İçeriğe geç

Hızlı Başlangıç Kılavuzu: Raspberry Pi ile Ultralytics YOLO11

This comprehensive guide provides a detailed walkthrough for deploying Ultralytics YOLO11 on Raspberry Pi devices. Additionally, it showcases performance benchmarks to demonstrate the capabilities of YOLO11 on these small and powerful devices.



İzle: Raspberry Pi 5 güncellemeleri ve iyileştirmeleri.

Not

Bu kılavuz, en son Raspberry Pi OS Bookworm (Debian 12) çalıştıran Raspberry Pi 4 ve Raspberry Pi 5 ile test edilmiştir. Bu kılavuzun Raspberry Pi 3 gibi daha eski Raspberry Pi cihazları için kullanılmasının, aynı Raspberry Pi OS Bookworm yüklü olduğu sürece çalışması beklenir.

Raspberry Pi nedir?

Raspberry Pi küçük, uygun fiyatlı, tek kartlı bir bilgisayardır. Hobi amaçlı ev otomasyonundan endüstriyel kullanımlara kadar çok çeşitli proje ve uygulamalar için popüler hale gelmiştir. Raspberry Pi kartları çeşitli işletim sistemlerini çalıştırabilir ve sensörler, aktüatörler ve diğer donanım bileşenleri ile kolay entegrasyon sağlayan GPIO (Genel Amaçlı Giriş/Çıkış) pinleri sunar. Farklı özelliklere sahip farklı modellerde gelirler, ancak hepsi düşük maliyetli, kompakt ve çok yönlü olma konusunda aynı temel tasarım felsefesini paylaşırlar.

Raspberry Pi Serisi Karşılaştırması

Raspberry Pi 3Raspberry Pi 4Raspberry Pi 5
CPUBroadcom BCM2837, Cortex-A53 64Bit SoCBroadcom BCM2711, Cortex-A72 64Bit SoCBroadcom BCM2712, Cortex-A76 64Bit SoC
CPU Maksimum Frekans1.4GHz1.8GHz2.4GHz
GPUVideocore IVVideocore VIVideoCore VII
GPU Maksimum Frekans400Mhz500Mhz800Mhz
Hafıza1GB LPDDR2 SDRAM1GB, 2GB, 4GB, 8GB LPDDR4-3200 SDRAM4GB, 8GB LPDDR4X-4267 SDRAM
PCIeN/AN/A1xPCIe 2.0 Arayüz
Maksimum Güç Çekimi2,5A@5V3A@5V5A@5V (PD etkin)

Raspberry Pi OS nedir?

Raspberry Pi OS (eski adıyla Raspbian), Raspberry Pi Vakfı tarafından dağıtılan Raspberry Pi kompakt tek kartlı bilgisayar ailesi için Debian GNU/Linux dağıtımını temel alan Unix benzeri bir işletim sistemidir. Raspberry Pi OS, ARM CPU'lu Raspberry Pi için son derece optimize edilmiştir ve Openbox istifleme pencere yöneticisi ile değiştirilmiş bir LXDE masaüstü ortamı kullanır. Raspberry Pi OS, Raspberry Pi'de mümkün olduğunca çok sayıda Debian paketinin kararlılığını ve performansını artırmaya vurgu yaparak aktif olarak geliştirilmektedir.

Raspberry Pi OS'yi Raspberry Pi'ye Flashlama

Raspberry Pi'yi elinize aldıktan sonra yapmanız gereken ilk şey, Raspberry Pi OS ile bir micro-SD kartı flaşlamak, cihaza takmak ve işletim sistemini başlatmaktır. Cihazınızı ilk kullanıma hazırlamak için Raspberry Pi'nin ayrıntılı Başlangıç Dokümantasyonunu takip edin.

Kurulum Ultralytics

There are two ways of setting up Ultralytics package on Raspberry Pi to build your next Computer Vision project. You can use either of them.

Docker ile başlayın

Raspberry Pi üzerinde Ultralytics YOLO11 kullanmaya başlamanın en hızlı yolu Raspberry Pi için önceden oluşturulmuş docker imajı ile çalıştırmaktır.

Docker konteynerini çekmek ve Raspberry Pi üzerinde çalıştırmak için aşağıdaki komutu yürütün. Bu, Python3 ortamında Debian 12 (Bookworm) içeren arm64v8/debian docker görüntüsüne dayanmaktadır.

t=ultralytics/ultralytics:latest-arm64 && sudo docker pull $t && sudo docker run -it --ipc=host $t

Bu işlem tamamlandıktan sonra Raspberry Pi üzerinde NCNN adresini kullanın bölümüne geçin.

Docker olmadan başlayın

Ultralytics Paketini Yükleyin

Here we will install Ultralytics package on the Raspberry Pi with optional dependencies so that we can export the PyTorch models to other different formats.

  1. Paket listesini güncelleyin, pip yükleyin ve en son sürüme yükseltin

    sudo apt update
    sudo apt install python3-pip -y
    pip install -U pip
    
  2. Kurulum ultralytics isteğe bağlı bağımlılıklarla pip paketi

    pip install ultralytics[export]
    
  3. Cihazı yeniden başlatın

    sudo reboot
    

Raspberry Pi üzerinde NCNN kullanın

Ultralytics tarafından desteklenen tüm model dışa aktarma formatlarından , NCNN Raspberry Pi cihazlarıyla çalışırken en iyi çıkarım performansını sunar çünkü NCNN mobil / gömülü platformlar (ARM mimarisi gibi) için son derece optimize edilmiştir. Bu nedenle bizim tavsiyemiz Raspberry Pi ile NCNN adresini kullanmanızdır.

Modeli NCNN 'a Dönüştürün ve Çıkarım Çalıştırın

PyTorch biçimindeki YOLO11n modeli, dışa aktarılan modelle çıkarım yapmak için NCNN biçimine dönüştürülür.

Örnek

from ultralytics import YOLO

# Load a YOLO11n PyTorch model
model = YOLO("yolo11n.pt")

# Export the model to NCNN format
model.export(format="ncnn")  # creates 'yolo11n_ncnn_model'

# Load the exported NCNN model
ncnn_model = YOLO("yolo11n_ncnn_model")

# Run inference
results = ncnn_model("https://ultralytics.com/images/bus.jpg")
# Export a YOLO11n PyTorch model to NCNN format
yolo export model=yolo11n.pt format=ncnn  # creates 'yolo11n_ncnn_model'

# Run inference with the exported model
yolo predict model='yolo11n_ncnn_model' source='https://ultralytics.com/images/bus.jpg'

İpucu

Desteklenen dışa aktarma seçenekleri hakkında daha fazla bilgi için dağıtım seçenekleriyle ilgiliUltralytics belge sayfasını ziyaret edin.

Raspberry Pi 5 YOLO11 Benchmarkları

YOLO11 benchmarks were run by the Ultralytics team on nine different model formats measuring speed and accuracy: PyTorch, TorchScript, ONNX, OpenVINO, TF SavedModel, TF GraphDef, TF Lite, PaddlePaddle, NCNN. Benchmarks were run on a Raspberry Pi 5 at FP32 precision with default input image size of 640.

Karşılaştırma Tablosu

Yalnızca YOLO11n ve YOLO11s modelleri için kıyaslamalara yer verdik çünkü diğer modellerin boyutları Raspberry Pis üzerinde çalıştırmak için çok büyük ve iyi bir performans sunmuyor.

YOLO11 benchmarks on RPi 5

Detaylı Karşılaştırma Tablosu

Aşağıdaki tablo, Raspberry Pi 5 üzerinde çalışan dokuz farklı formatta (PyTorch, TorchScript, ONNX, OpenVINO, TF SavedModel , TF GraphDef , TF Lite, PaddlePaddle, NCNN) iki farklı model (YOLO11n, YOLO11s) için kıyaslama sonuçlarını temsil eder ve bize her kombinasyon için durum, boyut, mAP50-95(B) metriği ve çıkarım süresini verir.

Performans

BiçimDurumDisk üzerindeki boyut (MB)mAP50-95(B)Çıkarım süresi (ms/im)
PyTorch5.40.61524.828
TorchScript10.50.6082666.874
ONNX10.20.6082181.818
OpenVINO10.40.6082530.224
TF SavedModel25.80.6082405.964
TF GraphDef10.30.6082473.558
TF Lite10.30.6082324.158
PaddlePaddle20.40.6082644.312
NCNN10.20.610693.938
BiçimDurumDisk üzerindeki boyut (MB)mAP50-95(B)Çıkarım süresi (ms/im)
PyTorch18.40.75261226.426
TorchScript36.50.74161507.95
ONNX36.30.7416415.24
OpenVINO36.40.74161167.102
TF SavedModel91.10.7416776.14
TF GraphDef36.40.74161014.396
TF Lite36.40.7416845.934
PaddlePaddle72.50.74161567.824
NCNN36.20.7419197.358

Sonuçlarımızı Yeniden Üretin

Yukarıdaki Ultralytics kıyaslamalarını tüm dışa aktarma biçimlerinde yeniden oluşturmak için bu kodu çalıştırın:

Örnek

from ultralytics import YOLO

# Load a YOLO11n PyTorch model
model = YOLO("yolo11n.pt")

# Benchmark YOLO11n speed and accuracy on the COCO8 dataset for all all export formats
results = model.benchmarks(data="coco8.yaml", imgsz=640)
# Benchmark YOLO11n speed and accuracy on the COCO8 dataset for all all export formats
yolo benchmark model=yolo11n.pt data=coco8.yaml imgsz=640

Kıyaslama sonuçlarının, bir sistemin tam donanım ve yazılım yapılandırmasının yanı sıra kıyaslamaların çalıştırıldığı sırada sistemin mevcut iş yüküne bağlı olarak değişebileceğini unutmayın. En güvenilir sonuçlar için çok sayıda görüntü içeren bir veri kümesi kullanın, örn. data='coco8.yaml' (4 val images), ordata='coco.yaml'` (5000 val görüntü).

Raspberry Pi Kamera Kullanın

When using Raspberry Pi for Computer Vision projects, it can be essentially to grab real-time video feeds to perform inference. The onboard MIPI CSI connector on the Raspberry Pi allows you to connect official Raspberry PI camera modules. In this guide, we have used a Raspberry Pi Camera Module 3 to grab the video feeds and perform inference using YOLO11 models.

Not

Raspberry Pi 5, Raspberry Pi 4'ten daha küçük CSI konektörleri kullanır (15-pin vs 22-pin), bu nedenle bir Raspberry Pi Kameraya bağlanmak için 15-pin - 22pin adaptör kablosuna ihtiyacınız olacaktır.

Kamerayı Test Edin

Kamerayı Raspberry Pi'ye bağladıktan sonra aşağıdaki komutu çalıştırın. Yaklaşık 5 saniye boyunca kameradan canlı bir video akışı görmelisiniz.

rpicam-hello

İpucu

Hakkında daha fazla bilgi edinin rpicam-hello Resmi Raspberry Pi belgelerinde kullanım

Kamera ile Çıkarım

YOLO11 modellerini çıkarmak için Raspberry Pi Kamerayı kullanmanın 2 yöntemi vardır.

Kullanım

Kullanabiliriz picamera2kameraya erişmek ve YOLO11 modellerini çıkarmak için Raspberry Pi OS ile önceden yüklenmiş olarak gelir.

Örnek

import cv2
from picamera2 import Picamera2

from ultralytics import YOLO

# Initialize the Picamera2
picam2 = Picamera2()
picam2.preview_configuration.main.size = (1280, 720)
picam2.preview_configuration.main.format = "RGB888"
picam2.preview_configuration.align()
picam2.configure("preview")
picam2.start()

# Load the YOLO11 model
model = YOLO("yolo11n.pt")

while True:
    # Capture frame-by-frame
    frame = picam2.capture_array()

    # Run YOLO11 inference on the frame
    results = model(frame)

    # Visualize the results on the frame
    annotated_frame = results[0].plot()

    # Display the resulting frame
    cv2.imshow("Camera", annotated_frame)

    # Break the loop if 'q' is pressed
    if cv2.waitKey(1) == ord("q"):
        break

# Release resources and close windows
cv2.destroyAllWindows()

ile bir TCP akışı başlatmamız gerekiyor rpicam-vid Böylece daha sonra çıkarım yaparken bu akış URL'sini bir girdi olarak kullanabiliriz. TCP akışını başlatmak için aşağıdaki komutu yürütün.

rpicam-vid -n -t 0 --inline --listen -o tcp://127.0.0.1:8888

Hakkında daha fazla bilgi edinin rpicam-vid Resmi Raspberry Pi belgelerinde kullanım

Örnek

from ultralytics import YOLO

# Load a YOLO11n PyTorch model
model = YOLO("yolo11n.pt")

# Run inference
results = model("tcp://127.0.0.1:8888")
yolo predict model=yolo11n.pt source="tcp://127.0.0.1:8888"

İpucu

Görüntü/video giriş türünü değiştirmek istiyorsanız Çıkarım Kaynakları hakkındaki belgemize bakın

Raspberry Pi kullanırken en iyi uygulamalar

YOLO11 çalıştıran Raspberry Pis üzerinde maksimum performans sağlamak için takip edilmesi gereken birkaç en iyi uygulama vardır.

  1. Bir SSD kullanın

    Raspberry Pi'yi 7x24 sürekli kullanım için kullanırken, bir SD kart sürekli yazmaya dayanamayacağı ve kırılabileceği için sistem için bir SSD kullanılması önerilir. Raspberry Pi 5 üzerindeki yerleşik PCIe konektörü ile artık Raspberry Pi 5 için NVMe Base gibi bir adaptör kullanarak SSD'leri bağlayabilirsiniz.

  2. GUI olmadan Flash

    Raspberry Pi OS'yi yanıp sönerken, Masaüstü ortamını (Raspberry Pi OS Lite) yüklememeyi seçebilirsiniz ve bu, cihazda biraz RAM tasarrufu sağlayarak bilgisayar görüşü işleme için daha fazla alan bırakabilir.

Sonraki Adımlar

Congratulations on successfully setting up YOLO on your Raspberry Pi! For further learning and support, visit Ultralytics YOLO11 Docs and Kashmir World Foundation.

Teşekkür ve Atıflar

Bu kılavuz ilk olarak Daan Eeltink tarafından, nesli tükenmekte olan türlerin korunması için YOLO adresinin kullanılmasına adanmış bir kuruluş olan Kashmir World Foundation için hazırlanmıştır. Nesne algılama teknolojileri alanındaki öncü çalışmalarını ve eğitime odaklanmalarını takdirle karşılıyoruz.

Kashmir World Foundation'ın faaliyetleri hakkında daha fazla bilgi için web sitesini ziyaret edebilirsiniz.

SSS

Docker kullanmadan Raspberry Pi üzerinde Ultralytics YOLO11'i nasıl kurabilirim?

Docker olmadan bir Raspberry Pi üzerinde Ultralytics YOLO11 kurmak için aşağıdaki adımları izleyin:

  1. Paket listesini güncelleyin ve yükleyin pip:
    sudo apt update
    sudo apt install python3-pip -y
    pip install -U pip
    
  2. Ultralytics paketini isteğe bağlı bağımlılıklarla birlikte yükleyin:
    pip install ultralytics[export]
    
  3. Değişiklikleri uygulamak için cihazı yeniden başlatın:
    sudo reboot
    

Ayrıntılı talimatlar için Docker olmadan başlat bölümüne bakın.

Yapay zeka görevleri için Raspberry Pi'de neden Ultralytics YOLO11'in NCNN formatını kullanmalıyım?

Ultralytics YOLO11's NCNN format is highly optimized for mobile and embedded platforms, making it ideal for running AI tasks on Raspberry Pi devices. NCNN maximizes inference performance by leveraging ARM architecture, providing faster and more efficient processing compared to other formats. For more details on supported export options, visit the Ultralytics documentation page on deployment options.

Raspberry Pi'de kullanmak için bir YOLO11 modelini NCNN formatına nasıl dönüştürebilirim?

Bir PyTorch YOLO11 modelini Python veya CLI komutlarını kullanarak NCNN formatına dönüştürebilirsiniz:

Örnek

from ultralytics import YOLO

# Load a YOLO11n PyTorch model
model = YOLO("yolo11n.pt")

# Export the model to NCNN format
model.export(format="ncnn")  # creates 'yolo11n_ncnn_model'

# Load the exported NCNN model
ncnn_model = YOLO("yolo11n_ncnn_model")

# Run inference
results = ncnn_model("https://ultralytics.com/images/bus.jpg")
# Export a YOLO11n PyTorch model to NCNN format
yolo export model=yolo11n.pt format=ncnn  # creates 'yolo11n_ncnn_model'

# Run inference with the exported model
yolo predict model='yolo11n_ncnn_model' source='https://ultralytics.com/images/bus.jpg'

Daha fazla ayrıntı için Raspberry Pi'de NCNN adresini kullanma bölümüne bakın.

Raspberry Pi 4 ve Raspberry Pi 5 arasında YOLO11'i çalıştırmakla ilgili donanım farklılıkları nelerdir?

Temel farklılıklar şunları içerir:

  • CPU: Raspberry Pi 4, Broadcom BCM2711, Cortex-A72 64-bit SoC kullanırken, Raspberry Pi 5 Broadcom BCM2712, Cortex-A76 64-bit SoC kullanır.
  • Maksimum CPU Frekans: Raspberry Pi 4 maksimum 1.8GHz frekansa sahipken, Raspberry Pi 5 2.4GHz'e ulaşır.
  • Bellek: Raspberry Pi 4, 8GB'a kadar LPDDR4-3200 SDRAM sunarken Raspberry Pi 5, 4GB ve 8GB varyantları bulunan LPDDR4X-4267 SDRAM'a sahiptir.

These enhancements contribute to better performance benchmarks for YOLO11 models on Raspberry Pi 5 compared to Raspberry Pi 4. Refer to the Raspberry Pi Series Comparison table for more details.

Raspberry Pi Kamera Modülünü Ultralytics YOLO11 ile çalışacak şekilde nasıl kurabilirim?

YOLO11 çıkarımı için bir Raspberry Pi Kamera kurmanın iki yöntemi vardır:

  1. Kullanma picamera2:

    import cv2
    from picamera2 import Picamera2
    
    from ultralytics import YOLO
    
    picam2 = Picamera2()
    picam2.preview_configuration.main.size = (1280, 720)
    picam2.preview_configuration.main.format = "RGB888"
    picam2.preview_configuration.align()
    picam2.configure("preview")
    picam2.start()
    
    model = YOLO("yolo11n.pt")
    
    while True:
        frame = picam2.capture_array()
        results = model(frame)
        annotated_frame = results[0].plot()
        cv2.imshow("Camera", annotated_frame)
    
        if cv2.waitKey(1) == ord("q"):
            break
    
    cv2.destroyAllWindows()
    
  2. TCP Akışı Kullanma:

    rpicam-vid -n -t 0 --inline --listen -o tcp://127.0.0.1:8888
    
    from ultralytics import YOLO
    
    model = YOLO("yolo11n.pt")
    results = model("tcp://127.0.0.1:8888")
    

Ayrıntılı kurulum talimatları için Kamera ile Çıkarım bölümünü ziyaret edin.

📅 1 yıl önce oluşturuldu ✏️ 1 ay önce güncellendi

Yorumlar