Saltar al contenido

Referencia para ultralytics/models/utils/loss.py

Nota

Este archivo est谩 disponible en https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/models/utils/loss .py. Si detectas alg煤n problema, por favor, ayuda a solucionarlo contribuyendo con una Pull Request 馃洜锔. 隆Gracias 馃檹!



ultralytics.models.utils.loss.DETRLoss

Bases: Module

Clase de p茅rdidas DETR (DEtecci贸n TRansformador). Esta clase calcula y devuelve los distintos componentes de p茅rdida del modelo de detecci贸n de objetos modelo de detecci贸n de objetos DETR. Calcula la p茅rdida de clasificaci贸n, la p茅rdida del cuadro delimitador, la p茅rdida GIoU y, opcionalmente, las p茅rdidas auxiliares.

Atributos:

Nombre Tipo Descripci贸n
nc int

El n煤mero de clases.

loss_gain dict

Coeficientes de los distintos componentes de las p茅rdidas.

aux_loss bool

Si se computan las p茅rdidas auxiliares.

use_fl bool

Utiliza FocalLoss o no.

use_vfl bool

Utiliza o no VarifocalLoss.

use_uni_match bool

Si se utiliza una capa fija para asignar etiquetas a la rama auxiliar.

uni_match_ind int

Los 铆ndices fijos de una capa a utilizar si use_uni_match es Verdadero.

matcher HungarianMatcher

Objeto para calcular el coste y los 铆ndices de coincidencia.

fl FocalLoss or None

Objeto de p茅rdida focal si use_fl es Verdadero, en caso contrario Ninguno.

vfl VarifocalLoss or None

Varifocal Objeto de p茅rdida si use_vfl es Verdadero, en caso contrario Ninguno.

device device

Dispositivo en el que se almacenan los tensores.

C贸digo fuente en ultralytics/models/utils/loss.py
class DETRLoss(nn.Module):
    """
    DETR (DEtection TRansformer) Loss class. This class calculates and returns the different loss components for the
    DETR object detection model. It computes classification loss, bounding box loss, GIoU loss, and optionally auxiliary
    losses.

    Attributes:
        nc (int): The number of classes.
        loss_gain (dict): Coefficients for different loss components.
        aux_loss (bool): Whether to compute auxiliary losses.
        use_fl (bool): Use FocalLoss or not.
        use_vfl (bool): Use VarifocalLoss or not.
        use_uni_match (bool): Whether to use a fixed layer to assign labels for the auxiliary branch.
        uni_match_ind (int): The fixed indices of a layer to use if `use_uni_match` is True.
        matcher (HungarianMatcher): Object to compute matching cost and indices.
        fl (FocalLoss or None): Focal Loss object if `use_fl` is True, otherwise None.
        vfl (VarifocalLoss or None): Varifocal Loss object if `use_vfl` is True, otherwise None.
        device (torch.device): Device on which tensors are stored.
    """

    def __init__(
        self, nc=80, loss_gain=None, aux_loss=True, use_fl=True, use_vfl=False, use_uni_match=False, uni_match_ind=0
    ):
        """
        DETR loss function.

        Args:
            nc (int): The number of classes.
            loss_gain (dict): The coefficient of loss.
            aux_loss (bool): If 'aux_loss = True', loss at each decoder layer are to be used.
            use_vfl (bool): Use VarifocalLoss or not.
            use_uni_match (bool): Whether to use a fixed layer to assign labels for auxiliary branch.
            uni_match_ind (int): The fixed indices of a layer.
        """
        super().__init__()

        if loss_gain is None:
            loss_gain = {"class": 1, "bbox": 5, "giou": 2, "no_object": 0.1, "mask": 1, "dice": 1}
        self.nc = nc
        self.matcher = HungarianMatcher(cost_gain={"class": 2, "bbox": 5, "giou": 2})
        self.loss_gain = loss_gain
        self.aux_loss = aux_loss
        self.fl = FocalLoss() if use_fl else None
        self.vfl = VarifocalLoss() if use_vfl else None

        self.use_uni_match = use_uni_match
        self.uni_match_ind = uni_match_ind
        self.device = None

    def _get_loss_class(self, pred_scores, targets, gt_scores, num_gts, postfix=""):
        """Computes the classification loss based on predictions, target values, and ground truth scores."""
        # Logits: [b, query, num_classes], gt_class: list[[n, 1]]
        name_class = f"loss_class{postfix}"
        bs, nq = pred_scores.shape[:2]
        # one_hot = F.one_hot(targets, self.nc + 1)[..., :-1]  # (bs, num_queries, num_classes)
        one_hot = torch.zeros((bs, nq, self.nc + 1), dtype=torch.int64, device=targets.device)
        one_hot.scatter_(2, targets.unsqueeze(-1), 1)
        one_hot = one_hot[..., :-1]
        gt_scores = gt_scores.view(bs, nq, 1) * one_hot

        if self.fl:
            if num_gts and self.vfl:
                loss_cls = self.vfl(pred_scores, gt_scores, one_hot)
            else:
                loss_cls = self.fl(pred_scores, one_hot.float())
            loss_cls /= max(num_gts, 1) / nq
        else:
            loss_cls = nn.BCEWithLogitsLoss(reduction="none")(pred_scores, gt_scores).mean(1).sum()  # YOLO CLS loss

        return {name_class: loss_cls.squeeze() * self.loss_gain["class"]}

    def _get_loss_bbox(self, pred_bboxes, gt_bboxes, postfix=""):
        """Calculates and returns the bounding box loss and GIoU loss for the predicted and ground truth bounding
        boxes.
        """
        # Boxes: [b, query, 4], gt_bbox: list[[n, 4]]
        name_bbox = f"loss_bbox{postfix}"
        name_giou = f"loss_giou{postfix}"

        loss = {}
        if len(gt_bboxes) == 0:
            loss[name_bbox] = torch.tensor(0.0, device=self.device)
            loss[name_giou] = torch.tensor(0.0, device=self.device)
            return loss

        loss[name_bbox] = self.loss_gain["bbox"] * F.l1_loss(pred_bboxes, gt_bboxes, reduction="sum") / len(gt_bboxes)
        loss[name_giou] = 1.0 - bbox_iou(pred_bboxes, gt_bboxes, xywh=True, GIoU=True)
        loss[name_giou] = loss[name_giou].sum() / len(gt_bboxes)
        loss[name_giou] = self.loss_gain["giou"] * loss[name_giou]
        return {k: v.squeeze() for k, v in loss.items()}

    # This function is for future RT-DETR Segment models
    # def _get_loss_mask(self, masks, gt_mask, match_indices, postfix=''):
    #     # masks: [b, query, h, w], gt_mask: list[[n, H, W]]
    #     name_mask = f'loss_mask{postfix}'
    #     name_dice = f'loss_dice{postfix}'
    #
    #     loss = {}
    #     if sum(len(a) for a in gt_mask) == 0:
    #         loss[name_mask] = torch.tensor(0., device=self.device)
    #         loss[name_dice] = torch.tensor(0., device=self.device)
    #         return loss
    #
    #     num_gts = len(gt_mask)
    #     src_masks, target_masks = self._get_assigned_bboxes(masks, gt_mask, match_indices)
    #     src_masks = F.interpolate(src_masks.unsqueeze(0), size=target_masks.shape[-2:], mode='bilinear')[0]
    #     # TODO: torch does not have `sigmoid_focal_loss`, but it's not urgent since we don't use mask branch for now.
    #     loss[name_mask] = self.loss_gain['mask'] * F.sigmoid_focal_loss(src_masks, target_masks,
    #                                                                     torch.tensor([num_gts], dtype=torch.float32))
    #     loss[name_dice] = self.loss_gain['dice'] * self._dice_loss(src_masks, target_masks, num_gts)
    #     return loss

    # This function is for future RT-DETR Segment models
    # @staticmethod
    # def _dice_loss(inputs, targets, num_gts):
    #     inputs = F.sigmoid(inputs).flatten(1)
    #     targets = targets.flatten(1)
    #     numerator = 2 * (inputs * targets).sum(1)
    #     denominator = inputs.sum(-1) + targets.sum(-1)
    #     loss = 1 - (numerator + 1) / (denominator + 1)
    #     return loss.sum() / num_gts

    def _get_loss_aux(
        self,
        pred_bboxes,
        pred_scores,
        gt_bboxes,
        gt_cls,
        gt_groups,
        match_indices=None,
        postfix="",
        masks=None,
        gt_mask=None,
    ):
        """Get auxiliary losses."""
        # NOTE: loss class, bbox, giou, mask, dice
        loss = torch.zeros(5 if masks is not None else 3, device=pred_bboxes.device)
        if match_indices is None and self.use_uni_match:
            match_indices = self.matcher(
                pred_bboxes[self.uni_match_ind],
                pred_scores[self.uni_match_ind],
                gt_bboxes,
                gt_cls,
                gt_groups,
                masks=masks[self.uni_match_ind] if masks is not None else None,
                gt_mask=gt_mask,
            )
        for i, (aux_bboxes, aux_scores) in enumerate(zip(pred_bboxes, pred_scores)):
            aux_masks = masks[i] if masks is not None else None
            loss_ = self._get_loss(
                aux_bboxes,
                aux_scores,
                gt_bboxes,
                gt_cls,
                gt_groups,
                masks=aux_masks,
                gt_mask=gt_mask,
                postfix=postfix,
                match_indices=match_indices,
            )
            loss[0] += loss_[f"loss_class{postfix}"]
            loss[1] += loss_[f"loss_bbox{postfix}"]
            loss[2] += loss_[f"loss_giou{postfix}"]
            # if masks is not None and gt_mask is not None:
            #     loss_ = self._get_loss_mask(aux_masks, gt_mask, match_indices, postfix)
            #     loss[3] += loss_[f'loss_mask{postfix}']
            #     loss[4] += loss_[f'loss_dice{postfix}']

        loss = {
            f"loss_class_aux{postfix}": loss[0],
            f"loss_bbox_aux{postfix}": loss[1],
            f"loss_giou_aux{postfix}": loss[2],
        }
        # if masks is not None and gt_mask is not None:
        #     loss[f'loss_mask_aux{postfix}'] = loss[3]
        #     loss[f'loss_dice_aux{postfix}'] = loss[4]
        return loss

    @staticmethod
    def _get_index(match_indices):
        """Returns batch indices, source indices, and destination indices from provided match indices."""
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(match_indices)])
        src_idx = torch.cat([src for (src, _) in match_indices])
        dst_idx = torch.cat([dst for (_, dst) in match_indices])
        return (batch_idx, src_idx), dst_idx

    def _get_assigned_bboxes(self, pred_bboxes, gt_bboxes, match_indices):
        """Assigns predicted bounding boxes to ground truth bounding boxes based on the match indices."""
        pred_assigned = torch.cat(
            [
                t[i] if len(i) > 0 else torch.zeros(0, t.shape[-1], device=self.device)
                for t, (i, _) in zip(pred_bboxes, match_indices)
            ]
        )
        gt_assigned = torch.cat(
            [
                t[j] if len(j) > 0 else torch.zeros(0, t.shape[-1], device=self.device)
                for t, (_, j) in zip(gt_bboxes, match_indices)
            ]
        )
        return pred_assigned, gt_assigned

    def _get_loss(
        self,
        pred_bboxes,
        pred_scores,
        gt_bboxes,
        gt_cls,
        gt_groups,
        masks=None,
        gt_mask=None,
        postfix="",
        match_indices=None,
    ):
        """Get losses."""
        if match_indices is None:
            match_indices = self.matcher(
                pred_bboxes, pred_scores, gt_bboxes, gt_cls, gt_groups, masks=masks, gt_mask=gt_mask
            )

        idx, gt_idx = self._get_index(match_indices)
        pred_bboxes, gt_bboxes = pred_bboxes[idx], gt_bboxes[gt_idx]

        bs, nq = pred_scores.shape[:2]
        targets = torch.full((bs, nq), self.nc, device=pred_scores.device, dtype=gt_cls.dtype)
        targets[idx] = gt_cls[gt_idx]

        gt_scores = torch.zeros([bs, nq], device=pred_scores.device)
        if len(gt_bboxes):
            gt_scores[idx] = bbox_iou(pred_bboxes.detach(), gt_bboxes, xywh=True).squeeze(-1)

        loss = {}
        loss.update(self._get_loss_class(pred_scores, targets, gt_scores, len(gt_bboxes), postfix))
        loss.update(self._get_loss_bbox(pred_bboxes, gt_bboxes, postfix))
        # if masks is not None and gt_mask is not None:
        #     loss.update(self._get_loss_mask(masks, gt_mask, match_indices, postfix))
        return loss

    def forward(self, pred_bboxes, pred_scores, batch, postfix="", **kwargs):
        """
        Args:
            pred_bboxes (torch.Tensor): [l, b, query, 4]
            pred_scores (torch.Tensor): [l, b, query, num_classes]
            batch (dict): A dict includes:
                gt_cls (torch.Tensor) with shape [num_gts, ],
                gt_bboxes (torch.Tensor): [num_gts, 4],
                gt_groups (List(int)): a list of batch size length includes the number of gts of each image.
            postfix (str): postfix of loss name.
        """
        self.device = pred_bboxes.device
        match_indices = kwargs.get("match_indices", None)
        gt_cls, gt_bboxes, gt_groups = batch["cls"], batch["bboxes"], batch["gt_groups"]

        total_loss = self._get_loss(
            pred_bboxes[-1], pred_scores[-1], gt_bboxes, gt_cls, gt_groups, postfix=postfix, match_indices=match_indices
        )

        if self.aux_loss:
            total_loss.update(
                self._get_loss_aux(
                    pred_bboxes[:-1], pred_scores[:-1], gt_bboxes, gt_cls, gt_groups, match_indices, postfix
                )
            )

        return total_loss

__init__(nc=80, loss_gain=None, aux_loss=True, use_fl=True, use_vfl=False, use_uni_match=False, uni_match_ind=0)

Funci贸n de p茅rdida DETR.

Par谩metros:

Nombre Tipo Descripci贸n Por defecto
nc int

El n煤mero de clases.

80
loss_gain dict

El coeficiente de p茅rdida.

None
aux_loss bool

Si 'aux_loss = True', se utilizar谩n las p茅rdidas de cada capa del descodificador.

True
use_vfl bool

Utiliza o no VarifocalLoss.

False
use_uni_match bool

Si se utiliza una capa fija para asignar etiquetas a la rama auxiliar.

False
uni_match_ind int

Los 铆ndices fijos de una capa.

0
C贸digo fuente en ultralytics/models/utils/loss.py
def __init__(
    self, nc=80, loss_gain=None, aux_loss=True, use_fl=True, use_vfl=False, use_uni_match=False, uni_match_ind=0
):
    """
    DETR loss function.

    Args:
        nc (int): The number of classes.
        loss_gain (dict): The coefficient of loss.
        aux_loss (bool): If 'aux_loss = True', loss at each decoder layer are to be used.
        use_vfl (bool): Use VarifocalLoss or not.
        use_uni_match (bool): Whether to use a fixed layer to assign labels for auxiliary branch.
        uni_match_ind (int): The fixed indices of a layer.
    """
    super().__init__()

    if loss_gain is None:
        loss_gain = {"class": 1, "bbox": 5, "giou": 2, "no_object": 0.1, "mask": 1, "dice": 1}
    self.nc = nc
    self.matcher = HungarianMatcher(cost_gain={"class": 2, "bbox": 5, "giou": 2})
    self.loss_gain = loss_gain
    self.aux_loss = aux_loss
    self.fl = FocalLoss() if use_fl else None
    self.vfl = VarifocalLoss() if use_vfl else None

    self.use_uni_match = use_uni_match
    self.uni_match_ind = uni_match_ind
    self.device = None

forward(pred_bboxes, pred_scores, batch, postfix='', **kwargs)

Par谩metros:

Nombre Tipo Descripci贸n Por defecto
pred_bboxes Tensor

[l, b, consulta, 4]

necesario
pred_scores Tensor

[l, b, consulta, num_clases]

necesario
batch dict

Un dict incluye: gt_cls (torch.Tensor) con forma [num_gts, ], gt_bboxes (torch.Tensor): [num_gts, 4], gt_groups (Lista(int)): una lista de longitud de tama帽o de lote incluye el n煤mero de gts de cada imagen.

necesario
postfix str

postfix de nombre de p茅rdida.

''
C贸digo fuente en ultralytics/models/utils/loss.py
def forward(self, pred_bboxes, pred_scores, batch, postfix="", **kwargs):
    """
    Args:
        pred_bboxes (torch.Tensor): [l, b, query, 4]
        pred_scores (torch.Tensor): [l, b, query, num_classes]
        batch (dict): A dict includes:
            gt_cls (torch.Tensor) with shape [num_gts, ],
            gt_bboxes (torch.Tensor): [num_gts, 4],
            gt_groups (List(int)): a list of batch size length includes the number of gts of each image.
        postfix (str): postfix of loss name.
    """
    self.device = pred_bboxes.device
    match_indices = kwargs.get("match_indices", None)
    gt_cls, gt_bboxes, gt_groups = batch["cls"], batch["bboxes"], batch["gt_groups"]

    total_loss = self._get_loss(
        pred_bboxes[-1], pred_scores[-1], gt_bboxes, gt_cls, gt_groups, postfix=postfix, match_indices=match_indices
    )

    if self.aux_loss:
        total_loss.update(
            self._get_loss_aux(
                pred_bboxes[:-1], pred_scores[:-1], gt_bboxes, gt_cls, gt_groups, match_indices, postfix
            )
        )

    return total_loss



ultralytics.models.utils.loss.RTDETRDetectionLoss

Bases: DETRLoss

Clase de P茅rdida de Detecci贸n de DeepTracker en Tiempo Real (RT-DETR) que ampl铆a la DETRLoss.

Esta clase calcula la p茅rdida de detecci贸n del modelo RT-DETR , que incluye la p茅rdida de detecci贸n est谩ndar, as铆 como una p茅rdida de entrenamiento de eliminaci贸n de ruido adicional cuando se proporcionan metadatos de eliminaci贸n de ruido.

C贸digo fuente en ultralytics/models/utils/loss.py
class RTDETRDetectionLoss(DETRLoss):
    """
    Real-Time DeepTracker (RT-DETR) Detection Loss class that extends the DETRLoss.

    This class computes the detection loss for the RT-DETR model, which includes the standard detection loss as well as
    an additional denoising training loss when provided with denoising metadata.
    """

    def forward(self, preds, batch, dn_bboxes=None, dn_scores=None, dn_meta=None):
        """
        Forward pass to compute the detection loss.

        Args:
            preds (tuple): Predicted bounding boxes and scores.
            batch (dict): Batch data containing ground truth information.
            dn_bboxes (torch.Tensor, optional): Denoising bounding boxes. Default is None.
            dn_scores (torch.Tensor, optional): Denoising scores. Default is None.
            dn_meta (dict, optional): Metadata for denoising. Default is None.

        Returns:
            (dict): Dictionary containing the total loss and, if applicable, the denoising loss.
        """
        pred_bboxes, pred_scores = preds
        total_loss = super().forward(pred_bboxes, pred_scores, batch)

        # Check for denoising metadata to compute denoising training loss
        if dn_meta is not None:
            dn_pos_idx, dn_num_group = dn_meta["dn_pos_idx"], dn_meta["dn_num_group"]
            assert len(batch["gt_groups"]) == len(dn_pos_idx)

            # Get the match indices for denoising
            match_indices = self.get_dn_match_indices(dn_pos_idx, dn_num_group, batch["gt_groups"])

            # Compute the denoising training loss
            dn_loss = super().forward(dn_bboxes, dn_scores, batch, postfix="_dn", match_indices=match_indices)
            total_loss.update(dn_loss)
        else:
            # If no denoising metadata is provided, set denoising loss to zero
            total_loss.update({f"{k}_dn": torch.tensor(0.0, device=self.device) for k in total_loss.keys()})

        return total_loss

    @staticmethod
    def get_dn_match_indices(dn_pos_idx, dn_num_group, gt_groups):
        """
        Get the match indices for denoising.

        Args:
            dn_pos_idx (List[torch.Tensor]): List of tensors containing positive indices for denoising.
            dn_num_group (int): Number of denoising groups.
            gt_groups (List[int]): List of integers representing the number of ground truths for each image.

        Returns:
            (List[tuple]): List of tuples containing matched indices for denoising.
        """
        dn_match_indices = []
        idx_groups = torch.as_tensor([0, *gt_groups[:-1]]).cumsum_(0)
        for i, num_gt in enumerate(gt_groups):
            if num_gt > 0:
                gt_idx = torch.arange(end=num_gt, dtype=torch.long) + idx_groups[i]
                gt_idx = gt_idx.repeat(dn_num_group)
                assert len(dn_pos_idx[i]) == len(gt_idx), "Expected the same length, "
                f"but got {len(dn_pos_idx[i])} and {len(gt_idx)} respectively."
                dn_match_indices.append((dn_pos_idx[i], gt_idx))
            else:
                dn_match_indices.append((torch.zeros([0], dtype=torch.long), torch.zeros([0], dtype=torch.long)))
        return dn_match_indices

forward(preds, batch, dn_bboxes=None, dn_scores=None, dn_meta=None)

Paso adelante para calcular la p茅rdida de detecci贸n.

Par谩metros:

Nombre Tipo Descripci贸n Por defecto
preds tuple

Cajas delimitadoras y puntuaciones previstas.

necesario
batch dict

Datos por lotes que contienen informaci贸n de la verdad sobre el terreno.

necesario
dn_bboxes Tensor

Cajas delimitadoras de eliminaci贸n de ruido. Por defecto es Ninguno.

None
dn_scores Tensor

Puntuaciones de eliminaci贸n de ruido. Por defecto es Ninguno.

None
dn_meta dict

Metadatos para la eliminaci贸n de ruido. Por defecto es Ninguno.

None

Devuelve:

Tipo Descripci贸n
dict

Diccionario que contiene la p茅rdida total y, si procede, la p茅rdida de eliminaci贸n de ruido.

C贸digo fuente en ultralytics/models/utils/loss.py
def forward(self, preds, batch, dn_bboxes=None, dn_scores=None, dn_meta=None):
    """
    Forward pass to compute the detection loss.

    Args:
        preds (tuple): Predicted bounding boxes and scores.
        batch (dict): Batch data containing ground truth information.
        dn_bboxes (torch.Tensor, optional): Denoising bounding boxes. Default is None.
        dn_scores (torch.Tensor, optional): Denoising scores. Default is None.
        dn_meta (dict, optional): Metadata for denoising. Default is None.

    Returns:
        (dict): Dictionary containing the total loss and, if applicable, the denoising loss.
    """
    pred_bboxes, pred_scores = preds
    total_loss = super().forward(pred_bboxes, pred_scores, batch)

    # Check for denoising metadata to compute denoising training loss
    if dn_meta is not None:
        dn_pos_idx, dn_num_group = dn_meta["dn_pos_idx"], dn_meta["dn_num_group"]
        assert len(batch["gt_groups"]) == len(dn_pos_idx)

        # Get the match indices for denoising
        match_indices = self.get_dn_match_indices(dn_pos_idx, dn_num_group, batch["gt_groups"])

        # Compute the denoising training loss
        dn_loss = super().forward(dn_bboxes, dn_scores, batch, postfix="_dn", match_indices=match_indices)
        total_loss.update(dn_loss)
    else:
        # If no denoising metadata is provided, set denoising loss to zero
        total_loss.update({f"{k}_dn": torch.tensor(0.0, device=self.device) for k in total_loss.keys()})

    return total_loss

get_dn_match_indices(dn_pos_idx, dn_num_group, gt_groups) staticmethod

Obt茅n los 铆ndices de coincidencia para la eliminaci贸n de ruido.

Par谩metros:

Nombre Tipo Descripci贸n Por defecto
dn_pos_idx List[Tensor]

Lista de tensores con 铆ndices positivos para la eliminaci贸n de ruido.

necesario
dn_num_group int

N煤mero de grupos de eliminaci贸n de ruido.

necesario
gt_groups List[int]

Lista de enteros que representan el n煤mero de verdades b谩sicas de cada imagen.

necesario

Devuelve:

Tipo Descripci贸n
List[tuple]

Lista de tuplas que contienen 铆ndices coincidentes para la eliminaci贸n de ruido.

C贸digo fuente en ultralytics/models/utils/loss.py
@staticmethod
def get_dn_match_indices(dn_pos_idx, dn_num_group, gt_groups):
    """
    Get the match indices for denoising.

    Args:
        dn_pos_idx (List[torch.Tensor]): List of tensors containing positive indices for denoising.
        dn_num_group (int): Number of denoising groups.
        gt_groups (List[int]): List of integers representing the number of ground truths for each image.

    Returns:
        (List[tuple]): List of tuples containing matched indices for denoising.
    """
    dn_match_indices = []
    idx_groups = torch.as_tensor([0, *gt_groups[:-1]]).cumsum_(0)
    for i, num_gt in enumerate(gt_groups):
        if num_gt > 0:
            gt_idx = torch.arange(end=num_gt, dtype=torch.long) + idx_groups[i]
            gt_idx = gt_idx.repeat(dn_num_group)
            assert len(dn_pos_idx[i]) == len(gt_idx), "Expected the same length, "
            f"but got {len(dn_pos_idx[i])} and {len(gt_idx)} respectively."
            dn_match_indices.append((dn_pos_idx[i], gt_idx))
        else:
            dn_match_indices.append((torch.zeros([0], dtype=torch.long), torch.zeros([0], dtype=torch.long)))
    return dn_match_indices





Creado 2023-11-12, Actualizado 2024-05-18
Autores: glenn-jocher (4), Burhan-Q (1), Laughing-q (1)