使用安全警报系统项目Ultralytics YOLO11
利用Ultralytics YOLO11 的安全警报系统项目集成了先进的计算机视觉功能,以加强安全措施。YOLO11该项目由Ultralytics 开发,提供实时物体检测功能,使系统能够识别潜在的安全威胁并迅速做出反应。该项目具有以下几个优点:
- 实时检测: YOLO11 的高效性使安全警报系统能够实时检测和响应安全事件,最大限度地缩短响应时间。
- 准确性: YOLO11 以其物体检测的准确性著称,可减少误报,提高安全警报系统的可靠性。
- 集成能力:该项目可与现有的安全基础设施无缝集成,提供一个升级的智能监控层。
观看: 安全警报系统项目Ultralytics YOLO11 物体检测
代码
备注
必须生成应用程序密码
- Navigate to App Password Generator, designate an app name such as "security project," and obtain a 16-digit password. Copy this password and paste it into the designated
password
field in the code below.
Security Alarm System using YOLO11 Example
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
# Video writer
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter("security_alarm_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
from_email = "abc@gmail.com" # The sender email address
password = "---- ---- ---- ----" # 16-digits password generated via: https://myaccount.google.com/apppasswords
to_email = "xyz@gmail.com" # The receiver email address
# Init SecurityAlarm
security = solutions.SecurityAlarm(
show=True, # Display the output
model="yolo11n.pt", # i.e. YOLO11s.pt
records=1, # Total detections count to send an email about security
)
security.authenticate(from_email, password, to_email) # Authenticate the email server
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = security.monitor(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
就是这样!执行代码后,如果检测到任何对象,您的电子邮件就会收到一条通知。通知会立即发送,不会重复发送。不过,您也可以根据自己的项目要求定制代码。
收到的电子邮件样本
论据 SecurityAlarm
下面的表格显示了 SecurityAlarm
争论:
名称 | 类型 | 默认值 | 说明 |
---|---|---|---|
model |
str |
None |
Ultralytics YOLO 模型文件的路径 |
line_width |
int |
2 |
边界框的线条粗细 |
show |
bool |
False |
用于控制是否显示视频流的标志。 |
records |
int |
5 |
Total detections count to send an email about security. |
论据 model.track
论据 | 类型 | 默认值 | 说明 |
---|---|---|---|
source |
str |
None |
指定图片或视频的源目录。支持文件路径和 URL。 |
persist |
bool |
False |
可在帧间持续跟踪对象,在视频序列中保持 ID。 |
tracker |
str |
botsort.yaml |
指定要使用的跟踪算法,例如 bytetrack.yaml 或 botsort.yaml . |
conf |
float |
0.3 |
设置检测的置信度阈值;数值越低,跟踪的物体越多,但可能会出现误报。 |
iou |
float |
0.5 |
设置交叉重叠 (IoU) 阈值,用于过滤重叠检测。 |
classes |
list |
None |
按类别索引筛选结果。例如 classes=[0, 2, 3] 只跟踪指定的类别。 |
verbose |
bool |
True |
控制跟踪结果的显示,提供被跟踪物体的可视化输出。 |
常见问题
Ultralytics YOLO11 如何提高安全警报系统的准确性?
Ultralytics YOLO11 通过提供高精确度的实时目标检测,增强了安防报警系统的功能。其先进的算法大大减少了误报,确保系统只对真正的威胁做出反应。这种更高的可靠性可与现有安防基础设施无缝集成,提升整体监控质量。
能否将Ultralytics YOLO11 与现有安全基础设施集成?
是的,Ultralytics YOLO11 可以与您现有的安全基础设施无缝集成。该系统支持多种模式,可灵活定制,让您可以利用先进的目标检测功能增强现有设置。有关在项目中集成YOLO11 的详细说明,请访问集成部分。
运行Ultralytics YOLO11 有哪些存储要求?
在标准设置上运行Ultralytics YOLO11 通常需要约 5GB 的可用磁盘空间。这包括用于存储YOLO11 模型和任何附加依赖项的空间。对于基于云的解决方案,Ultralytics HUB 可提供高效的项目管理和数据集处理,从而优化存储需求。了解有关专业计划的更多信息,以获得包括扩展存储在内的增强功能。
Ultralytics YOLO11 与 Faster R-CNN 或 SSD 等其他物体检测模型有何不同?
Ultralytics YOLO11 与 Faster R-CNN 或 SSD 等型号相比,它具有实时检测能力和更高的精度。其独特的架构使其能够更快地处理图像,同时又不影响精度,非常适合安防报警系统等时间敏感型应用。有关物体检测模型的全面比较,请参阅我们的指南。
如何使用Ultralytics YOLO11 减少安全系统中的误报频率?
为减少误报,请确保您的Ultralytics YOLO11 模型经过了充分的训练,数据集种类繁多且标注齐全。微调超参数并定期用新数据更新模型可以显著提高检测准确率。详细的超参数调整技术可参阅我们的超参数调整指南。