YOLOv5'te Model Budama ve Seyreklik
📚 Bu kılavuz, performansı korurken daha verimli ağlar oluşturmak için YOLOv5 🚀 modellerine budamanın nasıl uygulanacağını açıklamaktadır.
Model Budama Nedir?
Model budama, daha az önemli parametreleri (ağırlıklar ve bağlantılar) kaldırarak sinir ağlarının boyutunu ve karmaşıklığını azaltmak için kullanılan bir tekniktir. Bu işlem, çeşitli faydaları olan daha verimli bir model oluşturur:
- Kısıtlı kaynaklara sahip cihazlarda daha kolay dağıtım için azaltılmış model boyutu
- Doğruluk üzerinde minimum etki ile daha yüksek çıkarım hızları
- Daha düşük bellek kullanımı ve enerji tüketimi
- Gerçek zamanlı uygulamalar için geliştirilmiş genel verimlilik
Budama, modelin performansına minimum düzeyde katkıda bulunan parametreleri belirleyip kaldırarak çalışır ve benzer doğrulukta daha hafif bir model elde edilmesini sağlar.
Başlamadan Önce
Repoyu klonlayın ve requirements.txt dosyasını bir Python>=3.8.0 ortamı dahil olmak üzere PyTorch>=1.8. Modeller ve veri setleri en son YOLOv5 sürümünden otomatik olarak indirilir.
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
Temel Performansı Test Edin
Budamadan önce, karşılaştırma yapmak için bir temel performans belirleyin. Bu komut YOLOv5x'i COCO val2017 üzerinde 640 piksel görüntü boyutunda test eder. yolov5x.pt
mevcut en büyük ve en doğru modeldir. Diğer seçenekler yolov5s.pt
, yolov5m.pt
ve yolov5l.pt
veya özel bir veri kümesinin eğitiminden elde ettiğiniz kendi kontrol noktanız ./weights/best.pt
. Mevcut tüm modellerle ilgili ayrıntılar için README masa.
Çıktı:
val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:12<00:00, 2.16it/s]
all 5000 36335 0.732 0.628 0.683 0.496
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640) # <--- base speed
Evaluating pycocotools mAP... saving runs/val/exp2/yolov5x_predictions.json...
...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.507 # <--- base mAP
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.689
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.552
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.559
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.652
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.381
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.630
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.682
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.731
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.829
Results saved to runs/val/exp
YOLOv5x'e Budama Uygulayın (%30 Seyreklik)
kullanarak modele budama uygulayabiliriz. torch_utils.prune()
komutunu veriyoruz. Budanmış bir modeli test etmek için val.py
YOLOv5x'i 0,3 seyrekliğe budamak için (ağırlıkların %30'u sıfıra ayarlanmıştır):
30 budanmış çıktı:
val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
Pruning model... 0.3 global sparsity
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:11<00:00, 2.19it/s]
all 5000 36335 0.724 0.614 0.671 0.478
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640) # <--- prune speed
Evaluating pycocotools mAP... saving runs/val/exp3/yolov5x_predictions.json...
...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.489 # <--- prune mAP
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.677
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.537
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.334
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.542
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.635
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.370
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.612
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.664
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.496
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.722
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.803
Results saved to runs/val/exp3
Sonuç Analizi
Sonuçlardan şunu gözlemleyebiliriz:
- 30 seyreklik elde edildi: Modelin ağırlık parametrelerinin %30'u
nn.Conv2d
katmanlar artık sıfır - Çıkarım süresi değişmeden kalır: Budamaya rağmen, işlem hızı temelde aynıdır
- Minimum performans etkisi: mAP 0,507'den 0,489'a hafifçe düştü (sadece %3,6 azalma)
- Model boyutunun küçültülmesi: Budanmış model depolama için daha az bellek gerektirir
Bu, budamanın performans üzerinde yalnızca küçük bir etkiyle model karmaşıklığını önemli ölçüde azaltabileceğini ve kaynak kısıtlı ortamlarda dağıtım için etkili bir optimizasyon tekniği olduğunu göstermektedir.
Budanmış Modellere İnce Ayar Yapma
En iyi sonuçları elde etmek için, budanmış modellere budama işleminden sonra ince ayar yapılmalıdır. Bu şu şekilde yapılabilir:
- İstenen seyreklik seviyesinde budama uygulamak
- Budanmış modeli daha düşük bir öğrenme oranıyla birkaç epok için eğitmek
- İnce ayarlı budanmış modelin temel modele karşı değerlendirilmesi
Bu süreç, kalan parametrelerin çıkarılan bağlantıları telafi etmek için uyum sağlamasına yardımcı olur ve genellikle orijinal doğruluğun çoğunu veya tamamını geri kazandırır.
Desteklenen Ortamlar
Ultralytics gibi temel bağımlılıklarla önceden yüklenmiş bir dizi kullanıma hazır ortam sağlar. CUDA, CUDNN, Pythonve PyTorchProjelerinizi başlatmak için.
- Ücretsiz GPU Not Defterleri:
- Google Bulut: GCP Hızlı Başlangıç Kılavuzu
- Amazon: AWS Hızlı Başlangıç Kılavuzu
- Azure: AzureML Hızlı Başlangıç Kılavuzu
- Docker: Docker Hızlı Başlangıç Kılavuzu
Proje Durumu
Bu rozet, tüm YOLOv5 GitHub Actions Sürekli Entegrasyon (CI) testlerinin başarıyla geçtiğini gösterir. Bu CI testleri, YOLOv5 'un işlevselliğini ve performansını çeşitli temel yönlerden titizlikle kontrol eder: eğitim, doğrulama, çıkarım, dışa aktarma ve kıyaslamalar. Her 24 saatte bir ve her yeni işlemde yapılan testlerle macOS, Windows ve Ubuntu üzerinde tutarlı ve güvenilir çalışma sağlarlar.