TFLite, ONNX, CoreML, TensorRT Export
📚 Dieser Leitfaden erklärt, wie man ein trainiertes YOLOv5 🚀 Modell von PyTorch in verschiedene Bereitstellungsformate wie ONNX, TensorRT, CoreML und mehr exportiert.
Bevor Sie beginnen
Repository klonen und requirements.txt in einer Python>=3.8.0-Umgebung installieren, einschließlich PyTorch>=1.8. Modelle und Datensätze werden automatisch von der neuesten YOLOv5 Version heruntergeladen.
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
Für TensorRT Export-Beispiel (erfordert GPU), siehe unser Colab Notebook Anhang hinzu.
Unterstützte Exportformate
YOLOv5-Inferenz wird offiziell in 12 Formaten unterstützt:
Performance-Tipps
- Export nach ONNX oder OpenVINO für bis zu 3x CPU-Beschleunigung. Siehe CPU-Benchmarks.
- Export nach TensorRT für bis zu 5x GPU-Beschleunigung. Siehe GPU-Benchmarks.
Format | export.py --include |
Modell |
---|---|---|
PyTorch | - | yolov5s.pt |
TorchScript | torchscript |
yolov5s.torchscript |
ONNX | onnx |
yolov5s.onnx |
OpenVINO | openvino |
yolov5s_openvino_model/ |
TensorRT | engine |
yolov5s.engine |
CoreML | coreml |
yolov5s.mlmodel |
TensorFlow SavedModel | saved_model |
yolov5s_saved_model/ |
TensorFlow GraphDef | pb |
yolov5s.pb |
TensorFlow Lite | tflite |
yolov5s.tflite |
TensorFlow Edge TPU | edgetpu |
yolov5s_edgetpu.tflite |
TensorFlow.js | tfjs |
yolov5s_web_model/ |
PaddlePaddle | paddle |
yolov5s_paddle_model/ |
Benchmarks
Die folgenden Benchmarks laufen auf einem Colab Pro mit dem YOLOv5-Tutorial-Notebook . So reproduzieren Sie:
python benchmarks.py --weights yolov5s.pt --imgsz 640 --device 0
Colab Pro V100 GPU
benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=0, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 46.7/166.8 GB disk)
Benchmarks complete (458.07s)
Format mAP@0.5:0.95 Inference time (ms)
0 PyTorch 0.4623 10.19
1 TorchScript 0.4623 6.85
2 ONNX 0.4623 14.63
3 OpenVINO NaN NaN
4 TensorRT 0.4617 1.89
5 CoreML NaN NaN
6 TensorFlow SavedModel 0.4623 21.28
7 TensorFlow GraphDef 0.4623 21.22
8 TensorFlow Lite NaN NaN
9 TensorFlow Edge TPU NaN NaN
10 TensorFlow.js NaN NaN
Colab Pro CPU
benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=cpu, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CPU
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 41.5/166.8 GB disk)
Benchmarks complete (241.20s)
Format mAP@0.5:0.95 Inference time (ms)
0 PyTorch 0.4623 127.61
1 TorchScript 0.4623 131.23
2 ONNX 0.4623 69.34
3 OpenVINO 0.4623 66.52
4 TensorRT NaN NaN
5 CoreML NaN NaN
6 TensorFlow SavedModel 0.4623 123.79
7 TensorFlow GraphDef 0.4623 121.57
8 TensorFlow Lite 0.4623 316.61
9 TensorFlow Edge TPU NaN NaN
10 TensorFlow.js NaN NaN
Exportieren eines trainierten YOLOv5-Modells
Dieser Befehl exportiert ein vortrainiertes YOLOv5s-Modell in die Formate TorchScript und ONNX. yolov5s.pt
ist das 'Small'-Modell, das zweitkleinste verfügbare Modell. Andere Optionen sind yolov5n.pt
, yolov5m.pt
, yolov5l.pt
und yolov5x.pt
, zusammen mit ihren P6-Pendants, d.h. yolov5s6.pt
oder Ihren eigenen benutzerdefinierten Trainings-Checkpoint, z.B. runs/exp/weights/best.pt
. Einzelheiten zu allen verfügbaren Modellen finden Sie in unserer README-Datei. Tabelle.
python export.py --weights yolov5s.pt --include torchscript onnx
Tipp
Hinzufügen --half
um Modelle in FP16 half zu exportieren Präzision für kleinere Dateigrößen
Ausgabe:
export: data=data/coco128.yaml, weights=['yolov5s.pt'], imgsz=[640, 640], batch_size=1, device=cpu, half=False, inplace=False, train=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=12, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['torchscript', 'onnx']
YOLOv5 🚀 v6.2-104-ge3e5122 Python-3.8.0 torch-1.12.1+cu113 CPU
Downloading https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 274MB/s]
Fusing layers...
YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients
PyTorch: starting from yolov5s.pt with output shape (1, 25200, 85) (14.1 MB)
TorchScript: starting export with torch 1.12.1+cu113...
TorchScript: export success ✅ 1.7s, saved as yolov5s.torchscript (28.1 MB)
ONNX: starting export with onnx 1.12.0...
ONNX: export success ✅ 2.3s, saved as yolov5s.onnx (28.0 MB)
Export complete (5.5s)
Results saved to /content/yolov5
Detect: python detect.py --weights yolov5s.onnx
Validate: python val.py --weights yolov5s.onnx
PyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.onnx')
Visualize: https://netron.app/
Die 3 exportierten Modelle werden neben dem ursprünglichen PyTorch-Modell gespeichert:
Für die Visualisierung exportierter Modelle wird Netron Viewer empfohlen:
Beispiele für die Verwendung exportierter Modelle
detect.py
führt Inferenz auf exportierten Modellen aus:
python detect.py --weights yolov5s.pt # PyTorch
python detect.py --weights yolov5s.torchscript # TorchScript
python detect.py --weights yolov5s.onnx # ONNX Runtime or OpenCV DNN with dnn=True
python detect.py --weights yolov5s_openvino_model # OpenVINO
python detect.py --weights yolov5s.engine # TensorRT
python detect.py --weights yolov5s.mlmodel # CoreML (macOS only)
python detect.py --weights yolov5s_saved_model # TensorFlow SavedModel
python detect.py --weights yolov5s.pb # TensorFlow GraphDef
python detect.py --weights yolov5s.tflite # TensorFlow Lite
python detect.py --weights yolov5s_edgetpu.tflite # TensorFlow Edge TPU
python detect.py --weights yolov5s_paddle_model # PaddlePaddle
val.py
führt die Validierung auf exportierten Modellen aus:
python val.py --weights yolov5s.pt # PyTorch
python val.py --weights yolov5s.torchscript # TorchScript
python val.py --weights yolov5s.onnx # ONNX Runtime or OpenCV DNN with dnn=True
python val.py --weights yolov5s_openvino_model # OpenVINO
python val.py --weights yolov5s.engine # TensorRT
python val.py --weights yolov5s.mlmodel # CoreML (macOS Only)
python val.py --weights yolov5s_saved_model # TensorFlow SavedModel
python val.py --weights yolov5s.pb # TensorFlow GraphDef
python val.py --weights yolov5s.tflite # TensorFlow Lite
python val.py --weights yolov5s_edgetpu.tflite # TensorFlow Edge TPU
python val.py --weights yolov5s_paddle_model # PaddlePaddle
Verwenden Sie PyTorch Hub mit exportierten YOLOv5-Modellen:
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pt")
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.torchscript ") # TorchScript
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.onnx") # ONNX Runtime
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_openvino_model") # OpenVINO
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.engine") # TensorRT
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.mlmodel") # CoreML (macOS Only)
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_saved_model") # TensorFlow SavedModel
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pb") # TensorFlow GraphDef
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.tflite") # TensorFlow Lite
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_edgetpu.tflite") # TensorFlow Edge TPU
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_paddle_model") # PaddlePaddle
# Images
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
OpenCV DNN Inferenz
OpenCV-Inferenz mit ONNX-Modellen:
python export.py --weights yolov5s.pt --include onnx
python detect.py --weights yolov5s.onnx --dnn # detect
python val.py --weights yolov5s.onnx --dnn # validate
C++ Inferenz
YOLOv5 OpenCV DNN C++ Inferenz mit exportierten ONNX Modellbeispielen:
- https://github.com/Hexmagic/ONNX-yolov5/blob/master/src/test.cpp
- https://github.com/doleron/yolov5-opencv-cpp-python
YOLOv5 OpenVINO C++ Inferenz Beispiele:
- https://github.com/dacquaviva/yolov5-openvino-cpp-python
- https://github.com/UNeedCryDear/yolov5-seg-opencv-dnn-cpp
TensorFlow.js Webbrowser-Inferenz
Unterstützte Umgebungen
Ultralytics bietet eine Reihe von gebrauchsfertigen Umgebungen, die jeweils mit wichtigen Abhängigkeiten wie CUDA, CUDNN, Python und PyTorch vorinstalliert sind, um Ihre Projekte zu starten.
- Kostenlose GPU Notebooks:
- Google Cloud: GCP Quickstart-Anleitung
- Amazon: AWS Quickstart-Anleitung
- Azure: AzureML Quickstart-Anleitung
- Docker: Docker Quickstart-Anleitung
Projektstatus
Dieses Badge zeigt an, dass alle YOLOv5 GitHub Actions Continuous Integration (CI)-Tests erfolgreich bestanden wurden. Diese CI-Tests überprüfen rigoros die Funktionalität und Leistung von YOLOv5 in verschiedenen Schlüsselbereichen: Training, Validierung, Inferenz, Export und Benchmarks. Sie gewährleisten einen konsistenten und zuverlässigen Betrieb unter macOS, Windows und Ubuntu, wobei die Tests alle 24 Stunden und bei jedem neuen Commit durchgeführt werden.