] | required | |
detections | list[STrack] | required |
Source code in ultralytics/trackers/byte_tracker.py
View on GitHubdef get_dists(self, tracks: list[STrack], detections: list[STrack]) -> np.ndarray:
"""Calculate the distance between tracks and detections using IoU and optionally fuse scores."""
dists = matching.iou_distance(tracks, detections)
if self.args.fuse_score:
dists = matching.fuse_score(dists, detections)
return dists
method ultralytics.trackers.byte_tracker.BYTETracker.get_kalmanfilter
def get_kalmanfilter(self) -> KalmanFilterXYAH
Return a Kalman filter object for tracking bounding boxes using KalmanFilterXYAH.
Source code in ultralytics/trackers/byte_tracker.py
View on GitHubdef get_kalmanfilter(self) -> KalmanFilterXYAH:
"""Return a Kalman filter object for tracking bounding boxes using KalmanFilterXYAH."""
return KalmanFilterXYAH()
method ultralytics.trackers.byte_tracker.BYTETracker.init_track
def init_track(self, results, img: np.ndarray | None = None) -> list[STrack]
Initialize object tracking with given detections, scores, and class labels using the STrack algorithm.
Args
| Name | Type | Description | Default |
|---|---|---|---|
results | required | ||
img | np.ndarray | None | None |
Source code in ultralytics/trackers/byte_tracker.py
View on GitHubdef init_track(self, results, img: np.ndarray | None = None) -> list[STrack]:
"""Initialize object tracking with given detections, scores, and class labels using the STrack algorithm."""
if len(results) == 0:
return []
bboxes = results.xywhr if hasattr(results, "xywhr") else results.xywh
bboxes = np.concatenate([bboxes, np.arange(len(bboxes)).reshape(-1, 1)], axis=-1)
return [STrack(xywh, s, c) for (xywh, s, c) in zip(bboxes, results.conf, results.cls)]
method ultralytics.trackers.byte_tracker.BYTETracker.joint_stracks
def joint_stracks(tlista: list[STrack], tlistb: list[STrack]) -> list[STrack]
Combine two lists of STrack objects into a single list, ensuring no duplicates based on track IDs.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tlista | list[STrack] | required | |
tlistb | list[STrack] | required |
Source code in ultralytics/trackers/byte_tracker.py
View on GitHub@staticmethod
def joint_stracks(tlista: list[STrack], tlistb: list[STrack]) -> list[STrack]:
"""Combine two lists of STrack objects into a single list, ensuring no duplicates based on track IDs."""
exists = {}
res = []
for t in tlista:
exists[t.track_id] = 1
res.append(t)
for t in tlistb:
tid = t.track_id
if not exists.get(tid, 0):
exists[tid] = 1
res.append(t)
return res
method ultralytics.trackers.byte_tracker.BYTETracker.multi_predict
def multi_predict(self, tracks: list[STrack])
Predict the next states for multiple tracks using Kalman filter.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tracks | list[STrack] | required |
Source code in ultralytics/trackers/byte_tracker.py
View on GitHubdef multi_predict(self, tracks: list[STrack]):
"""Predict the next states for multiple tracks using Kalman filter."""
STrack.multi_predict(tracks)
method ultralytics.trackers.byte_tracker.BYTETracker.remove_duplicate_stracks
def remove_duplicate_stracks(stracksa: list[STrack], stracksb: list[STrack]) -> tuple[list[STrack], list[STrack]]
Remove duplicate stracks from two lists based on Intersection over Union (IoU) distance.
Args
| Name | Type | Description | Default |
|---|---|---|---|
stracksa | list[STrack] | required | |
stracksb | list[STrack] | required |
Source code in ultralytics/trackers/byte_tracker.py
View on GitHub@staticmethod
def remove_duplicate_stracks(stracksa: list[STrack], stracksb: list[STrack]) -> tuple[list[STrack], list[STrack]]:
"""Remove duplicate stracks from two lists based on Intersection over Union (IoU) distance."""
pdist = matching.iou_distance(stracksa, stracksb)
pairs = np.where(pdist < 0.15)
dupa, dupb = [], []
for p, q in zip(*pairs):
timep = stracksa[p].frame_id - stracksa[p].start_frame
timeq = stracksb[q].frame_id - stracksb[q].start_frame
if timep > timeq:
dupb.append(q)
else:
dupa.append(p)
resa = [t for i, t in enumerate(stracksa) if i not in dupa]
resb = [t for i, t in enumerate(stracksb) if i not in dupb]
return resa, resb
method ultralytics.trackers.byte_tracker.BYTETracker.reset
def reset(self)
Reset the tracker by clearing all tracked, lost, and removed tracks and reinitializing the Kalman filter.
Source code in ultralytics/trackers/byte_tracker.py
View on GitHubdef reset(self):
"""Reset the tracker by clearing all tracked, lost, and removed tracks and reinitializing the Kalman filter."""
self.tracked_stracks = [] # type: list[STrack]
self.lost_stracks = [] # type: list[STrack]
self.removed_stracks = [] # type: list[STrack]
self.frame_id = 0
self.kalman_filter = self.get_kalmanfilter()
self.reset_id()
method ultralytics.trackers.byte_tracker.BYTETracker.reset_id
def reset_id()
Reset the ID counter for STrack instances to ensure unique track IDs across tracking sessions.
Source code in ultralytics/trackers/byte_tracker.py
View on GitHub@staticmethod
def reset_id():
"""Reset the ID counter for STrack instances to ensure unique track IDs across tracking sessions."""
STrack.reset_id()
method ultralytics.trackers.byte_tracker.BYTETracker.sub_stracks
def sub_stracks(tlista: list[STrack], tlistb: list[STrack]) -> list[STrack]
Filter out the stracks present in the second list from the first list.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tlista | list[STrack] | required | |
tlistb | list[STrack] | required |
Source code in ultralytics/trackers/byte_tracker.py
View on GitHub@staticmethod
def sub_stracks(tlista: list[STrack], tlistb: list[STrack]) -> list[STrack]:
"""Filter out the stracks present in the second list from the first list."""
track_ids_b = {t.track_id for t in tlistb}
return [t for t in tlista if t.track_id not in track_ids_b]
method ultralytics.trackers.byte_tracker.BYTETracker.update
def update(self, results, img: np.ndarray | None = None, feats: np.ndarray | None = None) -> np.ndarray
Update the tracker with new detections and return the current list of tracked objects.
Args
| Name | Type | Description | Default |
|---|---|---|---|
results | required | ||
img | np.ndarray | None | None | |
feats | np.ndarray | None | None |
Source code in ultralytics/trackers/byte_tracker.py
View on GitHubdef update(self, results, img: np.ndarray | None = None, feats: np.ndarray | None = None) -> np.ndarray:
"""Update the tracker with new detections and return the current list of tracked objects."""
self.frame_id += 1
activated_stracks = []
refind_stracks = []
lost_stracks = []
removed_stracks = []
scores = results.conf
remain_inds = scores >= self.args.track_high_thresh
inds_low = scores > self.args.track_low_thresh
inds_high = scores < self.args.track_high_thresh
inds_second = inds_low & inds_high
results_second = results[inds_second]
results = results[remain_inds]
feats_keep = feats_second = img
if feats is not None and len(feats):
feats_keep = feats[remain_inds]
feats_second = feats[inds_second]
detections = self.init_track(results, feats_keep)
# Add newly detected tracklets to tracked_stracks
unconfirmed = []
tracked_stracks = [] # type: list[STrack]
for track in self.tracked_stracks:
if not track.is_activated:
unconfirmed.append(track)
else:
tracked_stracks.append(track)
# Step 2: First association, with high score detection boxes
strack_pool = self.joint_stracks(tracked_stracks, self.lost_stracks)
# Predict the current location with KF
self.multi_predict(strack_pool)
if hasattr(self, "gmc") and img is not None:
# use try-except here to bypass errors from gmc module
try:
warp = self.gmc.apply(img, results.xyxy)
except Exception:
warp = np.eye(2, 3)
STrack.multi_gmc(strack_pool, warp)
STrack.multi_gmc(unconfirmed, warp)
dists = self.get_dists(strack_pool, detections)
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.args.match_thresh)
for itracked, idet in matches:
track = strack_pool[itracked]
det = detections[idet]
if track.state == TrackState.Tracked:
track.update(det, self.frame_id)
activated_stracks.append(track)
else:
track.re_activate(det, self.frame_id, new_id=False)
refind_stracks.append(track)
# Step 3: Second association, with low score detection boxes association the untrack to the low score detections
detections_second = self.init_track(results_second, feats_second)
r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
# TODO
dists = matching.iou_distance(r_tracked_stracks, detections_second)
matches, u_track, _u_detection_second = matching.linear_assignment(dists, thresh=0.5)
for itracked, idet in matches:
track = r_tracked_stracks[itracked]
det = detections_second[idet]
if track.state == TrackState.Tracked:
track.update(det, self.frame_id)
activated_stracks.append(track)
else:
track.re_activate(det, self.frame_id, new_id=False)
refind_stracks.append(track)
for it in u_track:
track = r_tracked_stracks[it]
if track.state != TrackState.Lost:
track.mark_lost()
lost_stracks.append(track)
# Deal with unconfirmed tracks, usually tracks with only one beginning frame
detections = [detections[i] for i in u_detection]
dists = self.get_dists(unconfirmed, detections)
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
for itracked, idet in matches:
unconfirmed[itracked].update(detections[idet], self.frame_id)
activated_stracks.append(unconfirmed[itracked])
for it in u_unconfirmed:
track = unconfirmed[it]
track.mark_removed()
removed_stracks.append(track)
# Step 4: Init new stracks
for inew in u_detection:
track = detections[inew]
if track.score < self.args.new_track_thresh:
continue
track.activate(self.kalman_filter, self.frame_id)
activated_stracks.append(track)
# Step 5: Update state
for track in self.lost_stracks:
if self.frame_id - track.end_frame > self.max_time_lost:
track.mark_removed()
removed_stracks.append(track)
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
self.tracked_stracks = self.joint_stracks(self.tracked_stracks, activated_stracks)
self.tracked_stracks = self.joint_stracks(self.tracked_stracks, refind_stracks)
self.lost_stracks = self.sub_stracks(self.lost_stracks, self.tracked_stracks)
self.lost_stracks.extend(lost_stracks)
self.lost_stracks = self.sub_stracks(self.lost_stracks, self.removed_stracks)
self.tracked_stracks, self.lost_stracks = self.remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
self.removed_stracks.extend(removed_stracks)
if len(self.removed_stracks) > 1000:
self.removed_stracks = self.removed_stracks[-999:] # clip remove stracks to 1000 maximum
return np.asarray([x.result for x in self.tracked_stracks if x.is_activated], dtype=np.float32)