Zum Inhalt springen

TFLite, ONNX, CoreML, TensorRT Export

📚 Dieser Leitfaden erklärt, wie man ein trainiertes YOLOv5 🚀 Modell von PyTorch in verschiedene Bereitstellungsformate wie ONNX, TensorRT, CoreML und mehr exportiert.

Bevor Sie beginnen

Repository klonen und requirements.txt in einer Python>=3.8.0-Umgebung installieren, einschließlich PyTorch>=1.8. Modelle und Datensätze werden automatisch von der neuesten YOLOv5 Version heruntergeladen.

git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install

Für TensorRT Export-Beispiel (erfordert GPU), siehe unser Colab Notebook Anhang hinzu. In Colab öffnen

Unterstützte Exportformate

YOLOv5-Inferenz wird offiziell in 12 Formaten unterstützt:

Performance-Tipps

  • Export nach ONNX oder OpenVINO für bis zu 3x CPU-Beschleunigung. Siehe CPU-Benchmarks.
  • Export nach TensorRT für bis zu 5x GPU-Beschleunigung. Siehe GPU-Benchmarks.
Format export.py --include Modell
PyTorch - yolov5s.pt
TorchScript torchscript yolov5s.torchscript
ONNX onnx yolov5s.onnx
OpenVINO openvino yolov5s_openvino_model/
TensorRT engine yolov5s.engine
CoreML coreml yolov5s.mlmodel
TensorFlow SavedModel saved_model yolov5s_saved_model/
TensorFlow GraphDef pb yolov5s.pb
TensorFlow Lite tflite yolov5s.tflite
TensorFlow Edge TPU edgetpu yolov5s_edgetpu.tflite
TensorFlow.js tfjs yolov5s_web_model/
PaddlePaddle paddle yolov5s_paddle_model/

Benchmarks

Die folgenden Benchmarks laufen auf einem Colab Pro mit dem YOLOv5-Tutorial-Notebook In Colab öffnen. So reproduzieren Sie:

python benchmarks.py --weights yolov5s.pt --imgsz 640 --device 0

Colab Pro V100 GPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=0, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 46.7/166.8 GB disk)

Benchmarks complete (458.07s)
                   Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623                10.19
1             TorchScript        0.4623                 6.85
2                    ONNX        0.4623                14.63
3                OpenVINO           NaN                  NaN
4                TensorRT        0.4617                 1.89
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623                21.28
7     TensorFlow GraphDef        0.4623                21.22
8         TensorFlow Lite           NaN                  NaN
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

Colab Pro CPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=cpu, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CPU
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 41.5/166.8 GB disk)

Benchmarks complete (241.20s)
                   Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623               127.61
1             TorchScript        0.4623               131.23
2                    ONNX        0.4623                69.34
3                OpenVINO        0.4623                66.52
4                TensorRT           NaN                  NaN
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623               123.79
7     TensorFlow GraphDef        0.4623               121.57
8         TensorFlow Lite        0.4623               316.61
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

Exportieren eines trainierten YOLOv5-Modells

Dieser Befehl exportiert ein vortrainiertes YOLOv5s-Modell in die Formate TorchScript und ONNX. yolov5s.pt ist das 'Small'-Modell, das zweitkleinste verfügbare Modell. Andere Optionen sind yolov5n.pt, yolov5m.pt, yolov5l.pt und yolov5x.pt, zusammen mit ihren P6-Pendants, d.h. yolov5s6.pt oder Ihren eigenen benutzerdefinierten Trainings-Checkpoint, z.B. runs/exp/weights/best.pt. Einzelheiten zu allen verfügbaren Modellen finden Sie in unserer README-Datei. Tabelle.

python export.py --weights yolov5s.pt --include torchscript onnx

Tipp

Hinzufügen --half um Modelle in FP16 half zu exportieren Präzision für kleinere Dateigrößen

Ausgabe:

export: data=data/coco128.yaml, weights=['yolov5s.pt'], imgsz=[640, 640], batch_size=1, device=cpu, half=False, inplace=False, train=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=12, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['torchscript', 'onnx']
YOLOv5 🚀 v6.2-104-ge3e5122 Python-3.8.0 torch-1.12.1+cu113 CPU

Downloading https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 274MB/s]

Fusing layers...
YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients

PyTorch: starting from yolov5s.pt with output shape (1, 25200, 85) (14.1 MB)

TorchScript: starting export with torch 1.12.1+cu113...
TorchScript: export success ✅ 1.7s, saved as yolov5s.torchscript (28.1 MB)

ONNX: starting export with onnx 1.12.0...
ONNX: export success ✅ 2.3s, saved as yolov5s.onnx (28.0 MB)

Export complete (5.5s)
Results saved to /content/yolov5
Detect:          python detect.py --weights yolov5s.onnx
Validate:        python val.py --weights yolov5s.onnx
PyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.onnx')
Visualize:       https://netron.app/

Die 3 exportierten Modelle werden neben dem ursprünglichen PyTorch-Modell gespeichert:

YOLO-Exportverzeichnisse

Für die Visualisierung exportierter Modelle wird Netron Viewer empfohlen:

YOLO Modellvisualisierung

Beispiele für die Verwendung exportierter Modelle

detect.py führt Inferenz auf exportierten Modellen aus:

python detect.py --weights yolov5s.pt             # PyTorch
python detect.py --weights yolov5s.torchscript    # TorchScript
python detect.py --weights yolov5s.onnx           # ONNX Runtime or OpenCV DNN with dnn=True
python detect.py --weights yolov5s_openvino_model # OpenVINO
python detect.py --weights yolov5s.engine         # TensorRT
python detect.py --weights yolov5s.mlmodel        # CoreML (macOS only)
python detect.py --weights yolov5s_saved_model    # TensorFlow SavedModel
python detect.py --weights yolov5s.pb             # TensorFlow GraphDef
python detect.py --weights yolov5s.tflite         # TensorFlow Lite
python detect.py --weights yolov5s_edgetpu.tflite # TensorFlow Edge TPU
python detect.py --weights yolov5s_paddle_model   # PaddlePaddle

val.py führt die Validierung auf exportierten Modellen aus:

python val.py --weights yolov5s.pt             # PyTorch
python val.py --weights yolov5s.torchscript    # TorchScript
python val.py --weights yolov5s.onnx           # ONNX Runtime or OpenCV DNN with dnn=True
python val.py --weights yolov5s_openvino_model # OpenVINO
python val.py --weights yolov5s.engine         # TensorRT
python val.py --weights yolov5s.mlmodel        # CoreML (macOS Only)
python val.py --weights yolov5s_saved_model    # TensorFlow SavedModel
python val.py --weights yolov5s.pb             # TensorFlow GraphDef
python val.py --weights yolov5s.tflite         # TensorFlow Lite
python val.py --weights yolov5s_edgetpu.tflite # TensorFlow Edge TPU
python val.py --weights yolov5s_paddle_model   # PaddlePaddle

Verwenden Sie PyTorch Hub mit exportierten YOLOv5-Modellen:

import torch

# Model
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pt")
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.torchscript ")  # TorchScript
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.onnx")  # ONNX Runtime
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_openvino_model")  # OpenVINO
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.engine")  # TensorRT
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.mlmodel")  # CoreML (macOS Only)
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_saved_model")  # TensorFlow SavedModel
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pb")  # TensorFlow GraphDef
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.tflite")  # TensorFlow Lite
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_edgetpu.tflite")  # TensorFlow Edge TPU
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_paddle_model")  # PaddlePaddle

# Images
img = "https://ultralytics.com/images/zidane.jpg"  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

OpenCV DNN Inferenz

OpenCV-Inferenz mit ONNX-Modellen:

python export.py --weights yolov5s.pt --include onnx

python detect.py --weights yolov5s.onnx --dnn # detect
python val.py --weights yolov5s.onnx --dnn    # validate

C++ Inferenz

YOLOv5 OpenCV DNN C++ Inferenz mit exportierten ONNX Modellbeispielen:

YOLOv5 OpenVINO C++ Inferenz Beispiele:

TensorFlow.js Webbrowser-Inferenz

Unterstützte Umgebungen

Ultralytics bietet eine Reihe von gebrauchsfertigen Umgebungen, die jeweils mit wichtigen Abhängigkeiten wie CUDA, CUDNN, Python und PyTorch vorinstalliert sind, um Ihre Projekte zu starten.

Projektstatus

YOLOv5 CI

Dieses Badge zeigt an, dass alle YOLOv5 GitHub Actions Continuous Integration (CI)-Tests erfolgreich bestanden wurden. Diese CI-Tests überprüfen rigoros die Funktionalität und Leistung von YOLOv5 in verschiedenen Schlüsselbereichen: Training, Validierung, Inferenz, Export und Benchmarks. Sie gewährleisten einen konsistenten und zuverlässigen Betrieb unter macOS, Windows und Ubuntu, wobei die Tests alle 24 Stunden und bei jedem neuen Commit durchgeführt werden.



📅 Erstellt vor 1 Jahr ✏️ Aktualisiert vor 2 Monaten

Kommentare