Saltar al contenido

Referencia para ultralytics/data/build.py

Nota

Este archivo est谩 disponible en https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/data/build .py. Si detectas alg煤n problema, por favor, ayuda a solucionarlo contribuyendo con una Pull Request 馃洜锔. 隆Gracias 馃檹!



ultralytics.data.build.InfiniteDataLoader

Bases: DataLoader

Cargador de datos que reutiliza trabajadores.

Utiliza la misma sintaxis que DataLoader vainilla.

C贸digo fuente en ultralytics/data/build.py
class InfiniteDataLoader(dataloader.DataLoader):
    """
    Dataloader that reuses workers.

    Uses same syntax as vanilla DataLoader.
    """

    def __init__(self, *args, **kwargs):
        """Dataloader that infinitely recycles workers, inherits from DataLoader."""
        super().__init__(*args, **kwargs)
        object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler))
        self.iterator = super().__iter__()

    def __len__(self):
        """Returns the length of the batch sampler's sampler."""
        return len(self.batch_sampler.sampler)

    def __iter__(self):
        """Creates a sampler that repeats indefinitely."""
        for _ in range(len(self)):
            yield next(self.iterator)

    def reset(self):
        """
        Reset iterator.

        This is useful when we want to modify settings of dataset while training.
        """
        self.iterator = self._get_iterator()

__init__(*args, **kwargs)

Cargador de datos que recicla infinitamente los trabajadores, hereda de DataLoader.

C贸digo fuente en ultralytics/data/build.py
def __init__(self, *args, **kwargs):
    """Dataloader that infinitely recycles workers, inherits from DataLoader."""
    super().__init__(*args, **kwargs)
    object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler))
    self.iterator = super().__iter__()

__iter__()

Crea un muestreador que se repite indefinidamente.

C贸digo fuente en ultralytics/data/build.py
def __iter__(self):
    """Creates a sampler that repeats indefinitely."""
    for _ in range(len(self)):
        yield next(self.iterator)

__len__()

Devuelve la longitud del muestreador del lote.

C贸digo fuente en ultralytics/data/build.py
def __len__(self):
    """Returns the length of the batch sampler's sampler."""
    return len(self.batch_sampler.sampler)

reset()

Restablecer iterador.

Esto es 煤til cuando queremos modificar los ajustes del conjunto de datos durante el entrenamiento.

C贸digo fuente en ultralytics/data/build.py
def reset(self):
    """
    Reset iterator.

    This is useful when we want to modify settings of dataset while training.
    """
    self.iterator = self._get_iterator()



ultralytics.data.build._RepeatSampler

Muestrario que se repite eternamente.

Par谩metros:

Nombre Tipo Descripci贸n Por defecto
sampler sampler

El muestreador para repetir.

necesario
C贸digo fuente en ultralytics/data/build.py
class _RepeatSampler:
    """
    Sampler that repeats forever.

    Args:
        sampler (Dataset.sampler): The sampler to repeat.
    """

    def __init__(self, sampler):
        """Initializes an object that repeats a given sampler indefinitely."""
        self.sampler = sampler

    def __iter__(self):
        """Iterates over the 'sampler' and yields its contents."""
        while True:
            yield from iter(self.sampler)

__init__(sampler)

Inicializa un objeto que repite indefinidamente un muestreador determinado.

C贸digo fuente en ultralytics/data/build.py
def __init__(self, sampler):
    """Initializes an object that repeats a given sampler indefinitely."""
    self.sampler = sampler

__iter__()

Itera sobre el 'muestreador' y devuelve su contenido.

C贸digo fuente en ultralytics/data/build.py
def __iter__(self):
    """Iterates over the 'sampler' and yields its contents."""
    while True:
        yield from iter(self.sampler)



ultralytics.data.build.seed_worker(worker_id)

Establece la semilla del trabajador dataloader https://pytorch.org/docs/stable/notes/randomness.html#dataloader.

C贸digo fuente en ultralytics/data/build.py
def seed_worker(worker_id):  # noqa
    """Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader."""
    worker_seed = torch.initial_seed() % 2**32
    np.random.seed(worker_seed)
    random.seed(worker_seed)



ultralytics.data.build.build_yolo_dataset(cfg, img_path, batch, data, mode='train', rect=False, stride=32, multi_modal=False)

Construye YOLO Conjunto de datos.

C贸digo fuente en ultralytics/data/build.py
def build_yolo_dataset(cfg, img_path, batch, data, mode="train", rect=False, stride=32, multi_modal=False):
    """Build YOLO Dataset."""
    dataset = YOLOMultiModalDataset if multi_modal else YOLODataset
    return dataset(
        img_path=img_path,
        imgsz=cfg.imgsz,
        batch_size=batch,
        augment=mode == "train",  # augmentation
        hyp=cfg,  # TODO: probably add a get_hyps_from_cfg function
        rect=cfg.rect or rect,  # rectangular batches
        cache=cfg.cache or None,
        single_cls=cfg.single_cls or False,
        stride=int(stride),
        pad=0.0 if mode == "train" else 0.5,
        prefix=colorstr(f"{mode}: "),
        task=cfg.task,
        classes=cfg.classes,
        data=data,
        fraction=cfg.fraction if mode == "train" else 1.0,
    )



ultralytics.data.build.build_grounding(cfg, img_path, json_file, batch, mode='train', rect=False, stride=32)

Construye YOLO Conjunto de datos.

C贸digo fuente en ultralytics/data/build.py
def build_grounding(cfg, img_path, json_file, batch, mode="train", rect=False, stride=32):
    """Build YOLO Dataset."""
    return GroundingDataset(
        img_path=img_path,
        json_file=json_file,
        imgsz=cfg.imgsz,
        batch_size=batch,
        augment=mode == "train",  # augmentation
        hyp=cfg,  # TODO: probably add a get_hyps_from_cfg function
        rect=cfg.rect or rect,  # rectangular batches
        cache=cfg.cache or None,
        single_cls=cfg.single_cls or False,
        stride=int(stride),
        pad=0.0 if mode == "train" else 0.5,
        prefix=colorstr(f"{mode}: "),
        task=cfg.task,
        classes=cfg.classes,
        fraction=cfg.fraction if mode == "train" else 1.0,
    )



ultralytics.data.build.build_dataloader(dataset, batch, workers, shuffle=True, rank=-1)

Devuelve un InfiniteDataLoader o un DataLoader para el conjunto de entrenamiento o validaci贸n.

C贸digo fuente en ultralytics/data/build.py
def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1):
    """Return an InfiniteDataLoader or DataLoader for training or validation set."""
    batch = min(batch, len(dataset))
    nd = torch.cuda.device_count()  # number of CUDA devices
    nw = min([os.cpu_count() // max(nd, 1), workers])  # number of workers
    sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
    generator = torch.Generator()
    generator.manual_seed(6148914691236517205 + RANK)
    return InfiniteDataLoader(
        dataset=dataset,
        batch_size=batch,
        shuffle=shuffle and sampler is None,
        num_workers=nw,
        sampler=sampler,
        pin_memory=PIN_MEMORY,
        collate_fn=getattr(dataset, "collate_fn", None),
        worker_init_fn=seed_worker,
        generator=generator,
    )



ultralytics.data.build.check_source(source)

Comprueba el tipo de fuente y devuelve los valores de bandera correspondientes.

C贸digo fuente en ultralytics/data/build.py
def check_source(source):
    """Check source type and return corresponding flag values."""
    webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False
    if isinstance(source, (str, int, Path)):  # int for local usb camera
        source = str(source)
        is_file = Path(source).suffix[1:] in (IMG_FORMATS | VID_FORMATS)
        is_url = source.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://"))
        webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
        screenshot = source.lower() == "screen"
        if is_url and is_file:
            source = check_file(source)  # download
    elif isinstance(source, LOADERS):
        in_memory = True
    elif isinstance(source, (list, tuple)):
        source = autocast_list(source)  # convert all list elements to PIL or np arrays
        from_img = True
    elif isinstance(source, (Image.Image, np.ndarray)):
        from_img = True
    elif isinstance(source, torch.Tensor):
        tensor = True
    else:
        raise TypeError("Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict")

    return source, webcam, screenshot, from_img, in_memory, tensor



ultralytics.data.build.load_inference_source(source=None, batch=1, vid_stride=1, buffer=False)

Carga una fuente de inferencia para la detecci贸n de objetos y aplica las transformaciones necesarias.

Par谩metros:

Nombre Tipo Descripci贸n Por defecto
source (str, Path, Tensor, Image, ndarray)

La fuente de entrada para la inferencia.

None
batch int

Tama帽o del lote para los cargadores de datos. Por defecto es 1.

1
vid_stride int

El intervalo de fotogramas para las fuentes de v铆deo. Por defecto es 1.

1
buffer bool

Determina si las tramas de flujo se almacenar谩n en la memoria intermedia. Por defecto es Falso.

False

Devuelve:

Nombre Tipo Descripci贸n
dataset Dataset

Un objeto conjunto de datos para la fuente de entrada especificada.

C贸digo fuente en ultralytics/data/build.py
def load_inference_source(source=None, batch=1, vid_stride=1, buffer=False):
    """
    Loads an inference source for object detection and applies necessary transformations.

    Args:
        source (str, Path, Tensor, PIL.Image, np.ndarray): The input source for inference.
        batch (int, optional): Batch size for dataloaders. Default is 1.
        vid_stride (int, optional): The frame interval for video sources. Default is 1.
        buffer (bool, optional): Determined whether stream frames will be buffered. Default is False.

    Returns:
        dataset (Dataset): A dataset object for the specified input source.
    """
    source, stream, screenshot, from_img, in_memory, tensor = check_source(source)
    source_type = source.source_type if in_memory else SourceTypes(stream, screenshot, from_img, tensor)

    # Dataloader
    if tensor:
        dataset = LoadTensor(source)
    elif in_memory:
        dataset = source
    elif stream:
        dataset = LoadStreams(source, vid_stride=vid_stride, buffer=buffer)
    elif screenshot:
        dataset = LoadScreenshots(source)
    elif from_img:
        dataset = LoadPilAndNumpy(source)
    else:
        dataset = LoadImagesAndVideos(source, batch=batch, vid_stride=vid_stride)

    # Attach source types to the dataset
    setattr(dataset, "source_type", source_type)

    return dataset





Creado 2023-11-12, Actualizado 2024-05-18
Autores: glenn-jocher (4), Burhan-Q (1), Laughing-q (1)