Saltar al contenido

Referencia para ultralytics/utils/metrics.py

Nota

Este archivo está disponible en https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/utils/metrics .py. Si detectas algún problema, por favor, ayuda a solucionarlo contribuyendo con una Pull Request 🛠️. ¡Gracias 🙏!



ultralytics.utils.metrics.ConfusionMatrix

Una clase para calcular y actualizar una matriz de confusión para tareas de detección y clasificación de objetos.

Atributos:

Nombre Tipo Descripción
task str

El tipo de tarea, "detectar" o "clasificar".

matrix ndarray

La matriz de confusión, con dimensiones que dependen de la tarea.

nc int

El número de clases.

conf float

El umbral de confianza para las detecciones.

iou_thres float

La intersección sobre el umbral de la Unión.

Código fuente en ultralytics/utils/metrics.py
class ConfusionMatrix:
    """
    A class for calculating and updating a confusion matrix for object detection and classification tasks.

    Attributes:
        task (str): The type of task, either 'detect' or 'classify'.
        matrix (np.ndarray): The confusion matrix, with dimensions depending on the task.
        nc (int): The number of classes.
        conf (float): The confidence threshold for detections.
        iou_thres (float): The Intersection over Union threshold.
    """

    def __init__(self, nc, conf=0.25, iou_thres=0.45, task="detect"):
        """Initialize attributes for the YOLO model."""
        self.task = task
        self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == "detect" else np.zeros((nc, nc))
        self.nc = nc  # number of classes
        self.conf = 0.25 if conf in {None, 0.001} else conf  # apply 0.25 if default val conf is passed
        self.iou_thres = iou_thres

    def process_cls_preds(self, preds, targets):
        """
        Update confusion matrix for classification task.

        Args:
            preds (Array[N, min(nc,5)]): Predicted class labels.
            targets (Array[N, 1]): Ground truth class labels.
        """
        preds, targets = torch.cat(preds)[:, 0], torch.cat(targets)
        for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()):
            self.matrix[p][t] += 1

    def process_batch(self, detections, gt_bboxes, gt_cls):
        """
        Update confusion matrix for object detection task.

        Args:
            detections (Array[N, 6] | Array[N, 7]): Detected bounding boxes and their associated information.
                                      Each row should contain (x1, y1, x2, y2, conf, class)
                                      or with an additional element `angle` when it's obb.
            gt_bboxes (Array[M, 4]| Array[N, 5]): Ground truth bounding boxes with xyxy/xyxyr format.
            gt_cls (Array[M]): The class labels.
        """
        if gt_cls.shape[0] == 0:  # Check if labels is empty
            if detections is not None:
                detections = detections[detections[:, 4] > self.conf]
                detection_classes = detections[:, 5].int()
                for dc in detection_classes:
                    self.matrix[dc, self.nc] += 1  # false positives
            return
        if detections is None:
            gt_classes = gt_cls.int()
            for gc in gt_classes:
                self.matrix[self.nc, gc] += 1  # background FN
            return

        detections = detections[detections[:, 4] > self.conf]
        gt_classes = gt_cls.int()
        detection_classes = detections[:, 5].int()
        is_obb = detections.shape[1] == 7 and gt_bboxes.shape[1] == 5  # with additional `angle` dimension
        iou = (
            batch_probiou(gt_bboxes, torch.cat([detections[:, :4], detections[:, -1:]], dim=-1))
            if is_obb
            else box_iou(gt_bboxes, detections[:, :4])
        )

        x = torch.where(iou > self.iou_thres)
        if x[0].shape[0]:
            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
            if x[0].shape[0] > 1:
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
        else:
            matches = np.zeros((0, 3))

        n = matches.shape[0] > 0
        m0, m1, _ = matches.transpose().astype(int)
        for i, gc in enumerate(gt_classes):
            j = m0 == i
            if n and sum(j) == 1:
                self.matrix[detection_classes[m1[j]], gc] += 1  # correct
            else:
                self.matrix[self.nc, gc] += 1  # true background

        if n:
            for i, dc in enumerate(detection_classes):
                if not any(m1 == i):
                    self.matrix[dc, self.nc] += 1  # predicted background

    def matrix(self):
        """Returns the confusion matrix."""
        return self.matrix

    def tp_fp(self):
        """Returns true positives and false positives."""
        tp = self.matrix.diagonal()  # true positives
        fp = self.matrix.sum(1) - tp  # false positives
        # fn = self.matrix.sum(0) - tp  # false negatives (missed detections)
        return (tp[:-1], fp[:-1]) if self.task == "detect" else (tp, fp)  # remove background class if task=detect

    @TryExcept("WARNING ⚠️ ConfusionMatrix plot failure")
    @plt_settings()
    def plot(self, normalize=True, save_dir="", names=(), on_plot=None):
        """
        Plot the confusion matrix using seaborn and save it to a file.

        Args:
            normalize (bool): Whether to normalize the confusion matrix.
            save_dir (str): Directory where the plot will be saved.
            names (tuple): Names of classes, used as labels on the plot.
            on_plot (func): An optional callback to pass plots path and data when they are rendered.
        """
        import seaborn  # scope for faster 'import ultralytics'

        array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1e-9) if normalize else 1)  # normalize columns
        array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)

        fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
        nc, nn = self.nc, len(names)  # number of classes, names
        seaborn.set_theme(font_scale=1.0 if nc < 50 else 0.8)  # for label size
        labels = (0 < nn < 99) and (nn == nc)  # apply names to ticklabels
        ticklabels = (list(names) + ["background"]) if labels else "auto"
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")  # suppress empty matrix RuntimeWarning: All-NaN slice encountered
            seaborn.heatmap(
                array,
                ax=ax,
                annot=nc < 30,
                annot_kws={"size": 8},
                cmap="Blues",
                fmt=".2f" if normalize else ".0f",
                square=True,
                vmin=0.0,
                xticklabels=ticklabels,
                yticklabels=ticklabels,
            ).set_facecolor((1, 1, 1))
        title = "Confusion Matrix" + " Normalized" * normalize
        ax.set_xlabel("True")
        ax.set_ylabel("Predicted")
        ax.set_title(title)
        plot_fname = Path(save_dir) / f'{title.lower().replace(" ", "_")}.png'
        fig.savefig(plot_fname, dpi=250)
        plt.close(fig)
        if on_plot:
            on_plot(plot_fname)

    def print(self):
        """Print the confusion matrix to the console."""
        for i in range(self.nc + 1):
            LOGGER.info(" ".join(map(str, self.matrix[i])))

__init__(nc, conf=0.25, iou_thres=0.45, task='detect')

Inicializa los atributos del modelo YOLO .

Código fuente en ultralytics/utils/metrics.py
def __init__(self, nc, conf=0.25, iou_thres=0.45, task="detect"):
    """Initialize attributes for the YOLO model."""
    self.task = task
    self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == "detect" else np.zeros((nc, nc))
    self.nc = nc  # number of classes
    self.conf = 0.25 if conf in {None, 0.001} else conf  # apply 0.25 if default val conf is passed
    self.iou_thres = iou_thres

matrix()

Devuelve la matriz de confusión.

Código fuente en ultralytics/utils/metrics.py
def matrix(self):
    """Returns the confusion matrix."""
    return self.matrix

plot(normalize=True, save_dir='', names=(), on_plot=None)

Traza la matriz de confusión con seaborn y guárdala en un archivo.

Parámetros:

Nombre Tipo Descripción Por defecto
normalize bool

Si se normaliza la matriz de confusión.

True
save_dir str

Directorio donde se guardará la trama.

''
names tuple

Nombres de las clases, utilizados como etiquetas en el gráfico.

()
on_plot func

Una llamada de retorno opcional para pasar la ruta de las tramas y los datos cuando se renderizan.

None
Código fuente en ultralytics/utils/metrics.py
@TryExcept("WARNING ⚠️ ConfusionMatrix plot failure")
@plt_settings()
def plot(self, normalize=True, save_dir="", names=(), on_plot=None):
    """
    Plot the confusion matrix using seaborn and save it to a file.

    Args:
        normalize (bool): Whether to normalize the confusion matrix.
        save_dir (str): Directory where the plot will be saved.
        names (tuple): Names of classes, used as labels on the plot.
        on_plot (func): An optional callback to pass plots path and data when they are rendered.
    """
    import seaborn  # scope for faster 'import ultralytics'

    array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1e-9) if normalize else 1)  # normalize columns
    array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)

    fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
    nc, nn = self.nc, len(names)  # number of classes, names
    seaborn.set_theme(font_scale=1.0 if nc < 50 else 0.8)  # for label size
    labels = (0 < nn < 99) and (nn == nc)  # apply names to ticklabels
    ticklabels = (list(names) + ["background"]) if labels else "auto"
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")  # suppress empty matrix RuntimeWarning: All-NaN slice encountered
        seaborn.heatmap(
            array,
            ax=ax,
            annot=nc < 30,
            annot_kws={"size": 8},
            cmap="Blues",
            fmt=".2f" if normalize else ".0f",
            square=True,
            vmin=0.0,
            xticklabels=ticklabels,
            yticklabels=ticklabels,
        ).set_facecolor((1, 1, 1))
    title = "Confusion Matrix" + " Normalized" * normalize
    ax.set_xlabel("True")
    ax.set_ylabel("Predicted")
    ax.set_title(title)
    plot_fname = Path(save_dir) / f'{title.lower().replace(" ", "_")}.png'
    fig.savefig(plot_fname, dpi=250)
    plt.close(fig)
    if on_plot:
        on_plot(plot_fname)

print()

Imprime la matriz de confusión en la consola.

Código fuente en ultralytics/utils/metrics.py
def print(self):
    """Print the confusion matrix to the console."""
    for i in range(self.nc + 1):
        LOGGER.info(" ".join(map(str, self.matrix[i])))

process_batch(detections, gt_bboxes, gt_cls)

Actualiza la matriz de confusión para la tarea de detección de objetos.

Parámetros:

Nombre Tipo Descripción Por defecto
detections Array[N, 6] | Array[N, 7]

Cuadros delimitadores detectados y su información asociada. Cada fila debe contener (x1, y1, x2, y2, conf, clase) o con un elemento adicional angle cuando es obb.

necesario
gt_bboxes Array[M, 4] | Array[N, 5]

Cuadros delimitadores de la verdad sobre el terreno con formato xyxy/xyxyr.

necesario
gt_cls Array[M]

Las etiquetas de clase.

necesario
Código fuente en ultralytics/utils/metrics.py
def process_batch(self, detections, gt_bboxes, gt_cls):
    """
    Update confusion matrix for object detection task.

    Args:
        detections (Array[N, 6] | Array[N, 7]): Detected bounding boxes and their associated information.
                                  Each row should contain (x1, y1, x2, y2, conf, class)
                                  or with an additional element `angle` when it's obb.
        gt_bboxes (Array[M, 4]| Array[N, 5]): Ground truth bounding boxes with xyxy/xyxyr format.
        gt_cls (Array[M]): The class labels.
    """
    if gt_cls.shape[0] == 0:  # Check if labels is empty
        if detections is not None:
            detections = detections[detections[:, 4] > self.conf]
            detection_classes = detections[:, 5].int()
            for dc in detection_classes:
                self.matrix[dc, self.nc] += 1  # false positives
        return
    if detections is None:
        gt_classes = gt_cls.int()
        for gc in gt_classes:
            self.matrix[self.nc, gc] += 1  # background FN
        return

    detections = detections[detections[:, 4] > self.conf]
    gt_classes = gt_cls.int()
    detection_classes = detections[:, 5].int()
    is_obb = detections.shape[1] == 7 and gt_bboxes.shape[1] == 5  # with additional `angle` dimension
    iou = (
        batch_probiou(gt_bboxes, torch.cat([detections[:, :4], detections[:, -1:]], dim=-1))
        if is_obb
        else box_iou(gt_bboxes, detections[:, :4])
    )

    x = torch.where(iou > self.iou_thres)
    if x[0].shape[0]:
        matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
        if x[0].shape[0] > 1:
            matches = matches[matches[:, 2].argsort()[::-1]]
            matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
            matches = matches[matches[:, 2].argsort()[::-1]]
            matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
    else:
        matches = np.zeros((0, 3))

    n = matches.shape[0] > 0
    m0, m1, _ = matches.transpose().astype(int)
    for i, gc in enumerate(gt_classes):
        j = m0 == i
        if n and sum(j) == 1:
            self.matrix[detection_classes[m1[j]], gc] += 1  # correct
        else:
            self.matrix[self.nc, gc] += 1  # true background

    if n:
        for i, dc in enumerate(detection_classes):
            if not any(m1 == i):
                self.matrix[dc, self.nc] += 1  # predicted background

process_cls_preds(preds, targets)

Actualiza la matriz de confusión para la tarea de clasificación.

Parámetros:

Nombre Tipo Descripción Por defecto
preds Array[N, min(nc, 5)]

Etiquetas de clase predichas.

necesario
targets Array[N, 1]

Etiquetas de clase de la verdad sobre el terreno.

necesario
Código fuente en ultralytics/utils/metrics.py
def process_cls_preds(self, preds, targets):
    """
    Update confusion matrix for classification task.

    Args:
        preds (Array[N, min(nc,5)]): Predicted class labels.
        targets (Array[N, 1]): Ground truth class labels.
    """
    preds, targets = torch.cat(preds)[:, 0], torch.cat(targets)
    for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()):
        self.matrix[p][t] += 1

tp_fp()

Devuelve verdaderos positivos y falsos positivos.

Código fuente en ultralytics/utils/metrics.py
def tp_fp(self):
    """Returns true positives and false positives."""
    tp = self.matrix.diagonal()  # true positives
    fp = self.matrix.sum(1) - tp  # false positives
    # fn = self.matrix.sum(0) - tp  # false negatives (missed detections)
    return (tp[:-1], fp[:-1]) if self.task == "detect" else (tp, fp)  # remove background class if task=detect



ultralytics.utils.metrics.Metric

Bases: SimpleClass

Clase para calcular las métricas de evaluación del modelo YOLOv8 .

Atributos:

Nombre Tipo Descripción
p list

Precisión para cada clase. Forma: (nc,).

r list

Recordatorio para cada clase. Forma: (nc,).

f1 list

Puntuación F1 de cada clase. Forma: (nc,).

all_ap list

Puntuaciones AP para todas las clases y todos los umbrales IoU. Forma: (nc, 10).

ap_class_index list

Índice de clase para cada puntuación AP. Forma: (nc,).

nc int

Número de clases.

Métodos:

Nombre Descripción
ap50

AP en el umbral IoU de 0,5 para todas las clases. Devuelve: Lista de puntuaciones AP. Forma: (nc,) o [].

ap

AP en umbrales de IoU de 0,5 a 0,95 para todas las clases. Devuelve: Lista de puntuaciones AP. Forma: (nc,) o [].

mp

Precisión media de todas las clases. Devuelve: Flotante.

mr

Recuerdo medio de todas las clases. Devuelve: Flotante.

map50

AP medio en el umbral de IoU de 0,5 para todas las clases. Devuelve: Flotante.

map75

AP medio en el umbral IoU de 0,75 para todas las clases. Devuelve: Flotante.

map

AP medio en umbrales de IoU de 0,5 a 0,95 para todas las clases. Devuelve: Flotante.

mean_results

Media de resultados, devuelve mp, mr, map50, map.

class_result

Resultado con clase, devuelve p[i], r[i], ap50[i], ap[i].

maps

mAP de cada clase. Devuelve: Matriz de puntuaciones mAP, forma: (nc,).

fitness

Aptitud del modelo como combinación ponderada de métricas. Devuelve: Flotante.

update

Actualiza los atributos métricos con los nuevos resultados de la evaluación.

Código fuente en ultralytics/utils/metrics.py
class Metric(SimpleClass):
    """
    Class for computing evaluation metrics for YOLOv8 model.

    Attributes:
        p (list): Precision for each class. Shape: (nc,).
        r (list): Recall for each class. Shape: (nc,).
        f1 (list): F1 score for each class. Shape: (nc,).
        all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).
        ap_class_index (list): Index of class for each AP score. Shape: (nc,).
        nc (int): Number of classes.

    Methods:
        ap50(): AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
        ap(): AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
        mp(): Mean precision of all classes. Returns: Float.
        mr(): Mean recall of all classes. Returns: Float.
        map50(): Mean AP at IoU threshold of 0.5 for all classes. Returns: Float.
        map75(): Mean AP at IoU threshold of 0.75 for all classes. Returns: Float.
        map(): Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float.
        mean_results(): Mean of results, returns mp, mr, map50, map.
        class_result(i): Class-aware result, returns p[i], r[i], ap50[i], ap[i].
        maps(): mAP of each class. Returns: Array of mAP scores, shape: (nc,).
        fitness(): Model fitness as a weighted combination of metrics. Returns: Float.
        update(results): Update metric attributes with new evaluation results.
    """

    def __init__(self) -> None:
        """Initializes a Metric instance for computing evaluation metrics for the YOLOv8 model."""
        self.p = []  # (nc, )
        self.r = []  # (nc, )
        self.f1 = []  # (nc, )
        self.all_ap = []  # (nc, 10)
        self.ap_class_index = []  # (nc, )
        self.nc = 0

    @property
    def ap50(self):
        """
        Returns the Average Precision (AP) at an IoU threshold of 0.5 for all classes.

        Returns:
            (np.ndarray, list): Array of shape (nc,) with AP50 values per class, or an empty list if not available.
        """
        return self.all_ap[:, 0] if len(self.all_ap) else []

    @property
    def ap(self):
        """
        Returns the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes.

        Returns:
            (np.ndarray, list): Array of shape (nc,) with AP50-95 values per class, or an empty list if not available.
        """
        return self.all_ap.mean(1) if len(self.all_ap) else []

    @property
    def mp(self):
        """
        Returns the Mean Precision of all classes.

        Returns:
            (float): The mean precision of all classes.
        """
        return self.p.mean() if len(self.p) else 0.0

    @property
    def mr(self):
        """
        Returns the Mean Recall of all classes.

        Returns:
            (float): The mean recall of all classes.
        """
        return self.r.mean() if len(self.r) else 0.0

    @property
    def map50(self):
        """
        Returns the mean Average Precision (mAP) at an IoU threshold of 0.5.

        Returns:
            (float): The mAP at an IoU threshold of 0.5.
        """
        return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0

    @property
    def map75(self):
        """
        Returns the mean Average Precision (mAP) at an IoU threshold of 0.75.

        Returns:
            (float): The mAP at an IoU threshold of 0.75.
        """
        return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0

    @property
    def map(self):
        """
        Returns the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05.

        Returns:
            (float): The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
        """
        return self.all_ap.mean() if len(self.all_ap) else 0.0

    def mean_results(self):
        """Mean of results, return mp, mr, map50, map."""
        return [self.mp, self.mr, self.map50, self.map]

    def class_result(self, i):
        """Class-aware result, return p[i], r[i], ap50[i], ap[i]."""
        return self.p[i], self.r[i], self.ap50[i], self.ap[i]

    @property
    def maps(self):
        """MAP of each class."""
        maps = np.zeros(self.nc) + self.map
        for i, c in enumerate(self.ap_class_index):
            maps[c] = self.ap[i]
        return maps

    def fitness(self):
        """Model fitness as a weighted combination of metrics."""
        w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
        return (np.array(self.mean_results()) * w).sum()

    def update(self, results):
        """
        Updates the evaluation metrics of the model with a new set of results.

        Args:
            results (tuple): A tuple containing the following evaluation metrics:
                - p (list): Precision for each class. Shape: (nc,).
                - r (list): Recall for each class. Shape: (nc,).
                - f1 (list): F1 score for each class. Shape: (nc,).
                - all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).
                - ap_class_index (list): Index of class for each AP score. Shape: (nc,).

        Side Effects:
            Updates the class attributes `self.p`, `self.r`, `self.f1`, `self.all_ap`, and `self.ap_class_index` based
            on the values provided in the `results` tuple.
        """
        (
            self.p,
            self.r,
            self.f1,
            self.all_ap,
            self.ap_class_index,
            self.p_curve,
            self.r_curve,
            self.f1_curve,
            self.px,
            self.prec_values,
        ) = results

    @property
    def curves(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return []

    @property
    def curves_results(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return [
            [self.px, self.prec_values, "Recall", "Precision"],
            [self.px, self.f1_curve, "Confidence", "F1"],
            [self.px, self.p_curve, "Confidence", "Precision"],
            [self.px, self.r_curve, "Confidence", "Recall"],
        ]

ap property

Devuelve la Precisión Media (PA) en un umbral de IoU de 0,5-0,95 para todas las clases.

Devuelve:

Tipo Descripción
(ndarray, list)

Matriz de formas (nc,) con valores AP50-95 por clase, o una lista vacía si no están disponibles.

ap50 property

Devuelve la Precisión Media (PA) en un umbral de IoU de 0,5 para todas las clases.

Devuelve:

Tipo Descripción
(ndarray, list)

Matriz de formas (nc,) con valores AP50 por clase, o una lista vacía si no están disponibles.

curves property

Devuelve una lista de curvas para acceder a curvas métricas concretas.

curves_results property

Devuelve una lista de curvas para acceder a curvas métricas concretas.

map property

Devuelve la precisión media media (mAP) sobre umbrales IoU de 0,5 - 0,95 en pasos de 0,05.

Devuelve:

Tipo Descripción
float

El mAP sobre umbrales IoU de 0,5 - 0,95 en pasos de 0,05.

map50 property

Devuelve la precisión media media (mAP) con un umbral de IoU de 0,5.

Devuelve:

Tipo Descripción
float

El mAP en un umbral de IoU de 0,5.

map75 property

Devuelve la precisión media media (mAP) con un umbral de IoU de 0,75.

Devuelve:

Tipo Descripción
float

El mAP en un umbral de IoU de 0,75.

maps property

MAPA de cada clase.

mp property

Devuelve la Precisión Media de todas las clases.

Devuelve:

Tipo Descripción
float

La precisión media de todas las clases.

mr property

Devuelve la Recuperación Media de todas las clases.

Devuelve:

Tipo Descripción
float

El recuerdo medio de todas las clases.

__init__()

Inicializa una instancia de Métrica para calcular las métricas de evaluación del modelo YOLOv8 .

Código fuente en ultralytics/utils/metrics.py
def __init__(self) -> None:
    """Initializes a Metric instance for computing evaluation metrics for the YOLOv8 model."""
    self.p = []  # (nc, )
    self.r = []  # (nc, )
    self.f1 = []  # (nc, )
    self.all_ap = []  # (nc, 10)
    self.ap_class_index = []  # (nc, )
    self.nc = 0

class_result(i)

Resultado con clase, devuelve p[i], r[i], ap50[i], ap[i].

Código fuente en ultralytics/utils/metrics.py
def class_result(self, i):
    """Class-aware result, return p[i], r[i], ap50[i], ap[i]."""
    return self.p[i], self.r[i], self.ap50[i], self.ap[i]

fitness()

Modela la aptitud como una combinación ponderada de métricas.

Código fuente en ultralytics/utils/metrics.py
def fitness(self):
    """Model fitness as a weighted combination of metrics."""
    w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
    return (np.array(self.mean_results()) * w).sum()

mean_results()

Media de resultados, devuelve mp, mr, map50, map.

Código fuente en ultralytics/utils/metrics.py
def mean_results(self):
    """Mean of results, return mp, mr, map50, map."""
    return [self.mp, self.mr, self.map50, self.map]

update(results)

Actualiza las métricas de evaluación del modelo con un nuevo conjunto de resultados.

Parámetros:

Nombre Tipo Descripción Por defecto
results tuple

Una tupla que contiene las siguientes métricas de evaluación: - p (lista): Precisión para cada clase. Forma: (nc,). - r (lista): Recuperación de cada clase. Forma: (nc,). - f1 (lista): Puntuación F1 de cada clase. Forma: (nc,). - all_ap (lista): Puntuaciones AP para todas las clases y todos los umbrales IoU. Forma: (nc, 10). - índice_clase_ap (lista): Índice de clase para cada puntuación AP. Forma: (nc,).

necesario
Efectos secundarios

Actualiza los atributos de la clase self.p, self.r, self.f1, self.all_apy self.ap_class_index basado en los valores proporcionados en el results tupla.

Código fuente en ultralytics/utils/metrics.py
def update(self, results):
    """
    Updates the evaluation metrics of the model with a new set of results.

    Args:
        results (tuple): A tuple containing the following evaluation metrics:
            - p (list): Precision for each class. Shape: (nc,).
            - r (list): Recall for each class. Shape: (nc,).
            - f1 (list): F1 score for each class. Shape: (nc,).
            - all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).
            - ap_class_index (list): Index of class for each AP score. Shape: (nc,).

    Side Effects:
        Updates the class attributes `self.p`, `self.r`, `self.f1`, `self.all_ap`, and `self.ap_class_index` based
        on the values provided in the `results` tuple.
    """
    (
        self.p,
        self.r,
        self.f1,
        self.all_ap,
        self.ap_class_index,
        self.p_curve,
        self.r_curve,
        self.f1_curve,
        self.px,
        self.prec_values,
    ) = results



ultralytics.utils.metrics.DetMetrics

Bases: SimpleClass

Esta clase es una clase de utilidad para calcular métricas de detección como la precisión, la recuperación y la precisión media promedio (mAP) de un modelo de detección de objetos.

Parámetros:

Nombre Tipo Descripción Por defecto
save_dir Path

Una ruta al directorio donde se guardarán los gráficos de salida. Por defecto es el directorio actual.

Path('.')
plot bool

Bandera que indica si se trazan curvas de precisión-recuerdo para cada clase. Por defecto es Falso.

False
on_plot func

Una llamada de retorno opcional para pasar la ruta de las tramas y los datos cuando se renderizan. Por defecto es Ninguno.

None
names tuple of str

Una tupla de cadenas que representa los nombres de las clases. Por defecto es una tupla vacía.

()

Atributos:

Nombre Tipo Descripción
save_dir Path

Una ruta al directorio donde se guardarán los gráficos de salida.

plot bool

Bandera que indica si se trazan las curvas de precisión-recuerdo de cada clase.

on_plot func

Una llamada de retorno opcional para pasar la ruta de las tramas y los datos cuando se renderizan.

names tuple of str

Una tupla de cadenas que representa los nombres de las clases.

box Metric

Una instancia de la clase Métrica para almacenar los resultados de las métricas de detección.

speed dict

Un diccionario para almacenar el tiempo de ejecución de las distintas partes del proceso de detección.

Métodos:

Nombre Descripción
process

Actualiza los resultados de la métrica con el último lote de predicciones.

keys

Devuelve una lista de claves para acceder a las métricas de detección calculadas.

mean_results

Devuelve una lista de valores medios de las métricas de detección calculadas.

class_result

Devuelve una lista de valores de las métricas de detección calculadas para una clase concreta.

maps

Devuelve un diccionario de valores de precisión media (mAP) para distintos umbrales de IoU.

fitness

Calcula la puntuación de aptitud en función de las métricas de detección calculadas.

ap_class_index

Devuelve una lista de índices de clase ordenados por sus valores de precisión media (AP).

results_dict

Devuelve un diccionario que asigna las claves de la métrica de detección a sus valores calculados.

curves

TODO

curves_results

TODO

Código fuente en ultralytics/utils/metrics.py
class DetMetrics(SimpleClass):
    """
    This class is a utility class for computing detection metrics such as precision, recall, and mean average precision
    (mAP) of an object detection model.

    Args:
        save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory.
        plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False.
        on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
        names (tuple of str): A tuple of strings that represents the names of the classes. Defaults to an empty tuple.

    Attributes:
        save_dir (Path): A path to the directory where the output plots will be saved.
        plot (bool): A flag that indicates whether to plot the precision-recall curves for each class.
        on_plot (func): An optional callback to pass plots path and data when they are rendered.
        names (tuple of str): A tuple of strings that represents the names of the classes.
        box (Metric): An instance of the Metric class for storing the results of the detection metrics.
        speed (dict): A dictionary for storing the execution time of different parts of the detection process.

    Methods:
        process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions.
        keys: Returns a list of keys for accessing the computed detection metrics.
        mean_results: Returns a list of mean values for the computed detection metrics.
        class_result(i): Returns a list of values for the computed detection metrics for a specific class.
        maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds.
        fitness: Computes the fitness score based on the computed detection metrics.
        ap_class_index: Returns a list of class indices sorted by their average precision (AP) values.
        results_dict: Returns a dictionary that maps detection metric keys to their computed values.
        curves: TODO
        curves_results: TODO
    """

    def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None:
        """Initialize a DetMetrics instance with a save directory, plot flag, callback function, and class names."""
        self.save_dir = save_dir
        self.plot = plot
        self.on_plot = on_plot
        self.names = names
        self.box = Metric()
        self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
        self.task = "detect"

    def process(self, tp, conf, pred_cls, target_cls):
        """Process predicted results for object detection and update metrics."""
        results = ap_per_class(
            tp,
            conf,
            pred_cls,
            target_cls,
            plot=self.plot,
            save_dir=self.save_dir,
            names=self.names,
            on_plot=self.on_plot,
        )[2:]
        self.box.nc = len(self.names)
        self.box.update(results)

    @property
    def keys(self):
        """Returns a list of keys for accessing specific metrics."""
        return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP50(B)", "metrics/mAP50-95(B)"]

    def mean_results(self):
        """Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95."""
        return self.box.mean_results()

    def class_result(self, i):
        """Return the result of evaluating the performance of an object detection model on a specific class."""
        return self.box.class_result(i)

    @property
    def maps(self):
        """Returns mean Average Precision (mAP) scores per class."""
        return self.box.maps

    @property
    def fitness(self):
        """Returns the fitness of box object."""
        return self.box.fitness()

    @property
    def ap_class_index(self):
        """Returns the average precision index per class."""
        return self.box.ap_class_index

    @property
    def results_dict(self):
        """Returns dictionary of computed performance metrics and statistics."""
        return dict(zip(self.keys + ["fitness"], self.mean_results() + [self.fitness]))

    @property
    def curves(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return ["Precision-Recall(B)", "F1-Confidence(B)", "Precision-Confidence(B)", "Recall-Confidence(B)"]

    @property
    def curves_results(self):
        """Returns dictionary of computed performance metrics and statistics."""
        return self.box.curves_results

ap_class_index property

Devuelve el índice medio de precisión por clase.

curves property

Devuelve una lista de curvas para acceder a curvas métricas concretas.

curves_results property

Devuelve el diccionario de métricas y estadísticas de rendimiento calculadas.

fitness property

Devuelve la aptitud del objeto caja.

keys property

Devuelve una lista de claves para acceder a métricas concretas.

maps property

Devuelve las puntuaciones medias de Precisión Media (mAP) por clase.

results_dict property

Devuelve el diccionario de métricas y estadísticas de rendimiento calculadas.

__init__(save_dir=Path('.'), plot=False, on_plot=None, names=())

Inicializa una instancia de DetMetrics con un directorio de guardado, una bandera de trazado, una función de llamada de retorno y los nombres de las clases.

Código fuente en ultralytics/utils/metrics.py
def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None:
    """Initialize a DetMetrics instance with a save directory, plot flag, callback function, and class names."""
    self.save_dir = save_dir
    self.plot = plot
    self.on_plot = on_plot
    self.names = names
    self.box = Metric()
    self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
    self.task = "detect"

class_result(i)

Devuelve el resultado de evaluar el rendimiento de un modelo de detección de objetos en una clase concreta.

Código fuente en ultralytics/utils/metrics.py
def class_result(self, i):
    """Return the result of evaluating the performance of an object detection model on a specific class."""
    return self.box.class_result(i)

mean_results()

Calcula la media de objetos detectados y devuelve precisión, recall, mAP50 y mAP50-95.

Código fuente en ultralytics/utils/metrics.py
def mean_results(self):
    """Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95."""
    return self.box.mean_results()

process(tp, conf, pred_cls, target_cls)

Procesa los resultados previstos para la detección de objetos y actualiza las métricas.

Código fuente en ultralytics/utils/metrics.py
def process(self, tp, conf, pred_cls, target_cls):
    """Process predicted results for object detection and update metrics."""
    results = ap_per_class(
        tp,
        conf,
        pred_cls,
        target_cls,
        plot=self.plot,
        save_dir=self.save_dir,
        names=self.names,
        on_plot=self.on_plot,
    )[2:]
    self.box.nc = len(self.names)
    self.box.update(results)



ultralytics.utils.metrics.SegmentMetrics

Bases: SimpleClass

Calcula y agrega métricas de detección y segmentación sobre un conjunto dado de clases.

Parámetros:

Nombre Tipo Descripción Por defecto
save_dir Path

Ruta al directorio donde deben guardarse los gráficos de salida. Por defecto es el directorio actual.

Path('.')
plot bool

Si se guardan los gráficos de detección y segmentación. Por defecto es Falso.

False
on_plot func

Una llamada de retorno opcional para pasar la ruta de las tramas y los datos cuando se renderizan. Por defecto es Ninguno.

None
names list

Lista de nombres de clases. Por defecto es una lista vacía.

()

Atributos:

Nombre Tipo Descripción
save_dir Path

Ruta al directorio donde deben guardarse los gráficos de salida.

plot bool

Si se guardan los trazados de detección y segmentación.

on_plot func

Una llamada de retorno opcional para pasar la ruta de las tramas y los datos cuando se renderizan.

names list

Lista de nombres de clase.

box Metric

Una instancia de la clase Métrica para calcular las métricas de detección de cajas.

seg Metric

Una instancia de la clase Métrica para calcular las métricas de segmentación de la máscara.

speed dict

Diccionario para almacenar el tiempo empleado en las distintas fases de la inferencia.

Métodos:

Nombre Descripción
process

Procesa métricas sobre el conjunto de predicciones dado.

mean_results

Devuelve la media de las métricas de detección y segmentación de todas las clases.

class_result

Devuelve las métricas de detección y segmentación de la clase i.

maps

Devuelve las puntuaciones medias de Precisión Media (mAP) para umbrales de IoU comprendidos entre 0,50 y 0,95.

fitness

Devuelve las puntuaciones de aptitud, que son una única combinación ponderada de métricas.

ap_class_index

Devuelve la lista de índices de las clases utilizadas para calcular la Precisión Media (PA).

results_dict

Devuelve el diccionario que contiene todas las métricas de detección y segmentación y la puntuación de aptitud.

Código fuente en ultralytics/utils/metrics.py
class SegmentMetrics(SimpleClass):
    """
    Calculates and aggregates detection and segmentation metrics over a given set of classes.

    Args:
        save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
        plot (bool): Whether to save the detection and segmentation plots. Default is False.
        on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
        names (list): List of class names. Default is an empty list.

    Attributes:
        save_dir (Path): Path to the directory where the output plots should be saved.
        plot (bool): Whether to save the detection and segmentation plots.
        on_plot (func): An optional callback to pass plots path and data when they are rendered.
        names (list): List of class names.
        box (Metric): An instance of the Metric class to calculate box detection metrics.
        seg (Metric): An instance of the Metric class to calculate mask segmentation metrics.
        speed (dict): Dictionary to store the time taken in different phases of inference.

    Methods:
        process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
        mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
        class_result(i): Returns the detection and segmentation metrics of class `i`.
        maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
        fitness: Returns the fitness scores, which are a single weighted combination of metrics.
        ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
        results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
    """

    def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None:
        """Initialize a SegmentMetrics instance with a save directory, plot flag, callback function, and class names."""
        self.save_dir = save_dir
        self.plot = plot
        self.on_plot = on_plot
        self.names = names
        self.box = Metric()
        self.seg = Metric()
        self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
        self.task = "segment"

    def process(self, tp, tp_m, conf, pred_cls, target_cls):
        """
        Processes the detection and segmentation metrics over the given set of predictions.

        Args:
            tp (list): List of True Positive boxes.
            tp_m (list): List of True Positive masks.
            conf (list): List of confidence scores.
            pred_cls (list): List of predicted classes.
            target_cls (list): List of target classes.
        """

        results_mask = ap_per_class(
            tp_m,
            conf,
            pred_cls,
            target_cls,
            plot=self.plot,
            on_plot=self.on_plot,
            save_dir=self.save_dir,
            names=self.names,
            prefix="Mask",
        )[2:]
        self.seg.nc = len(self.names)
        self.seg.update(results_mask)
        results_box = ap_per_class(
            tp,
            conf,
            pred_cls,
            target_cls,
            plot=self.plot,
            on_plot=self.on_plot,
            save_dir=self.save_dir,
            names=self.names,
            prefix="Box",
        )[2:]
        self.box.nc = len(self.names)
        self.box.update(results_box)

    @property
    def keys(self):
        """Returns a list of keys for accessing metrics."""
        return [
            "metrics/precision(B)",
            "metrics/recall(B)",
            "metrics/mAP50(B)",
            "metrics/mAP50-95(B)",
            "metrics/precision(M)",
            "metrics/recall(M)",
            "metrics/mAP50(M)",
            "metrics/mAP50-95(M)",
        ]

    def mean_results(self):
        """Return the mean metrics for bounding box and segmentation results."""
        return self.box.mean_results() + self.seg.mean_results()

    def class_result(self, i):
        """Returns classification results for a specified class index."""
        return self.box.class_result(i) + self.seg.class_result(i)

    @property
    def maps(self):
        """Returns mAP scores for object detection and semantic segmentation models."""
        return self.box.maps + self.seg.maps

    @property
    def fitness(self):
        """Get the fitness score for both segmentation and bounding box models."""
        return self.seg.fitness() + self.box.fitness()

    @property
    def ap_class_index(self):
        """Boxes and masks have the same ap_class_index."""
        return self.box.ap_class_index

    @property
    def results_dict(self):
        """Returns results of object detection model for evaluation."""
        return dict(zip(self.keys + ["fitness"], self.mean_results() + [self.fitness]))

    @property
    def curves(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return [
            "Precision-Recall(B)",
            "F1-Confidence(B)",
            "Precision-Confidence(B)",
            "Recall-Confidence(B)",
            "Precision-Recall(M)",
            "F1-Confidence(M)",
            "Precision-Confidence(M)",
            "Recall-Confidence(M)",
        ]

    @property
    def curves_results(self):
        """Returns dictionary of computed performance metrics and statistics."""
        return self.box.curves_results + self.seg.curves_results

ap_class_index property

Las cajas y las máscaras tienen el mismo ap_class_index.

curves property

Devuelve una lista de curvas para acceder a curvas métricas concretas.

curves_results property

Devuelve el diccionario de métricas y estadísticas de rendimiento calculadas.

fitness property

Obtén la puntuación de aptitud de los modelos de segmentación y de cuadro delimitador.

keys property

Devuelve una lista de claves para acceder a las métricas.

maps property

Devuelve las puntuaciones mAP de los modelos de detección de objetos y segmentación semántica.

results_dict property

Devuelve los resultados del modelo de detección de objetos para su evaluación.

__init__(save_dir=Path('.'), plot=False, on_plot=None, names=())

Inicializa una instancia de SegmentMetrics con un directorio de guardado, una bandera de trazado, una función de llamada de retorno y nombres de clase.

Código fuente en ultralytics/utils/metrics.py
def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None:
    """Initialize a SegmentMetrics instance with a save directory, plot flag, callback function, and class names."""
    self.save_dir = save_dir
    self.plot = plot
    self.on_plot = on_plot
    self.names = names
    self.box = Metric()
    self.seg = Metric()
    self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
    self.task = "segment"

class_result(i)

Devuelve los resultados de la clasificación para un índice de clase especificado.

Código fuente en ultralytics/utils/metrics.py
def class_result(self, i):
    """Returns classification results for a specified class index."""
    return self.box.class_result(i) + self.seg.class_result(i)

mean_results()

Devuelve la métrica media de la caja delimitadora y los resultados de la segmentación.

Código fuente en ultralytics/utils/metrics.py
def mean_results(self):
    """Return the mean metrics for bounding box and segmentation results."""
    return self.box.mean_results() + self.seg.mean_results()

process(tp, tp_m, conf, pred_cls, target_cls)

Procesa las métricas de detección y segmentación sobre el conjunto de predicciones dado.

Parámetros:

Nombre Tipo Descripción Por defecto
tp list

Lista de casillas Verdadero Positivo.

necesario
tp_m list

Lista de máscaras Verdaderamente Positivas.

necesario
conf list

Lista de puntuaciones de confianza.

necesario
pred_cls list

Lista de clases previstas.

necesario
target_cls list

Lista de clases objetivo.

necesario
Código fuente en ultralytics/utils/metrics.py
def process(self, tp, tp_m, conf, pred_cls, target_cls):
    """
    Processes the detection and segmentation metrics over the given set of predictions.

    Args:
        tp (list): List of True Positive boxes.
        tp_m (list): List of True Positive masks.
        conf (list): List of confidence scores.
        pred_cls (list): List of predicted classes.
        target_cls (list): List of target classes.
    """

    results_mask = ap_per_class(
        tp_m,
        conf,
        pred_cls,
        target_cls,
        plot=self.plot,
        on_plot=self.on_plot,
        save_dir=self.save_dir,
        names=self.names,
        prefix="Mask",
    )[2:]
    self.seg.nc = len(self.names)
    self.seg.update(results_mask)
    results_box = ap_per_class(
        tp,
        conf,
        pred_cls,
        target_cls,
        plot=self.plot,
        on_plot=self.on_plot,
        save_dir=self.save_dir,
        names=self.names,
        prefix="Box",
    )[2:]
    self.box.nc = len(self.names)
    self.box.update(results_box)



ultralytics.utils.metrics.PoseMetrics

Bases: SegmentMetrics

Calcula y agrega métricas de detección y pose sobre un conjunto dado de clases.

Parámetros:

Nombre Tipo Descripción Por defecto
save_dir Path

Ruta al directorio donde deben guardarse los gráficos de salida. Por defecto es el directorio actual.

Path('.')
plot bool

Si se guardan los gráficos de detección y segmentación. Por defecto es Falso.

False
on_plot func

Una llamada de retorno opcional para pasar la ruta de las tramas y los datos cuando se renderizan. Por defecto es Ninguno.

None
names list

Lista de nombres de clases. Por defecto es una lista vacía.

()

Atributos:

Nombre Tipo Descripción
save_dir Path

Ruta al directorio donde deben guardarse los gráficos de salida.

plot bool

Si se guardan los trazados de detección y segmentación.

on_plot func

Una llamada de retorno opcional para pasar la ruta de las tramas y los datos cuando se renderizan.

names list

Lista de nombres de clase.

box Metric

Una instancia de la clase Métrica para calcular las métricas de detección de cajas.

pose Metric

Una instancia de la clase Métrica para calcular las métricas de segmentación de la máscara.

speed dict

Diccionario para almacenar el tiempo empleado en las distintas fases de la inferencia.

Métodos:

Nombre Descripción
process

Procesa métricas sobre el conjunto de predicciones dado.

mean_results

Devuelve la media de las métricas de detección y segmentación de todas las clases.

class_result

Devuelve las métricas de detección y segmentación de la clase i.

maps

Devuelve las puntuaciones medias de Precisión Media (mAP) para umbrales de IoU comprendidos entre 0,50 y 0,95.

fitness

Devuelve las puntuaciones de aptitud, que son una única combinación ponderada de métricas.

ap_class_index

Devuelve la lista de índices de las clases utilizadas para calcular la Precisión Media (PA).

results_dict

Devuelve el diccionario que contiene todas las métricas de detección y segmentación y la puntuación de aptitud.

Código fuente en ultralytics/utils/metrics.py
class PoseMetrics(SegmentMetrics):
    """
    Calculates and aggregates detection and pose metrics over a given set of classes.

    Args:
        save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
        plot (bool): Whether to save the detection and segmentation plots. Default is False.
        on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
        names (list): List of class names. Default is an empty list.

    Attributes:
        save_dir (Path): Path to the directory where the output plots should be saved.
        plot (bool): Whether to save the detection and segmentation plots.
        on_plot (func): An optional callback to pass plots path and data when they are rendered.
        names (list): List of class names.
        box (Metric): An instance of the Metric class to calculate box detection metrics.
        pose (Metric): An instance of the Metric class to calculate mask segmentation metrics.
        speed (dict): Dictionary to store the time taken in different phases of inference.

    Methods:
        process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
        mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
        class_result(i): Returns the detection and segmentation metrics of class `i`.
        maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
        fitness: Returns the fitness scores, which are a single weighted combination of metrics.
        ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
        results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
    """

    def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None:
        """Initialize the PoseMetrics class with directory path, class names, and plotting options."""
        super().__init__(save_dir, plot, names)
        self.save_dir = save_dir
        self.plot = plot
        self.on_plot = on_plot
        self.names = names
        self.box = Metric()
        self.pose = Metric()
        self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
        self.task = "pose"

    def process(self, tp, tp_p, conf, pred_cls, target_cls):
        """
        Processes the detection and pose metrics over the given set of predictions.

        Args:
            tp (list): List of True Positive boxes.
            tp_p (list): List of True Positive keypoints.
            conf (list): List of confidence scores.
            pred_cls (list): List of predicted classes.
            target_cls (list): List of target classes.
        """

        results_pose = ap_per_class(
            tp_p,
            conf,
            pred_cls,
            target_cls,
            plot=self.plot,
            on_plot=self.on_plot,
            save_dir=self.save_dir,
            names=self.names,
            prefix="Pose",
        )[2:]
        self.pose.nc = len(self.names)
        self.pose.update(results_pose)
        results_box = ap_per_class(
            tp,
            conf,
            pred_cls,
            target_cls,
            plot=self.plot,
            on_plot=self.on_plot,
            save_dir=self.save_dir,
            names=self.names,
            prefix="Box",
        )[2:]
        self.box.nc = len(self.names)
        self.box.update(results_box)

    @property
    def keys(self):
        """Returns list of evaluation metric keys."""
        return [
            "metrics/precision(B)",
            "metrics/recall(B)",
            "metrics/mAP50(B)",
            "metrics/mAP50-95(B)",
            "metrics/precision(P)",
            "metrics/recall(P)",
            "metrics/mAP50(P)",
            "metrics/mAP50-95(P)",
        ]

    def mean_results(self):
        """Return the mean results of box and pose."""
        return self.box.mean_results() + self.pose.mean_results()

    def class_result(self, i):
        """Return the class-wise detection results for a specific class i."""
        return self.box.class_result(i) + self.pose.class_result(i)

    @property
    def maps(self):
        """Returns the mean average precision (mAP) per class for both box and pose detections."""
        return self.box.maps + self.pose.maps

    @property
    def fitness(self):
        """Computes classification metrics and speed using the `targets` and `pred` inputs."""
        return self.pose.fitness() + self.box.fitness()

    @property
    def curves(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return [
            "Precision-Recall(B)",
            "F1-Confidence(B)",
            "Precision-Confidence(B)",
            "Recall-Confidence(B)",
            "Precision-Recall(P)",
            "F1-Confidence(P)",
            "Precision-Confidence(P)",
            "Recall-Confidence(P)",
        ]

    @property
    def curves_results(self):
        """Returns dictionary of computed performance metrics and statistics."""
        return self.box.curves_results + self.pose.curves_results

curves property

Devuelve una lista de curvas para acceder a curvas métricas concretas.

curves_results property

Devuelve el diccionario de métricas y estadísticas de rendimiento calculadas.

fitness property

Calcula las métricas de clasificación y la velocidad utilizando el targets y pred entradas.

keys property

Devuelve la lista de claves métricas de evaluación.

maps property

Devuelve la precisión media (mAP) por clase para las detecciones de caja y pose.

__init__(save_dir=Path('.'), plot=False, on_plot=None, names=())

Inicializa la clase PoseMetrics con la ruta del directorio, los nombres de las clases y las opciones de trazado.

Código fuente en ultralytics/utils/metrics.py
def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None:
    """Initialize the PoseMetrics class with directory path, class names, and plotting options."""
    super().__init__(save_dir, plot, names)
    self.save_dir = save_dir
    self.plot = plot
    self.on_plot = on_plot
    self.names = names
    self.box = Metric()
    self.pose = Metric()
    self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
    self.task = "pose"

class_result(i)

Devuelve los resultados de la detección por clases de una clase concreta i.

Código fuente en ultralytics/utils/metrics.py
def class_result(self, i):
    """Return the class-wise detection results for a specific class i."""
    return self.box.class_result(i) + self.pose.class_result(i)

mean_results()

Devuelve los resultados medios de caja y pose.

Código fuente en ultralytics/utils/metrics.py
def mean_results(self):
    """Return the mean results of box and pose."""
    return self.box.mean_results() + self.pose.mean_results()

process(tp, tp_p, conf, pred_cls, target_cls)

Procesa las métricas de detección y pose sobre el conjunto de predicciones dado.

Parámetros:

Nombre Tipo Descripción Por defecto
tp list

Lista de casillas Verdadero Positivo.

necesario
tp_p list

Lista de puntos clave Verdaderamente Positivos.

necesario
conf list

Lista de puntuaciones de confianza.

necesario
pred_cls list

Lista de clases previstas.

necesario
target_cls list

Lista de clases objetivo.

necesario
Código fuente en ultralytics/utils/metrics.py
def process(self, tp, tp_p, conf, pred_cls, target_cls):
    """
    Processes the detection and pose metrics over the given set of predictions.

    Args:
        tp (list): List of True Positive boxes.
        tp_p (list): List of True Positive keypoints.
        conf (list): List of confidence scores.
        pred_cls (list): List of predicted classes.
        target_cls (list): List of target classes.
    """

    results_pose = ap_per_class(
        tp_p,
        conf,
        pred_cls,
        target_cls,
        plot=self.plot,
        on_plot=self.on_plot,
        save_dir=self.save_dir,
        names=self.names,
        prefix="Pose",
    )[2:]
    self.pose.nc = len(self.names)
    self.pose.update(results_pose)
    results_box = ap_per_class(
        tp,
        conf,
        pred_cls,
        target_cls,
        plot=self.plot,
        on_plot=self.on_plot,
        save_dir=self.save_dir,
        names=self.names,
        prefix="Box",
    )[2:]
    self.box.nc = len(self.names)
    self.box.update(results_box)



ultralytics.utils.metrics.ClassifyMetrics

Bases: SimpleClass

Clase para calcular las métricas de clasificación, incluida la precisión top-1 y top-5.

Atributos:

Nombre Tipo Descripción
top1 float

La precisión top-1.

top5 float

El top-5 de la precisión.

speed Dict[str, float]

Un diccionario que contiene el tiempo empleado en cada paso del proceso.

Propiedades

aptitud (flotante): La aptitud del modelo, que equivale a la precisión del top-5. diccionario_resultados (Dict[cadena, Unión[flotante, cadena]]): Un diccionario que contiene las métricas de clasificación y la aptitud. keys (Lista[str]): Una lista de claves para el diccionario_resultados.

Métodos:

Nombre Descripción
process

Procesa los objetivos y las predicciones para calcular las métricas de clasificación.

Código fuente en ultralytics/utils/metrics.py
class ClassifyMetrics(SimpleClass):
    """
    Class for computing classification metrics including top-1 and top-5 accuracy.

    Attributes:
        top1 (float): The top-1 accuracy.
        top5 (float): The top-5 accuracy.
        speed (Dict[str, float]): A dictionary containing the time taken for each step in the pipeline.

    Properties:
        fitness (float): The fitness of the model, which is equal to top-5 accuracy.
        results_dict (Dict[str, Union[float, str]]): A dictionary containing the classification metrics and fitness.
        keys (List[str]): A list of keys for the results_dict.

    Methods:
        process(targets, pred): Processes the targets and predictions to compute classification metrics.
    """

    def __init__(self) -> None:
        """Initialize a ClassifyMetrics instance."""
        self.top1 = 0
        self.top5 = 0
        self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
        self.task = "classify"

    def process(self, targets, pred):
        """Target classes and predicted classes."""
        pred, targets = torch.cat(pred), torch.cat(targets)
        correct = (targets[:, None] == pred).float()
        acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1)  # (top1, top5) accuracy
        self.top1, self.top5 = acc.mean(0).tolist()

    @property
    def fitness(self):
        """Returns mean of top-1 and top-5 accuracies as fitness score."""
        return (self.top1 + self.top5) / 2

    @property
    def results_dict(self):
        """Returns a dictionary with model's performance metrics and fitness score."""
        return dict(zip(self.keys + ["fitness"], [self.top1, self.top5, self.fitness]))

    @property
    def keys(self):
        """Returns a list of keys for the results_dict property."""
        return ["metrics/accuracy_top1", "metrics/accuracy_top5"]

    @property
    def curves(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return []

    @property
    def curves_results(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return []

curves property

Devuelve una lista de curvas para acceder a curvas métricas concretas.

curves_results property

Devuelve una lista de curvas para acceder a curvas métricas concretas.

fitness property

Devuelve la media de las precisiones top-1 y top-5 como puntuación de aptitud.

keys property

Devuelve una lista de claves para la propiedad diccionario_resultados.

results_dict property

Devuelve un diccionario con las métricas de rendimiento y la puntuación de aptitud del modelo.

__init__()

Inicializa una instancia de ClassifyMetrics.

Código fuente en ultralytics/utils/metrics.py
def __init__(self) -> None:
    """Initialize a ClassifyMetrics instance."""
    self.top1 = 0
    self.top5 = 0
    self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
    self.task = "classify"

process(targets, pred)

Clases objetivo y clases previstas.

Código fuente en ultralytics/utils/metrics.py
def process(self, targets, pred):
    """Target classes and predicted classes."""
    pred, targets = torch.cat(pred), torch.cat(targets)
    correct = (targets[:, None] == pred).float()
    acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1)  # (top1, top5) accuracy
    self.top1, self.top5 = acc.mean(0).tolist()



ultralytics.utils.metrics.OBBMetrics

Bases: SimpleClass

Código fuente en ultralytics/utils/metrics.py
class OBBMetrics(SimpleClass):
    def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None:
        self.save_dir = save_dir
        self.plot = plot
        self.on_plot = on_plot
        self.names = names
        self.box = Metric()
        self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}

    def process(self, tp, conf, pred_cls, target_cls):
        """Process predicted results for object detection and update metrics."""
        results = ap_per_class(
            tp,
            conf,
            pred_cls,
            target_cls,
            plot=self.plot,
            save_dir=self.save_dir,
            names=self.names,
            on_plot=self.on_plot,
        )[2:]
        self.box.nc = len(self.names)
        self.box.update(results)

    @property
    def keys(self):
        """Returns a list of keys for accessing specific metrics."""
        return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP50(B)", "metrics/mAP50-95(B)"]

    def mean_results(self):
        """Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95."""
        return self.box.mean_results()

    def class_result(self, i):
        """Return the result of evaluating the performance of an object detection model on a specific class."""
        return self.box.class_result(i)

    @property
    def maps(self):
        """Returns mean Average Precision (mAP) scores per class."""
        return self.box.maps

    @property
    def fitness(self):
        """Returns the fitness of box object."""
        return self.box.fitness()

    @property
    def ap_class_index(self):
        """Returns the average precision index per class."""
        return self.box.ap_class_index

    @property
    def results_dict(self):
        """Returns dictionary of computed performance metrics and statistics."""
        return dict(zip(self.keys + ["fitness"], self.mean_results() + [self.fitness]))

    @property
    def curves(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return []

    @property
    def curves_results(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return []

ap_class_index property

Devuelve el índice medio de precisión por clase.

curves property

Devuelve una lista de curvas para acceder a curvas métricas concretas.

curves_results property

Devuelve una lista de curvas para acceder a curvas métricas concretas.

fitness property

Devuelve la aptitud del objeto caja.

keys property

Devuelve una lista de claves para acceder a métricas concretas.

maps property

Devuelve las puntuaciones medias de Precisión Media (mAP) por clase.

results_dict property

Devuelve el diccionario de métricas y estadísticas de rendimiento calculadas.

class_result(i)

Devuelve el resultado de evaluar el rendimiento de un modelo de detección de objetos en una clase concreta.

Código fuente en ultralytics/utils/metrics.py
def class_result(self, i):
    """Return the result of evaluating the performance of an object detection model on a specific class."""
    return self.box.class_result(i)

mean_results()

Calcula la media de objetos detectados y devuelve precisión, recall, mAP50 y mAP50-95.

Código fuente en ultralytics/utils/metrics.py
def mean_results(self):
    """Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95."""
    return self.box.mean_results()

process(tp, conf, pred_cls, target_cls)

Procesa los resultados previstos para la detección de objetos y actualiza las métricas.

Código fuente en ultralytics/utils/metrics.py
def process(self, tp, conf, pred_cls, target_cls):
    """Process predicted results for object detection and update metrics."""
    results = ap_per_class(
        tp,
        conf,
        pred_cls,
        target_cls,
        plot=self.plot,
        save_dir=self.save_dir,
        names=self.names,
        on_plot=self.on_plot,
    )[2:]
    self.box.nc = len(self.names)
    self.box.update(results)



ultralytics.utils.metrics.bbox_ioa(box1, box2, iou=False, eps=1e-07)

Calcula la intersección sobre el área de la caja2 dadas la caja1 y la caja2. Las cajas están en formato x1y1x2y2.

Parámetros:

Nombre Tipo Descripción Por defecto
box1 ndarray

Una matriz numpy de forma (n, 4) que representa n cajas delimitadoras.

necesario
box2 ndarray

Una matriz numpy de forma (m, 4) que representa m cajas delimitadoras.

necesario
iou bool

Calcula el IoU estándar si Verdadero si no devuelve inter_área/área_caja2.

False
eps float

Un valor pequeño para evitar la división por cero. Por defecto es 1e-7.

1e-07

Devuelve:

Tipo Descripción
ndarray

Una matriz numpy de forma (n, m) que representa la intersección sobre el área de la caja2.

Código fuente en ultralytics/utils/metrics.py
def bbox_ioa(box1, box2, iou=False, eps=1e-7):
    """
    Calculate the intersection over box2 area given box1 and box2. Boxes are in x1y1x2y2 format.

    Args:
        box1 (np.ndarray): A numpy array of shape (n, 4) representing n bounding boxes.
        box2 (np.ndarray): A numpy array of shape (m, 4) representing m bounding boxes.
        iou (bool): Calculate the standard IoU if True else return inter_area/box2_area.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (np.ndarray): A numpy array of shape (n, m) representing the intersection over box2 area.
    """

    # Get the coordinates of bounding boxes
    b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
    b2_x1, b2_y1, b2_x2, b2_y2 = box2.T

    # Intersection area
    inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * (
        np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)
    ).clip(0)

    # Box2 area
    area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)
    if iou:
        box1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
        area = area + box1_area[:, None] - inter_area

    # Intersection over box2 area
    return inter_area / (area + eps)



ultralytics.utils.metrics.box_iou(box1, box2, eps=1e-07)

Calcula la intersección sobre la unión (IoU) de cajas. Se espera que ambos conjuntos de cajas tengan el formato (x1, y1, x2, y2). Basado en https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py

Parámetros:

Nombre Tipo Descripción Por defecto
box1 Tensor

Un tensor de forma (N, 4) que representa N cajas delimitadoras.

necesario
box2 Tensor

Un tensor de forma (M, 4) que representa M cajas delimitadoras.

necesario
eps float

Un valor pequeño para evitar la división por cero. Por defecto es 1e-7.

1e-07

Devuelve:

Tipo Descripción
Tensor

Un NxM tensor que contiene los valores de IoU por pares de cada elemento de la caja1 y la caja2.

Código fuente en ultralytics/utils/metrics.py
def box_iou(box1, box2, eps=1e-7):
    """
    Calculate intersection-over-union (IoU) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py

    Args:
        box1 (torch.Tensor): A tensor of shape (N, 4) representing N bounding boxes.
        box2 (torch.Tensor): A tensor of shape (M, 4) representing M bounding boxes.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2.
    """

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp_(0).prod(2)

    # IoU = inter / (area1 + area2 - inter)
    return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)



ultralytics.utils.metrics.bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-07)

Calcula la intersección sobre la unión (IOU) de la caja1(1, 4) con la caja2(n, 4).

Parámetros:

Nombre Tipo Descripción Por defecto
box1 Tensor

Un tensor que representa un único cuadro delimitador con forma (1, 4).

necesario
box2 Tensor

Un tensor que representa n cajas delimitadoras con forma (n, 4).

necesario
xywh bool

Si es Verdadero, los cuadros de entrada tienen el formato (x, y, w, h). Si es Falso, los cuadros de entrada tienen el formato (x1, y1, x2, y2). Por defecto es Verdadero.

True
GIoU bool

Si es Verdadero, calcula el IoU Generalizado. Por defecto es Falso.

False
DIoU bool

Si es Verdadero, calcula la Distancia IoU. Por defecto es Falso.

False
CIoU bool

Si es Verdadero, calcula el IoU Completo. Por defecto es Falso.

False
eps float

Un valor pequeño para evitar la división por cero. Por defecto es 1e-7.

1e-07

Devuelve:

Tipo Descripción
Tensor

Valores IoU, GIoU, DIoU o CIoU en función de las banderas especificadas.

Código fuente en ultralytics/utils/metrics.py
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
    """
    Calculate Intersection over Union (IoU) of box1(1, 4) to box2(n, 4).

    Args:
        box1 (torch.Tensor): A tensor representing a single bounding box with shape (1, 4).
        box2 (torch.Tensor): A tensor representing n bounding boxes with shape (n, 4).
        xywh (bool, optional): If True, input boxes are in (x, y, w, h) format. If False, input boxes are in
                               (x1, y1, x2, y2) format. Defaults to True.
        GIoU (bool, optional): If True, calculate Generalized IoU. Defaults to False.
        DIoU (bool, optional): If True, calculate Distance IoU. Defaults to False.
        CIoU (bool, optional): If True, calculate Complete IoU. Defaults to False.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (torch.Tensor): IoU, GIoU, DIoU, or CIoU values depending on the specified flags.
    """

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
        w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * (
        b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)
    ).clamp_(0)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps

    # IoU
    iou = inter / union
    if CIoU or DIoU or GIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw.pow(2) + ch.pow(2) + eps  # convex diagonal squared
            rho2 = (
                (b2_x1 + b2_x2 - b1_x1 - b1_x2).pow(2) + (b2_y1 + b2_y2 - b1_y1 - b1_y2).pow(2)
            ) / 4  # center dist**2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi**2) * ((w2 / h2).atan() - (w1 / h1).atan()).pow(2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
            return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    return iou  # IoU



ultralytics.utils.metrics.mask_iou(mask1, mask2, eps=1e-07)

Calcula las máscaras IoU.

Parámetros:

Nombre Tipo Descripción Por defecto
mask1 Tensor

Un tensor de forma (N, n) donde N es el número de objetos de la verdad sobre el terreno y n es la producto de la anchura y la altura de la imagen.

necesario
mask2 Tensor

Un tensor de forma (M, n) donde M es el número de objetos previstos y n es la producto de la anchura y la altura de la imagen.

necesario
eps float

Un valor pequeño para evitar la división por cero. Por defecto es 1e-7.

1e-07

Devuelve:

Tipo Descripción
Tensor

Un tensor de forma (N, M) que representa las máscaras IoU.

Código fuente en ultralytics/utils/metrics.py
def mask_iou(mask1, mask2, eps=1e-7):
    """
    Calculate masks IoU.

    Args:
        mask1 (torch.Tensor): A tensor of shape (N, n) where N is the number of ground truth objects and n is the
                        product of image width and height.
        mask2 (torch.Tensor): A tensor of shape (M, n) where M is the number of predicted objects and n is the
                        product of image width and height.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (torch.Tensor): A tensor of shape (N, M) representing masks IoU.
    """
    intersection = torch.matmul(mask1, mask2.T).clamp_(0)
    union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection  # (area1 + area2) - intersection
    return intersection / (union + eps)



ultralytics.utils.metrics.kpt_iou(kpt1, kpt2, area, sigma, eps=1e-07)

Calcula la similitud de los puntos clave del objeto (OKS).

Parámetros:

Nombre Tipo Descripción Por defecto
kpt1 Tensor

Un tensor de forma (N, 17, 3) que representa los puntos clave de la verdad sobre el terreno.

necesario
kpt2 Tensor

Un tensor de forma (M, 17, 3) que representa los puntos clave previstos.

necesario
area Tensor

Un tensor de forma (N,) que representa áreas de la verdad sobre el terreno.

necesario
sigma list

Una lista que contiene 17 valores que representan escalas de puntos clave.

necesario
eps float

Un valor pequeño para evitar la división por cero. Por defecto es 1e-7.

1e-07

Devuelve:

Tipo Descripción
Tensor

Un tensor de forma (N, M) que representa las similitudes de los puntos clave.

Código fuente en ultralytics/utils/metrics.py
def kpt_iou(kpt1, kpt2, area, sigma, eps=1e-7):
    """
    Calculate Object Keypoint Similarity (OKS).

    Args:
        kpt1 (torch.Tensor): A tensor of shape (N, 17, 3) representing ground truth keypoints.
        kpt2 (torch.Tensor): A tensor of shape (M, 17, 3) representing predicted keypoints.
        area (torch.Tensor): A tensor of shape (N,) representing areas from ground truth.
        sigma (list): A list containing 17 values representing keypoint scales.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (torch.Tensor): A tensor of shape (N, M) representing keypoint similarities.
    """
    d = (kpt1[:, None, :, 0] - kpt2[..., 0]).pow(2) + (kpt1[:, None, :, 1] - kpt2[..., 1]).pow(2)  # (N, M, 17)
    sigma = torch.tensor(sigma, device=kpt1.device, dtype=kpt1.dtype)  # (17, )
    kpt_mask = kpt1[..., 2] != 0  # (N, 17)
    e = d / ((2 * sigma).pow(2) * (area[:, None, None] + eps) * 2)  # from cocoeval
    # e = d / ((area[None, :, None] + eps) * sigma) ** 2 / 2  # from formula
    return ((-e).exp() * kpt_mask[:, None]).sum(-1) / (kpt_mask.sum(-1)[:, None] + eps)



ultralytics.utils.metrics._get_covariance_matrix(boxes)

Generar matriz de covarianza a partir de obbs.

Parámetros:

Nombre Tipo Descripción Por defecto
boxes Tensor

Un tensor de forma (N, 5) que representa cajas delimitadoras rotadas, con formato xywhr.

necesario

Devuelve:

Tipo Descripción
Tensor

Metrices de covarianza correspondientes a los cuadros delimitadores originales rotados.

Código fuente en ultralytics/utils/metrics.py
def _get_covariance_matrix(boxes):
    """
    Generating covariance matrix from obbs.

    Args:
        boxes (torch.Tensor): A tensor of shape (N, 5) representing rotated bounding boxes, with xywhr format.

    Returns:
        (torch.Tensor): Covariance metrixs corresponding to original rotated bounding boxes.
    """
    # Gaussian bounding boxes, ignore the center points (the first two columns) because they are not needed here.
    gbbs = torch.cat((boxes[:, 2:4].pow(2) / 12, boxes[:, 4:]), dim=-1)
    a, b, c = gbbs.split(1, dim=-1)
    cos = c.cos()
    sin = c.sin()
    cos2 = cos.pow(2)
    sin2 = sin.pow(2)
    return a * cos2 + b * sin2, a * sin2 + b * cos2, (a - b) * cos * sin



ultralytics.utils.metrics.probiou(obb1, obb2, CIoU=False, eps=1e-07)

Calcula la prob IoU entre cajas delimitadoras orientadas, https://arxiv.org/pdf/2106.06072v1.pdf.

Parámetros:

Nombre Tipo Descripción Por defecto
obb1 Tensor

Un tensor de forma (N, 5) que representa obbs de la verdad del terreno, con formato xywhr.

necesario
obb2 Tensor

Un tensor de forma (N, 5) que representa los obbs previstos, con formato xywhr.

necesario
eps float

Un valor pequeño para evitar la división por cero. Por defecto es 1e-7.

1e-07

Devuelve:

Tipo Descripción
Tensor

Un tensor de forma (N, ) que representa las similitudes obb.

Código fuente en ultralytics/utils/metrics.py
def probiou(obb1, obb2, CIoU=False, eps=1e-7):
    """
    Calculate the prob IoU between oriented bounding boxes, https://arxiv.org/pdf/2106.06072v1.pdf.

    Args:
        obb1 (torch.Tensor): A tensor of shape (N, 5) representing ground truth obbs, with xywhr format.
        obb2 (torch.Tensor): A tensor of shape (N, 5) representing predicted obbs, with xywhr format.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (torch.Tensor): A tensor of shape (N, ) representing obb similarities.
    """
    x1, y1 = obb1[..., :2].split(1, dim=-1)
    x2, y2 = obb2[..., :2].split(1, dim=-1)
    a1, b1, c1 = _get_covariance_matrix(obb1)
    a2, b2, c2 = _get_covariance_matrix(obb2)

    t1 = (
        ((a1 + a2) * (y1 - y2).pow(2) + (b1 + b2) * (x1 - x2).pow(2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)
    ) * 0.25
    t2 = (((c1 + c2) * (x2 - x1) * (y1 - y2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)) * 0.5
    t3 = (
        ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2))
        / (4 * ((a1 * b1 - c1.pow(2)).clamp_(0) * (a2 * b2 - c2.pow(2)).clamp_(0)).sqrt() + eps)
        + eps
    ).log() * 0.5
    bd = (t1 + t2 + t3).clamp(eps, 100.0)
    hd = (1.0 - (-bd).exp() + eps).sqrt()
    iou = 1 - hd
    if CIoU:  # only include the wh aspect ratio part
        w1, h1 = obb1[..., 2:4].split(1, dim=-1)
        w2, h2 = obb2[..., 2:4].split(1, dim=-1)
        v = (4 / math.pi**2) * ((w2 / h2).atan() - (w1 / h1).atan()).pow(2)
        with torch.no_grad():
            alpha = v / (v - iou + (1 + eps))
        return iou - v * alpha  # CIoU
    return iou



ultralytics.utils.metrics.batch_probiou(obb1, obb2, eps=1e-07)

Calcula la prob IoU entre cajas delimitadoras orientadas, https://arxiv.org/pdf/2106.06072v1.pdf.

Parámetros:

Nombre Tipo Descripción Por defecto
obb1 Tensor | ndarray

Un tensor de forma (N, 5) que representa obbs de la verdad del terreno, con formato xywhr.

necesario
obb2 Tensor | ndarray

Un tensor de forma (M, 5) que representa los obbs previstos, con formato xywhr.

necesario
eps float

Un valor pequeño para evitar la división por cero. Por defecto es 1e-7.

1e-07

Devuelve:

Tipo Descripción
Tensor

Un tensor de forma (N, M) que representa las similitudes obb.

Código fuente en ultralytics/utils/metrics.py
def batch_probiou(obb1, obb2, eps=1e-7):
    """
    Calculate the prob IoU between oriented bounding boxes, https://arxiv.org/pdf/2106.06072v1.pdf.

    Args:
        obb1 (torch.Tensor | np.ndarray): A tensor of shape (N, 5) representing ground truth obbs, with xywhr format.
        obb2 (torch.Tensor | np.ndarray): A tensor of shape (M, 5) representing predicted obbs, with xywhr format.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (torch.Tensor): A tensor of shape (N, M) representing obb similarities.
    """
    obb1 = torch.from_numpy(obb1) if isinstance(obb1, np.ndarray) else obb1
    obb2 = torch.from_numpy(obb2) if isinstance(obb2, np.ndarray) else obb2

    x1, y1 = obb1[..., :2].split(1, dim=-1)
    x2, y2 = (x.squeeze(-1)[None] for x in obb2[..., :2].split(1, dim=-1))
    a1, b1, c1 = _get_covariance_matrix(obb1)
    a2, b2, c2 = (x.squeeze(-1)[None] for x in _get_covariance_matrix(obb2))

    t1 = (
        ((a1 + a2) * (y1 - y2).pow(2) + (b1 + b2) * (x1 - x2).pow(2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)
    ) * 0.25
    t2 = (((c1 + c2) * (x2 - x1) * (y1 - y2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)) * 0.5
    t3 = (
        ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2))
        / (4 * ((a1 * b1 - c1.pow(2)).clamp_(0) * (a2 * b2 - c2.pow(2)).clamp_(0)).sqrt() + eps)
        + eps
    ).log() * 0.5
    bd = (t1 + t2 + t3).clamp(eps, 100.0)
    hd = (1.0 - (-bd).exp() + eps).sqrt()
    return 1 - hd



ultralytics.utils.metrics.smooth_BCE(eps=0.1)

Calcula objetivos de Entropía Cruzada Binaria positiva y negativa suavizados.

Esta función calcula los objetivos BCE de suavizado de etiquetas positivas y negativas basándose en un valor épsilon dado. Para más detalles sobre la implementación, consulta https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441.

Parámetros:

Nombre Tipo Descripción Por defecto
eps float

El valor épsilon para el suavizado de etiquetas. Por defecto es 0,1.

0.1

Devuelve:

Tipo Descripción
tuple

Una tupla que contiene los objetivos BCE de suavizado de etiquetas positivas y negativas.

Código fuente en ultralytics/utils/metrics.py
def smooth_BCE(eps=0.1):
    """
    Computes smoothed positive and negative Binary Cross-Entropy targets.

    This function calculates positive and negative label smoothing BCE targets based on a given epsilon value.
    For implementation details, refer to https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441.

    Args:
        eps (float, optional): The epsilon value for label smoothing. Defaults to 0.1.

    Returns:
        (tuple): A tuple containing the positive and negative label smoothing BCE targets.
    """
    return 1.0 - 0.5 * eps, 0.5 * eps



ultralytics.utils.metrics.smooth(y, f=0.05)

Filtro de caja de la fracción f.

Código fuente en ultralytics/utils/metrics.py
def smooth(y, f=0.05):
    """Box filter of fraction f."""
    nf = round(len(y) * f * 2) // 2 + 1  # number of filter elements (must be odd)
    p = np.ones(nf // 2)  # ones padding
    yp = np.concatenate((p * y[0], y, p * y[-1]), 0)  # y padded
    return np.convolve(yp, np.ones(nf) / nf, mode="valid")  # y-smoothed



ultralytics.utils.metrics.plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=(), on_plot=None)

Traza una curva de precisión-recuerdo.

Código fuente en ultralytics/utils/metrics.py
@plt_settings()
def plot_pr_curve(px, py, ap, save_dir=Path("pr_curve.png"), names=(), on_plot=None):
    """Plots a precision-recall curve."""
    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
    py = np.stack(py, axis=1)

    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py.T):
            ax.plot(px, y, linewidth=1, label=f"{names[i]} {ap[i, 0]:.3f}")  # plot(recall, precision)
    else:
        ax.plot(px, py, linewidth=1, color="grey")  # plot(recall, precision)

    ax.plot(px, py.mean(1), linewidth=3, color="blue", label="all classes %.3f mAP@0.5" % ap[:, 0].mean())
    ax.set_xlabel("Recall")
    ax.set_ylabel("Precision")
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
    ax.set_title("Precision-Recall Curve")
    fig.savefig(save_dir, dpi=250)
    plt.close(fig)
    if on_plot:
        on_plot(save_dir)



ultralytics.utils.metrics.plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric', on_plot=None)

Traza una curva métrica de confianza.

Código fuente en ultralytics/utils/metrics.py
@plt_settings()
def plot_mc_curve(px, py, save_dir=Path("mc_curve.png"), names=(), xlabel="Confidence", ylabel="Metric", on_plot=None):
    """Plots a metric-confidence curve."""
    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)

    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py):
            ax.plot(px, y, linewidth=1, label=f"{names[i]}")  # plot(confidence, metric)
    else:
        ax.plot(px, py.T, linewidth=1, color="grey")  # plot(confidence, metric)

    y = smooth(py.mean(0), 0.05)
    ax.plot(px, y, linewidth=3, color="blue", label=f"all classes {y.max():.2f} at {px[y.argmax()]:.3f}")
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
    ax.set_title(f"{ylabel}-Confidence Curve")
    fig.savefig(save_dir, dpi=250)
    plt.close(fig)
    if on_plot:
        on_plot(save_dir)



ultralytics.utils.metrics.compute_ap(recall, precision)

Calcula la precisión media (PA) dadas las curvas de recuerdo y precisión.

Parámetros:

Nombre Tipo Descripción Por defecto
recall list

La curva de recuerdo.

necesario
precision list

La curva de precisión.

necesario

Devuelve:

Tipo Descripción
float

Precisión media.

ndarray

Curva envolvente de precisión.

ndarray

Curva de recuerdo modificada con valores centinela añadidos al principio y al final.

Código fuente en ultralytics/utils/metrics.py
def compute_ap(recall, precision):
    """
    Compute the average precision (AP) given the recall and precision curves.

    Args:
        recall (list): The recall curve.
        precision (list): The precision curve.

    Returns:
        (float): Average precision.
        (np.ndarray): Precision envelope curve.
        (np.ndarray): Modified recall curve with sentinel values added at the beginning and end.
    """

    # Append sentinel values to beginning and end
    mrec = np.concatenate(([0.0], recall, [1.0]))
    mpre = np.concatenate(([1.0], precision, [0.0]))

    # Compute the precision envelope
    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))

    # Integrate area under curve
    method = "interp"  # methods: 'continuous', 'interp'
    if method == "interp":
        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
        ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate
    else:  # 'continuous'
        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x-axis (recall) changes
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve

    return ap, mpre, mrec



ultralytics.utils.metrics.ap_per_class(tp, conf, pred_cls, target_cls, plot=False, on_plot=None, save_dir=Path(), names=(), eps=1e-16, prefix='')

Calcula la precisión media por clase para la evaluación de la detección de objetos.

Parámetros:

Nombre Tipo Descripción Por defecto
tp ndarray

Matriz binaria que indica si la detección es correcta (Verdadero) o no (Falso).

necesario
conf ndarray

Conjunto de puntuaciones de confianza de las detecciones.

necesario
pred_cls ndarray

Conjunto de clases previstas de las detecciones.

necesario
target_cls ndarray

Conjunto de clases verdaderas de las detecciones.

necesario
plot bool

Si se trazan o no las curvas PR. Por defecto es Falso.

False
on_plot func

Una llamada de retorno para pasar la ruta y los datos de las tramas cuando se renderizan. Por defecto es Ninguno.

None
save_dir Path

Directorio para guardar las curvas PR. Por defecto es una ruta vacía.

Path()
names tuple

Tupla de nombres de clases para trazar las curvas PR. Por defecto es una tupla vacía.

()
eps float

Un valor pequeño para evitar la división por cero. Por defecto es 1e-16.

1e-16
prefix str

Una cadena de prefijo para guardar los archivos de trama. Por defecto es una cadena vacía.

''

Devuelve:

Tipo Descripción
tuple

Una tupla de seis matrices y una matriz de clases únicas, donde: tp (np.ndarray): Recuentos de verdaderos positivos en el umbral dado por la métrica F1 máxima para cada clase.Forma: (nc,). fp (np.ndarray): Recuentos de falsos positivos en el umbral dado por la métrica F1 máxima para cada clase. Forma: (nc,). p (np.ndarray): Valores de precisión en el umbral dado por la métrica F1 máxima para cada clase. Forma: (nc,). r (np.ndarray): Valores de recuperación en el umbral dado por la métrica F1 máxima para cada clase. Forma: (nc,). f1 (np.ndarray): Valores de puntuación F1 en el umbral dado por la métrica F1 máxima para cada clase. Forma: (nc,). ap (np.ndarray): Precisión media para cada clase en diferentes umbrales de IoU. Forma: (nc, 10). clases_únicas (np.ndarray): Matriz de clases únicas que tienen datos. Forma: (nc,). curva_p (np.ndarray): Curvas de precisión de cada clase. Forma: (nc, 1000). Curva_r (np.ndarray): Curvas de recuperación de cada clase. Forma: (nc, 1000). curva_f1 (np.ndarray): Curvas de puntuación F1 para cada clase. Forma: (nc, 1000). x (np.ndarray): Valores del eje X para las curvas. Forma: (1000,). valores_precisión: Valores de precisión en mAP@0.5 para cada clase. Forma: (nc, 1000).

Código fuente en ultralytics/utils/metrics.py
def ap_per_class(
    tp, conf, pred_cls, target_cls, plot=False, on_plot=None, save_dir=Path(), names=(), eps=1e-16, prefix=""
):
    """
    Computes the average precision per class for object detection evaluation.

    Args:
        tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False).
        conf (np.ndarray): Array of confidence scores of the detections.
        pred_cls (np.ndarray): Array of predicted classes of the detections.
        target_cls (np.ndarray): Array of true classes of the detections.
        plot (bool, optional): Whether to plot PR curves or not. Defaults to False.
        on_plot (func, optional): A callback to pass plots path and data when they are rendered. Defaults to None.
        save_dir (Path, optional): Directory to save the PR curves. Defaults to an empty path.
        names (tuple, optional): Tuple of class names to plot PR curves. Defaults to an empty tuple.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-16.
        prefix (str, optional): A prefix string for saving the plot files. Defaults to an empty string.

    Returns:
        (tuple): A tuple of six arrays and one array of unique classes, where:
            tp (np.ndarray): True positive counts at threshold given by max F1 metric for each class.Shape: (nc,).
            fp (np.ndarray): False positive counts at threshold given by max F1 metric for each class. Shape: (nc,).
            p (np.ndarray): Precision values at threshold given by max F1 metric for each class. Shape: (nc,).
            r (np.ndarray): Recall values at threshold given by max F1 metric for each class. Shape: (nc,).
            f1 (np.ndarray): F1-score values at threshold given by max F1 metric for each class. Shape: (nc,).
            ap (np.ndarray): Average precision for each class at different IoU thresholds. Shape: (nc, 10).
            unique_classes (np.ndarray): An array of unique classes that have data. Shape: (nc,).
            p_curve (np.ndarray): Precision curves for each class. Shape: (nc, 1000).
            r_curve (np.ndarray): Recall curves for each class. Shape: (nc, 1000).
            f1_curve (np.ndarray): F1-score curves for each class. Shape: (nc, 1000).
            x (np.ndarray): X-axis values for the curves. Shape: (1000,).
            prec_values: Precision values at mAP@0.5 for each class. Shape: (nc, 1000).
    """

    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes, nt = np.unique(target_cls, return_counts=True)
    nc = unique_classes.shape[0]  # number of classes, number of detections

    # Create Precision-Recall curve and compute AP for each class
    x, prec_values = np.linspace(0, 1, 1000), []

    # Average precision, precision and recall curves
    ap, p_curve, r_curve = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
    for ci, c in enumerate(unique_classes):
        i = pred_cls == c
        n_l = nt[ci]  # number of labels
        n_p = i.sum()  # number of predictions
        if n_p == 0 or n_l == 0:
            continue

        # Accumulate FPs and TPs
        fpc = (1 - tp[i]).cumsum(0)
        tpc = tp[i].cumsum(0)

        # Recall
        recall = tpc / (n_l + eps)  # recall curve
        r_curve[ci] = np.interp(-x, -conf[i], recall[:, 0], left=0)  # negative x, xp because xp decreases

        # Precision
        precision = tpc / (tpc + fpc)  # precision curve
        p_curve[ci] = np.interp(-x, -conf[i], precision[:, 0], left=1)  # p at pr_score

        # AP from recall-precision curve
        for j in range(tp.shape[1]):
            ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
            if plot and j == 0:
                prec_values.append(np.interp(x, mrec, mpre))  # precision at mAP@0.5

    prec_values = np.array(prec_values)  # (nc, 1000)

    # Compute F1 (harmonic mean of precision and recall)
    f1_curve = 2 * p_curve * r_curve / (p_curve + r_curve + eps)
    names = [v for k, v in names.items() if k in unique_classes]  # list: only classes that have data
    names = dict(enumerate(names))  # to dict
    if plot:
        plot_pr_curve(x, prec_values, ap, save_dir / f"{prefix}PR_curve.png", names, on_plot=on_plot)
        plot_mc_curve(x, f1_curve, save_dir / f"{prefix}F1_curve.png", names, ylabel="F1", on_plot=on_plot)
        plot_mc_curve(x, p_curve, save_dir / f"{prefix}P_curve.png", names, ylabel="Precision", on_plot=on_plot)
        plot_mc_curve(x, r_curve, save_dir / f"{prefix}R_curve.png", names, ylabel="Recall", on_plot=on_plot)

    i = smooth(f1_curve.mean(0), 0.1).argmax()  # max F1 index
    p, r, f1 = p_curve[:, i], r_curve[:, i], f1_curve[:, i]  # max-F1 precision, recall, F1 values
    tp = (r * nt).round()  # true positives
    fp = (tp / (p + eps) - tp).round()  # false positives
    return tp, fp, p, r, f1, ap, unique_classes.astype(int), p_curve, r_curve, f1_curve, x, prec_values





Creado 2023-11-12, Actualizado 2024-05-18
Autores: glenn-jocher (6), Burhan-Q (1), Laughing-q (1)