Saltar al contenido

Referencia para ultralytics/utils/plotting.py

Nota

Este archivo est√° disponible en https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/utils/plotting .py. Si detectas alg√ļn problema, por favor, ayuda a solucionarlo contribuyendo con una Pull Request ūüõ†ÔłŹ. ¬°Gracias ūüôŹ!



ultralytics.utils.plotting.Colors

Ultralytics paleta de colores por defecto https://ultralytics.com/.

Esta clase proporciona métodos para trabajar con la paleta de colores Ultralytics , incluida la conversión de códigos de color hexadecimales a valores RGB.

Atributos:

Nombre Tipo Descripción
palette list of tuple

Lista de valores de color RGB.

n int

El n√ļmero de colores de la paleta.

pose_palette ndarray

Una matriz específica de la paleta de colores con dtype np.uint8.

Código fuente en ultralytics/utils/plotting.py
class Colors:
    """
    Ultralytics default color palette https://ultralytics.com/.

    This class provides methods to work with the Ultralytics color palette, including converting hex color codes to
    RGB values.

    Attributes:
        palette (list of tuple): List of RGB color values.
        n (int): The number of colors in the palette.
        pose_palette (np.ndarray): A specific color palette array with dtype np.uint8.
    """

    def __init__(self):
        """Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
        hexs = (
            "FF3838",
            "FF9D97",
            "FF701F",
            "FFB21D",
            "CFD231",
            "48F90A",
            "92CC17",
            "3DDB86",
            "1A9334",
            "00D4BB",
            "2C99A8",
            "00C2FF",
            "344593",
            "6473FF",
            "0018EC",
            "8438FF",
            "520085",
            "CB38FF",
            "FF95C8",
            "FF37C7",
        )
        self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
        self.n = len(self.palette)
        self.pose_palette = np.array(
            [
                [255, 128, 0],
                [255, 153, 51],
                [255, 178, 102],
                [230, 230, 0],
                [255, 153, 255],
                [153, 204, 255],
                [255, 102, 255],
                [255, 51, 255],
                [102, 178, 255],
                [51, 153, 255],
                [255, 153, 153],
                [255, 102, 102],
                [255, 51, 51],
                [153, 255, 153],
                [102, 255, 102],
                [51, 255, 51],
                [0, 255, 0],
                [0, 0, 255],
                [255, 0, 0],
                [255, 255, 255],
            ],
            dtype=np.uint8,
        )

    def __call__(self, i, bgr=False):
        """Converts hex color codes to RGB values."""
        c = self.palette[int(i) % self.n]
        return (c[2], c[1], c[0]) if bgr else c

    @staticmethod
    def hex2rgb(h):
        """Converts hex color codes to RGB values (i.e. default PIL order)."""
        return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))

__call__(i, bgr=False)

Convierte los códigos hexadecimales de color en valores RGB.

Código fuente en ultralytics/utils/plotting.py
def __call__(self, i, bgr=False):
    """Converts hex color codes to RGB values."""
    c = self.palette[int(i) % self.n]
    return (c[2], c[1], c[0]) if bgr else c

__init__()

Inicializa los colores como hex = matplotlib.colors.TABLEAU_COLORS.values().

Código fuente en ultralytics/utils/plotting.py
def __init__(self):
    """Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
    hexs = (
        "FF3838",
        "FF9D97",
        "FF701F",
        "FFB21D",
        "CFD231",
        "48F90A",
        "92CC17",
        "3DDB86",
        "1A9334",
        "00D4BB",
        "2C99A8",
        "00C2FF",
        "344593",
        "6473FF",
        "0018EC",
        "8438FF",
        "520085",
        "CB38FF",
        "FF95C8",
        "FF37C7",
    )
    self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
    self.n = len(self.palette)
    self.pose_palette = np.array(
        [
            [255, 128, 0],
            [255, 153, 51],
            [255, 178, 102],
            [230, 230, 0],
            [255, 153, 255],
            [153, 204, 255],
            [255, 102, 255],
            [255, 51, 255],
            [102, 178, 255],
            [51, 153, 255],
            [255, 153, 153],
            [255, 102, 102],
            [255, 51, 51],
            [153, 255, 153],
            [102, 255, 102],
            [51, 255, 51],
            [0, 255, 0],
            [0, 0, 255],
            [255, 0, 0],
            [255, 255, 255],
        ],
        dtype=np.uint8,
    )

hex2rgb(h) staticmethod

Convierte los códigos de color hexadecimales en valores RGB (es decir, el orden PIL por defecto).

Código fuente en ultralytics/utils/plotting.py
@staticmethod
def hex2rgb(h):
    """Converts hex color codes to RGB values (i.e. default PIL order)."""
    return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))



ultralytics.utils.plotting.Annotator

Ultralytics Anotador para mosaicos y JPG de tren/val y anotaciones de predicciones.

Atributos:

Nombre Tipo Descripción
im Image.Image or numpy array

La imagen a anotar.

pil bool

Si utilizar PIL o cv2 para dibujar anotaciones.

font truetype or load_default

Fuente utilizada para las anotaciones de texto.

lw float

Ancho de línea para dibujar.

skeleton List[List[int]]

Estructura de esqueleto para puntos clave.

limb_color List[int]

Paleta de colores para las extremidades.

kpt_color List[int]

Paleta de colores para los puntos clave.

Código fuente en ultralytics/utils/plotting.py
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
class Annotator:
    """
    Ultralytics Annotator for train/val mosaics and JPGs and predictions annotations.

    Attributes:
        im (Image.Image or numpy array): The image to annotate.
        pil (bool): Whether to use PIL or cv2 for drawing annotations.
        font (ImageFont.truetype or ImageFont.load_default): Font used for text annotations.
        lw (float): Line width for drawing.
        skeleton (List[List[int]]): Skeleton structure for keypoints.
        limb_color (List[int]): Color palette for limbs.
        kpt_color (List[int]): Color palette for keypoints.
    """

    def __init__(self, im, line_width=None, font_size=None, font="Arial.ttf", pil=False, example="abc"):
        """Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
        non_ascii = not is_ascii(example)  # non-latin labels, i.e. asian, arabic, cyrillic
        input_is_pil = isinstance(im, Image.Image)
        self.pil = pil or non_ascii or input_is_pil
        self.lw = line_width or max(round(sum(im.size if input_is_pil else im.shape) / 2 * 0.003), 2)
        if self.pil:  # use PIL
            self.im = im if input_is_pil else Image.fromarray(im)
            self.draw = ImageDraw.Draw(self.im)
            try:
                font = check_font("Arial.Unicode.ttf" if non_ascii else font)
                size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
                self.font = ImageFont.truetype(str(font), size)
            except Exception:
                self.font = ImageFont.load_default()
            # Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string)
            if check_version(pil_version, "9.2.0"):
                self.font.getsize = lambda x: self.font.getbbox(x)[2:4]  # text width, height
        else:  # use cv2
            assert im.data.contiguous, "Image not contiguous. Apply np.ascontiguousarray(im) to Annotator input images."
            self.im = im if im.flags.writeable else im.copy()
            self.tf = max(self.lw - 1, 1)  # font thickness
            self.sf = self.lw / 3  # font scale
        # Pose
        self.skeleton = [
            [16, 14],
            [14, 12],
            [17, 15],
            [15, 13],
            [12, 13],
            [6, 12],
            [7, 13],
            [6, 7],
            [6, 8],
            [7, 9],
            [8, 10],
            [9, 11],
            [2, 3],
            [1, 2],
            [1, 3],
            [2, 4],
            [3, 5],
            [4, 6],
            [5, 7],
        ]

        self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
        self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]

    def box_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), rotated=False):
        """Add one xyxy box to image with label."""
        if isinstance(box, torch.Tensor):
            box = box.tolist()
        if self.pil or not is_ascii(label):
            if rotated:
                p1 = box[0]
                # NOTE: PIL-version polygon needs tuple type.
                self.draw.polygon([tuple(b) for b in box], width=self.lw, outline=color)
            else:
                p1 = (box[0], box[1])
                self.draw.rectangle(box, width=self.lw, outline=color)  # box
            if label:
                w, h = self.font.getsize(label)  # text width, height
                outside = p1[1] - h >= 0  # label fits outside box
                self.draw.rectangle(
                    (p1[0], p1[1] - h if outside else p1[1], p1[0] + w + 1, p1[1] + 1 if outside else p1[1] + h + 1),
                    fill=color,
                )
                # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
                self.draw.text((p1[0], p1[1] - h if outside else p1[1]), label, fill=txt_color, font=self.font)
        else:  # cv2
            if rotated:
                p1 = [int(b) for b in box[0]]
                # NOTE: cv2-version polylines needs np.asarray type.
                cv2.polylines(self.im, [np.asarray(box, dtype=int)], True, color, self.lw)
            else:
                p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
                cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
            if label:
                w, h = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0]  # text width, height
                outside = p1[1] - h >= 3
                p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
                cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
                cv2.putText(
                    self.im,
                    label,
                    (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
                    0,
                    self.sf,
                    txt_color,
                    thickness=self.tf,
                    lineType=cv2.LINE_AA,
                )

    def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
        """
        Plot masks on image.

        Args:
            masks (tensor): Predicted masks on cuda, shape: [n, h, w]
            colors (List[List[Int]]): Colors for predicted masks, [[r, g, b] * n]
            im_gpu (tensor): Image is in cuda, shape: [3, h, w], range: [0, 1]
            alpha (float): Mask transparency: 0.0 fully transparent, 1.0 opaque
            retina_masks (bool): Whether to use high resolution masks or not. Defaults to False.
        """
        if self.pil:
            # Convert to numpy first
            self.im = np.asarray(self.im).copy()
        if len(masks) == 0:
            self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
        if im_gpu.device != masks.device:
            im_gpu = im_gpu.to(masks.device)
        colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0  # shape(n,3)
        colors = colors[:, None, None]  # shape(n,1,1,3)
        masks = masks.unsqueeze(3)  # shape(n,h,w,1)
        masks_color = masks * (colors * alpha)  # shape(n,h,w,3)

        inv_alpha_masks = (1 - masks * alpha).cumprod(0)  # shape(n,h,w,1)
        mcs = masks_color.max(dim=0).values  # shape(n,h,w,3)

        im_gpu = im_gpu.flip(dims=[0])  # flip channel
        im_gpu = im_gpu.permute(1, 2, 0).contiguous()  # shape(h,w,3)
        im_gpu = im_gpu * inv_alpha_masks[-1] + mcs
        im_mask = im_gpu * 255
        im_mask_np = im_mask.byte().cpu().numpy()
        self.im[:] = im_mask_np if retina_masks else ops.scale_image(im_mask_np, self.im.shape)
        if self.pil:
            # Convert im back to PIL and update draw
            self.fromarray(self.im)

    def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True, conf_thres=0.25):
        """
        Plot keypoints on the image.

        Args:
            kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence).
            shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width.
            radius (int, optional): Radius of the drawn keypoints. Default is 5.
            kpt_line (bool, optional): If True, the function will draw lines connecting keypoints
                                       for human pose. Default is True.

        Note:
            `kpt_line=True` currently only supports human pose plotting.
        """
        if self.pil:
            # Convert to numpy first
            self.im = np.asarray(self.im).copy()
        nkpt, ndim = kpts.shape
        is_pose = nkpt == 17 and ndim in {2, 3}
        kpt_line &= is_pose  # `kpt_line=True` for now only supports human pose plotting
        for i, k in enumerate(kpts):
            color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
            x_coord, y_coord = k[0], k[1]
            if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
                if len(k) == 3:
                    conf = k[2]
                    if conf < conf_thres:
                        continue
                cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)

        if kpt_line:
            ndim = kpts.shape[-1]
            for i, sk in enumerate(self.skeleton):
                pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
                pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
                if ndim == 3:
                    conf1 = kpts[(sk[0] - 1), 2]
                    conf2 = kpts[(sk[1] - 1), 2]
                    if conf1 < conf_thres or conf2 < conf_thres:
                        continue
                if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
                    continue
                if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
                    continue
                cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA)
        if self.pil:
            # Convert im back to PIL and update draw
            self.fromarray(self.im)

    def rectangle(self, xy, fill=None, outline=None, width=1):
        """Add rectangle to image (PIL-only)."""
        self.draw.rectangle(xy, fill, outline, width)

    def text(self, xy, text, txt_color=(255, 255, 255), anchor="top", box_style=False):
        """Adds text to an image using PIL or cv2."""
        if anchor == "bottom":  # start y from font bottom
            w, h = self.font.getsize(text)  # text width, height
            xy[1] += 1 - h
        if self.pil:
            if box_style:
                w, h = self.font.getsize(text)
                self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
                # Using `txt_color` for background and draw fg with white color
                txt_color = (255, 255, 255)
            if "\n" in text:
                lines = text.split("\n")
                _, h = self.font.getsize(text)
                for line in lines:
                    self.draw.text(xy, line, fill=txt_color, font=self.font)
                    xy[1] += h
            else:
                self.draw.text(xy, text, fill=txt_color, font=self.font)
        else:
            if box_style:
                w, h = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]  # text width, height
                outside = xy[1] - h >= 3
                p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3
                cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA)  # filled
                # Using `txt_color` for background and draw fg with white color
                txt_color = (255, 255, 255)
            cv2.putText(self.im, text, xy, 0, self.sf, txt_color, thickness=self.tf, lineType=cv2.LINE_AA)

    def fromarray(self, im):
        """Update self.im from a numpy array."""
        self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
        self.draw = ImageDraw.Draw(self.im)

    def result(self):
        """Return annotated image as array."""
        return np.asarray(self.im)

    def show(self, title=None):
        """Show the annotated image."""
        Image.fromarray(np.asarray(self.im)[..., ::-1]).show(title)

    def save(self, filename="image.jpg"):
        """Save the annotated image to 'filename'."""
        cv2.imwrite(filename, np.asarray(self.im))

    def get_bbox_dimension(self, bbox=None):
        """
        Calculate the area of a bounding box.

        Args:
            bbox (tuple): Bounding box coordinates in the format (x_min, y_min, x_max, y_max).

        Returns:
            angle (degree): Degree value of angle between three points
        """
        x_min, y_min, x_max, y_max = bbox
        width = x_max - x_min
        height = y_max - y_min
        return width, height, width * height

    def draw_region(self, reg_pts=None, color=(0, 255, 0), thickness=5):
        """
        Draw region line.

        Args:
            reg_pts (list): Region Points (for line 2 points, for region 4 points)
            color (tuple): Region Color value
            thickness (int): Region area thickness value
        """
        cv2.polylines(self.im, [np.array(reg_pts, dtype=np.int32)], isClosed=True, color=color, thickness=thickness)

    def draw_centroid_and_tracks(self, track, color=(255, 0, 255), track_thickness=2):
        """
        Draw centroid point and track trails.

        Args:
            track (list): object tracking points for trails display
            color (tuple): tracks line color
            track_thickness (int): track line thickness value
        """
        points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(self.im, [points], isClosed=False, color=color, thickness=track_thickness)
        cv2.circle(self.im, (int(track[-1][0]), int(track[-1][1])), track_thickness * 2, color, -1)

    def queue_counts_display(self, label, points=None, region_color=(255, 255, 255), txt_color=(0, 0, 0)):
        """
        Displays queue counts on an image centered at the points with customizable font size and colors.

        Args:
            label (str): queue counts label
            points (tuple): region points for center point calculation to display text
            region_color (RGB): queue region color
            txt_color (RGB): text display color
        """

        x_values = [point[0] for point in points]
        y_values = [point[1] for point in points]
        center_x = sum(x_values) // len(points)
        center_y = sum(y_values) // len(points)

        text_size = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0]
        text_width = text_size[0]
        text_height = text_size[1]

        rect_width = text_width + 20
        rect_height = text_height + 20
        rect_top_left = (center_x - rect_width // 2, center_y - rect_height // 2)
        rect_bottom_right = (center_x + rect_width // 2, center_y + rect_height // 2)
        cv2.rectangle(self.im, rect_top_left, rect_bottom_right, region_color, -1)

        text_x = center_x - text_width // 2
        text_y = center_y + text_height // 2

        # Draw text
        cv2.putText(
            self.im,
            label,
            (text_x, text_y),
            0,
            fontScale=self.sf,
            color=txt_color,
            thickness=self.tf,
            lineType=cv2.LINE_AA,
        )

    def display_objects_labels(self, im0, text, txt_color, bg_color, x_center, y_center, margin):
        """
        Display the bounding boxes labels in parking management app.

        Args:
            im0 (ndarray): inference image
            text (str): object/class name
            txt_color (bgr color): display color for text foreground
            bg_color (bgr color): display color for text background
            x_center (float): x position center point for bounding box
            y_center (float): y position center point for bounding box
            margin (int): gap between text and rectangle for better display
        """

        text_size = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]
        text_x = x_center - text_size[0] // 2
        text_y = y_center + text_size[1] // 2

        rect_x1 = text_x - margin
        rect_y1 = text_y - text_size[1] - margin
        rect_x2 = text_x + text_size[0] + margin
        rect_y2 = text_y + margin
        cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1)
        cv2.putText(im0, text, (text_x, text_y), 0, self.sf, txt_color, self.tf, lineType=cv2.LINE_AA)

    def display_analytics(self, im0, text, txt_color, bg_color, margin):
        """
        Display the overall statistics for parking lots
        Args:
            im0 (ndarray): inference image
            text (dict): labels dictionary
            txt_color (bgr color): display color for text foreground
            bg_color (bgr color): display color for text background
            margin (int): gap between text and rectangle for better display
        """

        horizontal_gap = int(im0.shape[1] * 0.02)
        vertical_gap = int(im0.shape[0] * 0.01)
        text_y_offset = 0
        for label, value in text.items():
            txt = f"{label}: {value}"
            text_size = cv2.getTextSize(txt, 0, self.sf, self.tf)[0]
            if text_size[0] < 5 or text_size[1] < 5:
                text_size = (5, 5)
            text_x = im0.shape[1] - text_size[0] - margin * 2 - horizontal_gap
            text_y = text_y_offset + text_size[1] + margin * 2 + vertical_gap
            rect_x1 = text_x - margin * 2
            rect_y1 = text_y - text_size[1] - margin * 2
            rect_x2 = text_x + text_size[0] + margin * 2
            rect_y2 = text_y + margin * 2
            cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1)
            cv2.putText(im0, txt, (text_x, text_y), 0, self.sf, txt_color, self.tf, lineType=cv2.LINE_AA)
            text_y_offset = rect_y2

    @staticmethod
    def estimate_pose_angle(a, b, c):
        """
        Calculate the pose angle for object.

        Args:
            a (float) : The value of pose point a
            b (float): The value of pose point b
            c (float): The value o pose point c

        Returns:
            angle (degree): Degree value of angle between three points
        """
        a, b, c = np.array(a), np.array(b), np.array(c)
        radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
        angle = np.abs(radians * 180.0 / np.pi)
        if angle > 180.0:
            angle = 360 - angle
        return angle

    def draw_specific_points(self, keypoints, indices=[2, 5, 7], shape=(640, 640), radius=2, conf_thres=0.25):
        """
        Draw specific keypoints for gym steps counting.

        Args:
            keypoints (list): list of keypoints data to be plotted
            indices (list): keypoints ids list to be plotted
            shape (tuple): imgsz for model inference
            radius (int): Keypoint radius value
        """
        for i, k in enumerate(keypoints):
            if i in indices:
                x_coord, y_coord = k[0], k[1]
                if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
                    if len(k) == 3:
                        conf = k[2]
                        if conf < conf_thres:
                            continue
                    cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, (0, 255, 0), -1, lineType=cv2.LINE_AA)
        return self.im

    def plot_angle_and_count_and_stage(
        self, angle_text, count_text, stage_text, center_kpt, color=(104, 31, 17), txt_color=(255, 255, 255)
    ):
        """
        Plot the pose angle, count value and step stage.

        Args:
            angle_text (str): angle value for workout monitoring
            count_text (str): counts value for workout monitoring
            stage_text (str): stage decision for workout monitoring
            center_kpt (int): centroid pose index for workout monitoring
            color (tuple): text background color for workout monitoring
            txt_color (tuple): text foreground color for workout monitoring
        """

        angle_text, count_text, stage_text = (f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}")

        # Draw angle
        (angle_text_width, angle_text_height), _ = cv2.getTextSize(angle_text, 0, self.sf, self.tf)
        angle_text_position = (int(center_kpt[0]), int(center_kpt[1]))
        angle_background_position = (angle_text_position[0], angle_text_position[1] - angle_text_height - 5)
        angle_background_size = (angle_text_width + 2 * 5, angle_text_height + 2 * 5 + (self.tf * 2))
        cv2.rectangle(
            self.im,
            angle_background_position,
            (
                angle_background_position[0] + angle_background_size[0],
                angle_background_position[1] + angle_background_size[1],
            ),
            color,
            -1,
        )
        cv2.putText(self.im, angle_text, angle_text_position, 0, self.sf, txt_color, self.tf)

        # Draw Counts
        (count_text_width, count_text_height), _ = cv2.getTextSize(count_text, 0, self.sf, self.tf)
        count_text_position = (angle_text_position[0], angle_text_position[1] + angle_text_height + 20)
        count_background_position = (
            angle_background_position[0],
            angle_background_position[1] + angle_background_size[1] + 5,
        )
        count_background_size = (count_text_width + 10, count_text_height + 10 + self.tf)

        cv2.rectangle(
            self.im,
            count_background_position,
            (
                count_background_position[0] + count_background_size[0],
                count_background_position[1] + count_background_size[1],
            ),
            color,
            -1,
        )
        cv2.putText(self.im, count_text, count_text_position, 0, self.sf, txt_color, self.tf)

        # Draw Stage
        (stage_text_width, stage_text_height), _ = cv2.getTextSize(stage_text, 0, self.sf, self.tf)
        stage_text_position = (int(center_kpt[0]), int(center_kpt[1]) + angle_text_height + count_text_height + 40)
        stage_background_position = (stage_text_position[0], stage_text_position[1] - stage_text_height - 5)
        stage_background_size = (stage_text_width + 10, stage_text_height + 10)

        cv2.rectangle(
            self.im,
            stage_background_position,
            (
                stage_background_position[0] + stage_background_size[0],
                stage_background_position[1] + stage_background_size[1],
            ),
            color,
            -1,
        )
        cv2.putText(self.im, stage_text, stage_text_position, 0, self.sf, txt_color, self.tf)

    def seg_bbox(self, mask, mask_color=(255, 0, 255), det_label=None, track_label=None):
        """
        Function for drawing segmented object in bounding box shape.

        Args:
            mask (list): masks data list for instance segmentation area plotting
            mask_color (tuple): mask foreground color
            det_label (str): Detection label text
            track_label (str): Tracking label text
        """
        cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2)

        label = f"Track ID: {track_label}" if track_label else det_label
        text_size, _ = cv2.getTextSize(label, 0, 0.7, 1)

        cv2.rectangle(
            self.im,
            (int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10),
            (int(mask[0][0]) + text_size[0] // 2 + 5, int(mask[0][1] + 5)),
            mask_color,
            -1,
        )

        cv2.putText(
            self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1]) - 5), 0, 0.7, (255, 255, 255), 2
        )

    def plot_distance_and_line(self, distance_m, distance_mm, centroids, line_color, centroid_color):
        """
        Plot the distance and line on frame.

        Args:
            distance_m (float): Distance between two bbox centroids in meters.
            distance_mm (float): Distance between two bbox centroids in millimeters.
            centroids (list): Bounding box centroids data.
            line_color (RGB): Distance line color.
            centroid_color (RGB): Bounding box centroid color.
        """

        (text_width_m, text_height_m), _ = cv2.getTextSize(f"Distance M: {distance_m:.2f}m", 0, self.sf, self.tf)
        cv2.rectangle(self.im, (15, 25), (15 + text_width_m + 10, 25 + text_height_m + 20), line_color, -1)
        cv2.putText(
            self.im,
            f"Distance M: {distance_m:.2f}m",
            (20, 50),
            0,
            self.sf,
            centroid_color,
            self.tf,
            cv2.LINE_AA,
        )

        (text_width_mm, text_height_mm), _ = cv2.getTextSize(f"Distance MM: {distance_mm:.2f}mm", 0, self.sf, self.tf)
        cv2.rectangle(self.im, (15, 75), (15 + text_width_mm + 10, 75 + text_height_mm + 20), line_color, -1)
        cv2.putText(
            self.im,
            f"Distance MM: {distance_mm:.2f}mm",
            (20, 100),
            0,
            self.sf,
            centroid_color,
            self.tf,
            cv2.LINE_AA,
        )

        cv2.line(self.im, centroids[0], centroids[1], line_color, 3)
        cv2.circle(self.im, centroids[0], 6, centroid_color, -1)
        cv2.circle(self.im, centroids[1], 6, centroid_color, -1)

    def visioneye(self, box, center_point, color=(235, 219, 11), pin_color=(255, 0, 255)):
        """
        Function for pinpoint human-vision eye mapping and plotting.

        Args:
            box (list): Bounding box coordinates
            center_point (tuple): center point for vision eye view
            color (tuple): object centroid and line color value
            pin_color (tuple): visioneye point color value
        """
        center_bbox = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
        cv2.circle(self.im, center_point, self.tf * 2, pin_color, -1)
        cv2.circle(self.im, center_bbox, self.tf * 2, color, -1)
        cv2.line(self.im, center_point, center_bbox, color, self.tf)

__init__(im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc')

Inicializa la clase Anotador con la imagen y el ancho de línea junto con la paleta de colores para los puntos clave y las extremidades.

Código fuente en ultralytics/utils/plotting.py
def __init__(self, im, line_width=None, font_size=None, font="Arial.ttf", pil=False, example="abc"):
    """Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
    non_ascii = not is_ascii(example)  # non-latin labels, i.e. asian, arabic, cyrillic
    input_is_pil = isinstance(im, Image.Image)
    self.pil = pil or non_ascii or input_is_pil
    self.lw = line_width or max(round(sum(im.size if input_is_pil else im.shape) / 2 * 0.003), 2)
    if self.pil:  # use PIL
        self.im = im if input_is_pil else Image.fromarray(im)
        self.draw = ImageDraw.Draw(self.im)
        try:
            font = check_font("Arial.Unicode.ttf" if non_ascii else font)
            size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
            self.font = ImageFont.truetype(str(font), size)
        except Exception:
            self.font = ImageFont.load_default()
        # Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string)
        if check_version(pil_version, "9.2.0"):
            self.font.getsize = lambda x: self.font.getbbox(x)[2:4]  # text width, height
    else:  # use cv2
        assert im.data.contiguous, "Image not contiguous. Apply np.ascontiguousarray(im) to Annotator input images."
        self.im = im if im.flags.writeable else im.copy()
        self.tf = max(self.lw - 1, 1)  # font thickness
        self.sf = self.lw / 3  # font scale
    # Pose
    self.skeleton = [
        [16, 14],
        [14, 12],
        [17, 15],
        [15, 13],
        [12, 13],
        [6, 12],
        [7, 13],
        [6, 7],
        [6, 8],
        [7, 9],
        [8, 10],
        [9, 11],
        [2, 3],
        [1, 2],
        [1, 3],
        [2, 4],
        [3, 5],
        [4, 6],
        [5, 7],
    ]

    self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
    self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]

box_label(box, label='', color=(128, 128, 128), txt_color=(255, 255, 255), rotated=False)

A√Īade una caja xyxy a la imagen con etiqueta.

Código fuente en ultralytics/utils/plotting.py
def box_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), rotated=False):
    """Add one xyxy box to image with label."""
    if isinstance(box, torch.Tensor):
        box = box.tolist()
    if self.pil or not is_ascii(label):
        if rotated:
            p1 = box[0]
            # NOTE: PIL-version polygon needs tuple type.
            self.draw.polygon([tuple(b) for b in box], width=self.lw, outline=color)
        else:
            p1 = (box[0], box[1])
            self.draw.rectangle(box, width=self.lw, outline=color)  # box
        if label:
            w, h = self.font.getsize(label)  # text width, height
            outside = p1[1] - h >= 0  # label fits outside box
            self.draw.rectangle(
                (p1[0], p1[1] - h if outside else p1[1], p1[0] + w + 1, p1[1] + 1 if outside else p1[1] + h + 1),
                fill=color,
            )
            # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
            self.draw.text((p1[0], p1[1] - h if outside else p1[1]), label, fill=txt_color, font=self.font)
    else:  # cv2
        if rotated:
            p1 = [int(b) for b in box[0]]
            # NOTE: cv2-version polylines needs np.asarray type.
            cv2.polylines(self.im, [np.asarray(box, dtype=int)], True, color, self.lw)
        else:
            p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
            cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
        if label:
            w, h = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0]  # text width, height
            outside = p1[1] - h >= 3
            p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
            cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
            cv2.putText(
                self.im,
                label,
                (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
                0,
                self.sf,
                txt_color,
                thickness=self.tf,
                lineType=cv2.LINE_AA,
            )

display_analytics(im0, text, txt_color, bg_color, margin)

Mostrar las estadísticas globales de los aparcamientos Args: im0 (ndarray): imagen de inferencia text (dict): diccionario de etiquetas txt_color (bgr color): color de visualización para el primer plano del texto bg_color (bgr color): color de fondo del texto margen (int): espacio entre el texto y el rectángulo para una mejor visualización

Código fuente en ultralytics/utils/plotting.py
def display_analytics(self, im0, text, txt_color, bg_color, margin):
    """
    Display the overall statistics for parking lots
    Args:
        im0 (ndarray): inference image
        text (dict): labels dictionary
        txt_color (bgr color): display color for text foreground
        bg_color (bgr color): display color for text background
        margin (int): gap between text and rectangle for better display
    """

    horizontal_gap = int(im0.shape[1] * 0.02)
    vertical_gap = int(im0.shape[0] * 0.01)
    text_y_offset = 0
    for label, value in text.items():
        txt = f"{label}: {value}"
        text_size = cv2.getTextSize(txt, 0, self.sf, self.tf)[0]
        if text_size[0] < 5 or text_size[1] < 5:
            text_size = (5, 5)
        text_x = im0.shape[1] - text_size[0] - margin * 2 - horizontal_gap
        text_y = text_y_offset + text_size[1] + margin * 2 + vertical_gap
        rect_x1 = text_x - margin * 2
        rect_y1 = text_y - text_size[1] - margin * 2
        rect_x2 = text_x + text_size[0] + margin * 2
        rect_y2 = text_y + margin * 2
        cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1)
        cv2.putText(im0, txt, (text_x, text_y), 0, self.sf, txt_color, self.tf, lineType=cv2.LINE_AA)
        text_y_offset = rect_y2

display_objects_labels(im0, text, txt_color, bg_color, x_center, y_center, margin)

Mostrar las etiquetas de los recuadros delimitadores en la app de gestión de aparcamientos.

Par√°metros:

Nombre Tipo Descripción Por defecto
im0 ndarray

imagen de inferencia

necesario
text str

nombre del objeto/clase

necesario
txt_color bgr color

color de visualización del texto en primer plano

necesario
bg_color bgr color

color de fondo del texto

necesario
x_center float

posición x punto central del cuadro delimitador

necesario
y_center float

posición y punto central del cuadro delimitador

necesario
margin int

espacio entre el texto y el rectángulo para una mejor visualización

necesario
Código fuente en ultralytics/utils/plotting.py
def display_objects_labels(self, im0, text, txt_color, bg_color, x_center, y_center, margin):
    """
    Display the bounding boxes labels in parking management app.

    Args:
        im0 (ndarray): inference image
        text (str): object/class name
        txt_color (bgr color): display color for text foreground
        bg_color (bgr color): display color for text background
        x_center (float): x position center point for bounding box
        y_center (float): y position center point for bounding box
        margin (int): gap between text and rectangle for better display
    """

    text_size = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]
    text_x = x_center - text_size[0] // 2
    text_y = y_center + text_size[1] // 2

    rect_x1 = text_x - margin
    rect_y1 = text_y - text_size[1] - margin
    rect_x2 = text_x + text_size[0] + margin
    rect_y2 = text_y + margin
    cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1)
    cv2.putText(im0, text, (text_x, text_y), 0, self.sf, txt_color, self.tf, lineType=cv2.LINE_AA)

draw_centroid_and_tracks(track, color=(255, 0, 255), track_thickness=2)

Dibuja el punto centroide y los rastros de seguimiento.

Par√°metros:

Nombre Tipo Descripción Por defecto
track list

puntos de seguimiento de objetos para la visualización de senderos

necesario
color tuple

color de la línea de las pistas

(255, 0, 255)
track_thickness int

valor del grosor de la línea de la pista

2
Código fuente en ultralytics/utils/plotting.py
def draw_centroid_and_tracks(self, track, color=(255, 0, 255), track_thickness=2):
    """
    Draw centroid point and track trails.

    Args:
        track (list): object tracking points for trails display
        color (tuple): tracks line color
        track_thickness (int): track line thickness value
    """
    points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
    cv2.polylines(self.im, [points], isClosed=False, color=color, thickness=track_thickness)
    cv2.circle(self.im, (int(track[-1][0]), int(track[-1][1])), track_thickness * 2, color, -1)

draw_region(reg_pts=None, color=(0, 255, 0), thickness=5)

Dibuja la línea de la región.

Par√°metros:

Nombre Tipo Descripción Por defecto
reg_pts list

Puntos de región (para la línea 2 puntos, para la región 4 puntos)

None
color tuple

Región Valor de color

(0, 255, 0)
thickness int

Región área grosor valor

5
Código fuente en ultralytics/utils/plotting.py
def draw_region(self, reg_pts=None, color=(0, 255, 0), thickness=5):
    """
    Draw region line.

    Args:
        reg_pts (list): Region Points (for line 2 points, for region 4 points)
        color (tuple): Region Color value
        thickness (int): Region area thickness value
    """
    cv2.polylines(self.im, [np.array(reg_pts, dtype=np.int32)], isClosed=True, color=color, thickness=thickness)

draw_specific_points(keypoints, indices=[2, 5, 7], shape=(640, 640), radius=2, conf_thres=0.25)

Dibuja puntos clave específicos para contar los pasos del gimnasio.

Par√°metros:

Nombre Tipo Descripción Por defecto
keypoints list

lista de datos de puntos clave que se van a trazar

necesario
indices list

lista de identificadores de puntos clave a trazar

[2, 5, 7]
shape tuple

imgsz para la inferencia de modelos

(640, 640)
radius int

Valor del radio del punto clave

2
Código fuente en ultralytics/utils/plotting.py
def draw_specific_points(self, keypoints, indices=[2, 5, 7], shape=(640, 640), radius=2, conf_thres=0.25):
    """
    Draw specific keypoints for gym steps counting.

    Args:
        keypoints (list): list of keypoints data to be plotted
        indices (list): keypoints ids list to be plotted
        shape (tuple): imgsz for model inference
        radius (int): Keypoint radius value
    """
    for i, k in enumerate(keypoints):
        if i in indices:
            x_coord, y_coord = k[0], k[1]
            if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
                if len(k) == 3:
                    conf = k[2]
                    if conf < conf_thres:
                        continue
                cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, (0, 255, 0), -1, lineType=cv2.LINE_AA)
    return self.im

estimate_pose_angle(a, b, c) staticmethod

Calcula el √°ngulo de pose del objeto.

Par√°metros:

Nombre Tipo Descripción Por defecto
a float)

El valor del punto de pose a

necesario
b float

El valor del punto de pose b

necesario
c float

El valor del punto de pose c

necesario

Devuelve:

Nombre Tipo Descripción
angle degree

Valor en grados del √°ngulo entre tres puntos

Código fuente en ultralytics/utils/plotting.py
@staticmethod
def estimate_pose_angle(a, b, c):
    """
    Calculate the pose angle for object.

    Args:
        a (float) : The value of pose point a
        b (float): The value of pose point b
        c (float): The value o pose point c

    Returns:
        angle (degree): Degree value of angle between three points
    """
    a, b, c = np.array(a), np.array(b), np.array(c)
    radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
    angle = np.abs(radians * 180.0 / np.pi)
    if angle > 180.0:
        angle = 360 - angle
    return angle

fromarray(im)

Actualiza self.im a partir de una matriz numpy.

Código fuente en ultralytics/utils/plotting.py
def fromarray(self, im):
    """Update self.im from a numpy array."""
    self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
    self.draw = ImageDraw.Draw(self.im)

get_bbox_dimension(bbox=None)

Calcula el √°rea de una caja delimitadora.

Par√°metros:

Nombre Tipo Descripción Por defecto
bbox tuple

Coordenadas de la caja delimitadora en el formato (x_min, y_min, x_max, y_max).

None

Devuelve:

Nombre Tipo Descripción
angle degree

Valor en grados del √°ngulo entre tres puntos

Código fuente en ultralytics/utils/plotting.py
def get_bbox_dimension(self, bbox=None):
    """
    Calculate the area of a bounding box.

    Args:
        bbox (tuple): Bounding box coordinates in the format (x_min, y_min, x_max, y_max).

    Returns:
        angle (degree): Degree value of angle between three points
    """
    x_min, y_min, x_max, y_max = bbox
    width = x_max - x_min
    height = y_max - y_min
    return width, height, width * height

kpts(kpts, shape=(640, 640), radius=5, kpt_line=True, conf_thres=0.25)

Traza puntos clave en la imagen.

Par√°metros:

Nombre Tipo Descripción Por defecto
kpts tensor

Puntos clave predichos con forma [17, 3]. Cada punto clave tiene (x, y, confianza).

necesario
shape tuple

Forma de la imagen como tupla (h, w), donde h es la altura y w la anchura.

(640, 640)
radius int

Radio de los puntos clave dibujados. Por defecto es 5.

5
kpt_line bool

Si es Verdadero, la función dibujará líneas que conecten los puntos clave para la pose humana. Por defecto es Verdadero.

True
Nota

kpt_line=True actualmente sólo admite el trazado de poses humanas.

Código fuente en ultralytics/utils/plotting.py
def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True, conf_thres=0.25):
    """
    Plot keypoints on the image.

    Args:
        kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence).
        shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width.
        radius (int, optional): Radius of the drawn keypoints. Default is 5.
        kpt_line (bool, optional): If True, the function will draw lines connecting keypoints
                                   for human pose. Default is True.

    Note:
        `kpt_line=True` currently only supports human pose plotting.
    """
    if self.pil:
        # Convert to numpy first
        self.im = np.asarray(self.im).copy()
    nkpt, ndim = kpts.shape
    is_pose = nkpt == 17 and ndim in {2, 3}
    kpt_line &= is_pose  # `kpt_line=True` for now only supports human pose plotting
    for i, k in enumerate(kpts):
        color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
        x_coord, y_coord = k[0], k[1]
        if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
            if len(k) == 3:
                conf = k[2]
                if conf < conf_thres:
                    continue
            cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)

    if kpt_line:
        ndim = kpts.shape[-1]
        for i, sk in enumerate(self.skeleton):
            pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
            pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
            if ndim == 3:
                conf1 = kpts[(sk[0] - 1), 2]
                conf2 = kpts[(sk[1] - 1), 2]
                if conf1 < conf_thres or conf2 < conf_thres:
                    continue
            if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
                continue
            if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
                continue
            cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA)
    if self.pil:
        # Convert im back to PIL and update draw
        self.fromarray(self.im)

masks(masks, colors, im_gpu, alpha=0.5, retina_masks=False)

Trazar m√°scaras sobre la imagen.

Par√°metros:

Nombre Tipo Descripción Por defecto
masks tensor

M√°scaras predichas en cuda, forma: [n, h, w]

necesario
colors List[List[Int]]

Colores de las m√°scaras predichas, [[r, g, b] * n]

necesario
im_gpu tensor

La imagen est√° en cuda, forma: [3, h, w], rango: [0, 1]

necesario
alpha float

Transparencia de la m√°scara: 0,0 totalmente transparente, 1,0 opaco

0.5
retina_masks bool

Si utilizar máscaras de alta resolución o no. Por defecto es Falso.

False
Código fuente en ultralytics/utils/plotting.py
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
    """
    Plot masks on image.

    Args:
        masks (tensor): Predicted masks on cuda, shape: [n, h, w]
        colors (List[List[Int]]): Colors for predicted masks, [[r, g, b] * n]
        im_gpu (tensor): Image is in cuda, shape: [3, h, w], range: [0, 1]
        alpha (float): Mask transparency: 0.0 fully transparent, 1.0 opaque
        retina_masks (bool): Whether to use high resolution masks or not. Defaults to False.
    """
    if self.pil:
        # Convert to numpy first
        self.im = np.asarray(self.im).copy()
    if len(masks) == 0:
        self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
    if im_gpu.device != masks.device:
        im_gpu = im_gpu.to(masks.device)
    colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0  # shape(n,3)
    colors = colors[:, None, None]  # shape(n,1,1,3)
    masks = masks.unsqueeze(3)  # shape(n,h,w,1)
    masks_color = masks * (colors * alpha)  # shape(n,h,w,3)

    inv_alpha_masks = (1 - masks * alpha).cumprod(0)  # shape(n,h,w,1)
    mcs = masks_color.max(dim=0).values  # shape(n,h,w,3)

    im_gpu = im_gpu.flip(dims=[0])  # flip channel
    im_gpu = im_gpu.permute(1, 2, 0).contiguous()  # shape(h,w,3)
    im_gpu = im_gpu * inv_alpha_masks[-1] + mcs
    im_mask = im_gpu * 255
    im_mask_np = im_mask.byte().cpu().numpy()
    self.im[:] = im_mask_np if retina_masks else ops.scale_image(im_mask_np, self.im.shape)
    if self.pil:
        # Convert im back to PIL and update draw
        self.fromarray(self.im)

plot_angle_and_count_and_stage(angle_text, count_text, stage_text, center_kpt, color=(104, 31, 17), txt_color=(255, 255, 255))

Traza el √°ngulo de pose, el valor de recuento y la etapa de paso.

Par√°metros:

Nombre Tipo Descripción Por defecto
angle_text str

valor angular para el seguimiento del entrenamiento

necesario
count_text str

cuenta el valor para el seguimiento del entrenamiento

necesario
stage_text str

decisión de etapa para el seguimiento del entrenamiento

necesario
center_kpt int

índice de pose centroide para el seguimiento del entrenamiento

necesario
color tuple

color de fondo del texto para el seguimiento del entrenamiento

(104, 31, 17)
txt_color tuple

color de primer plano del texto para el seguimiento del entrenamiento

(255, 255, 255)
Código fuente en ultralytics/utils/plotting.py
def plot_angle_and_count_and_stage(
    self, angle_text, count_text, stage_text, center_kpt, color=(104, 31, 17), txt_color=(255, 255, 255)
):
    """
    Plot the pose angle, count value and step stage.

    Args:
        angle_text (str): angle value for workout monitoring
        count_text (str): counts value for workout monitoring
        stage_text (str): stage decision for workout monitoring
        center_kpt (int): centroid pose index for workout monitoring
        color (tuple): text background color for workout monitoring
        txt_color (tuple): text foreground color for workout monitoring
    """

    angle_text, count_text, stage_text = (f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}")

    # Draw angle
    (angle_text_width, angle_text_height), _ = cv2.getTextSize(angle_text, 0, self.sf, self.tf)
    angle_text_position = (int(center_kpt[0]), int(center_kpt[1]))
    angle_background_position = (angle_text_position[0], angle_text_position[1] - angle_text_height - 5)
    angle_background_size = (angle_text_width + 2 * 5, angle_text_height + 2 * 5 + (self.tf * 2))
    cv2.rectangle(
        self.im,
        angle_background_position,
        (
            angle_background_position[0] + angle_background_size[0],
            angle_background_position[1] + angle_background_size[1],
        ),
        color,
        -1,
    )
    cv2.putText(self.im, angle_text, angle_text_position, 0, self.sf, txt_color, self.tf)

    # Draw Counts
    (count_text_width, count_text_height), _ = cv2.getTextSize(count_text, 0, self.sf, self.tf)
    count_text_position = (angle_text_position[0], angle_text_position[1] + angle_text_height + 20)
    count_background_position = (
        angle_background_position[0],
        angle_background_position[1] + angle_background_size[1] + 5,
    )
    count_background_size = (count_text_width + 10, count_text_height + 10 + self.tf)

    cv2.rectangle(
        self.im,
        count_background_position,
        (
            count_background_position[0] + count_background_size[0],
            count_background_position[1] + count_background_size[1],
        ),
        color,
        -1,
    )
    cv2.putText(self.im, count_text, count_text_position, 0, self.sf, txt_color, self.tf)

    # Draw Stage
    (stage_text_width, stage_text_height), _ = cv2.getTextSize(stage_text, 0, self.sf, self.tf)
    stage_text_position = (int(center_kpt[0]), int(center_kpt[1]) + angle_text_height + count_text_height + 40)
    stage_background_position = (stage_text_position[0], stage_text_position[1] - stage_text_height - 5)
    stage_background_size = (stage_text_width + 10, stage_text_height + 10)

    cv2.rectangle(
        self.im,
        stage_background_position,
        (
            stage_background_position[0] + stage_background_size[0],
            stage_background_position[1] + stage_background_size[1],
        ),
        color,
        -1,
    )
    cv2.putText(self.im, stage_text, stage_text_position, 0, self.sf, txt_color, self.tf)

plot_distance_and_line(distance_m, distance_mm, centroids, line_color, centroid_color)

Traza la distancia y la línea en el cuadro.

Par√°metros:

Nombre Tipo Descripción Por defecto
distance_m float

Distancia entre dos centroides de bbox en metros.

necesario
distance_mm float

Distancia entre dos centroides de bbox en milímetros.

necesario
centroids list

Datos de los centroides de la caja delimitadora.

necesario
line_color RGB

Color de la línea de distancia.

necesario
centroid_color RGB

Color del centroide de la caja delimitadora.

necesario
Código fuente en ultralytics/utils/plotting.py
def plot_distance_and_line(self, distance_m, distance_mm, centroids, line_color, centroid_color):
    """
    Plot the distance and line on frame.

    Args:
        distance_m (float): Distance between two bbox centroids in meters.
        distance_mm (float): Distance between two bbox centroids in millimeters.
        centroids (list): Bounding box centroids data.
        line_color (RGB): Distance line color.
        centroid_color (RGB): Bounding box centroid color.
    """

    (text_width_m, text_height_m), _ = cv2.getTextSize(f"Distance M: {distance_m:.2f}m", 0, self.sf, self.tf)
    cv2.rectangle(self.im, (15, 25), (15 + text_width_m + 10, 25 + text_height_m + 20), line_color, -1)
    cv2.putText(
        self.im,
        f"Distance M: {distance_m:.2f}m",
        (20, 50),
        0,
        self.sf,
        centroid_color,
        self.tf,
        cv2.LINE_AA,
    )

    (text_width_mm, text_height_mm), _ = cv2.getTextSize(f"Distance MM: {distance_mm:.2f}mm", 0, self.sf, self.tf)
    cv2.rectangle(self.im, (15, 75), (15 + text_width_mm + 10, 75 + text_height_mm + 20), line_color, -1)
    cv2.putText(
        self.im,
        f"Distance MM: {distance_mm:.2f}mm",
        (20, 100),
        0,
        self.sf,
        centroid_color,
        self.tf,
        cv2.LINE_AA,
    )

    cv2.line(self.im, centroids[0], centroids[1], line_color, 3)
    cv2.circle(self.im, centroids[0], 6, centroid_color, -1)
    cv2.circle(self.im, centroids[1], 6, centroid_color, -1)

queue_counts_display(label, points=None, region_color=(255, 255, 255), txt_color=(0, 0, 0))

Muestra el recuento de colas en una imagen centrada en los puntos, con tama√Īo de letra y colores personalizables.

Par√°metros:

Nombre Tipo Descripción Por defecto
label str

cola cuenta etiqueta

necesario
points tuple

puntos de la región para el cálculo del punto central para mostrar el texto

None
region_color RGB

color de la región de cola

(255, 255, 255)
txt_color RGB

color de visualización del texto

(0, 0, 0)
Código fuente en ultralytics/utils/plotting.py
def queue_counts_display(self, label, points=None, region_color=(255, 255, 255), txt_color=(0, 0, 0)):
    """
    Displays queue counts on an image centered at the points with customizable font size and colors.

    Args:
        label (str): queue counts label
        points (tuple): region points for center point calculation to display text
        region_color (RGB): queue region color
        txt_color (RGB): text display color
    """

    x_values = [point[0] for point in points]
    y_values = [point[1] for point in points]
    center_x = sum(x_values) // len(points)
    center_y = sum(y_values) // len(points)

    text_size = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0]
    text_width = text_size[0]
    text_height = text_size[1]

    rect_width = text_width + 20
    rect_height = text_height + 20
    rect_top_left = (center_x - rect_width // 2, center_y - rect_height // 2)
    rect_bottom_right = (center_x + rect_width // 2, center_y + rect_height // 2)
    cv2.rectangle(self.im, rect_top_left, rect_bottom_right, region_color, -1)

    text_x = center_x - text_width // 2
    text_y = center_y + text_height // 2

    # Draw text
    cv2.putText(
        self.im,
        label,
        (text_x, text_y),
        0,
        fontScale=self.sf,
        color=txt_color,
        thickness=self.tf,
        lineType=cv2.LINE_AA,
    )

rectangle(xy, fill=None, outline=None, width=1)

A√Īadir rect√°ngulo a la imagen (s√≥lo PIL).

Código fuente en ultralytics/utils/plotting.py
def rectangle(self, xy, fill=None, outline=None, width=1):
    """Add rectangle to image (PIL-only)."""
    self.draw.rectangle(xy, fill, outline, width)

result()

Devuelve la imagen anotada como matriz.

Código fuente en ultralytics/utils/plotting.py
def result(self):
    """Return annotated image as array."""
    return np.asarray(self.im)

save(filename='image.jpg')

Guarda la imagen anotada en 'nombrearchivo'.

Código fuente en ultralytics/utils/plotting.py
def save(self, filename="image.jpg"):
    """Save the annotated image to 'filename'."""
    cv2.imwrite(filename, np.asarray(self.im))

seg_bbox(mask, mask_color=(255, 0, 255), det_label=None, track_label=None)

Función para dibujar un objeto segmentado en forma de caja delimitadora.

Par√°metros:

Nombre Tipo Descripción Por defecto
mask list

lista de datos de máscaras para el trazado de áreas de segmentación por ejemplo

necesario
mask_color tuple

color de primer plano de la m√°scara

(255, 0, 255)
det_label str

Texto de la etiqueta de detección

None
track_label str

Texto de la etiqueta de seguimiento

None
Código fuente en ultralytics/utils/plotting.py
def seg_bbox(self, mask, mask_color=(255, 0, 255), det_label=None, track_label=None):
    """
    Function for drawing segmented object in bounding box shape.

    Args:
        mask (list): masks data list for instance segmentation area plotting
        mask_color (tuple): mask foreground color
        det_label (str): Detection label text
        track_label (str): Tracking label text
    """
    cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2)

    label = f"Track ID: {track_label}" if track_label else det_label
    text_size, _ = cv2.getTextSize(label, 0, 0.7, 1)

    cv2.rectangle(
        self.im,
        (int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10),
        (int(mask[0][0]) + text_size[0] // 2 + 5, int(mask[0][1] + 5)),
        mask_color,
        -1,
    )

    cv2.putText(
        self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1]) - 5), 0, 0.7, (255, 255, 255), 2
    )

show(title=None)

Muestra la imagen anotada.

Código fuente en ultralytics/utils/plotting.py
def show(self, title=None):
    """Show the annotated image."""
    Image.fromarray(np.asarray(self.im)[..., ::-1]).show(title)

text(xy, text, txt_color=(255, 255, 255), anchor='top', box_style=False)

A√Īade texto a una imagen utilizando PIL o cv2.

Código fuente en ultralytics/utils/plotting.py
def text(self, xy, text, txt_color=(255, 255, 255), anchor="top", box_style=False):
    """Adds text to an image using PIL or cv2."""
    if anchor == "bottom":  # start y from font bottom
        w, h = self.font.getsize(text)  # text width, height
        xy[1] += 1 - h
    if self.pil:
        if box_style:
            w, h = self.font.getsize(text)
            self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
            # Using `txt_color` for background and draw fg with white color
            txt_color = (255, 255, 255)
        if "\n" in text:
            lines = text.split("\n")
            _, h = self.font.getsize(text)
            for line in lines:
                self.draw.text(xy, line, fill=txt_color, font=self.font)
                xy[1] += h
        else:
            self.draw.text(xy, text, fill=txt_color, font=self.font)
    else:
        if box_style:
            w, h = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]  # text width, height
            outside = xy[1] - h >= 3
            p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3
            cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA)  # filled
            # Using `txt_color` for background and draw fg with white color
            txt_color = (255, 255, 255)
        cv2.putText(self.im, text, xy, 0, self.sf, txt_color, thickness=self.tf, lineType=cv2.LINE_AA)

visioneye(box, center_point, color=(235, 219, 11), pin_color=(255, 0, 255))

Función de mapeo y trazado ocular con visión humana.

Par√°metros:

Nombre Tipo Descripción Por defecto
box list

Coordenadas de la caja delimitadora

necesario
center_point tuple

punto central de visión vista ocular

necesario
color tuple

centroide del objeto y valor del color de la línea

(235, 219, 11)
pin_color tuple

valor de color del punto visioneye

(255, 0, 255)
Código fuente en ultralytics/utils/plotting.py
def visioneye(self, box, center_point, color=(235, 219, 11), pin_color=(255, 0, 255)):
    """
    Function for pinpoint human-vision eye mapping and plotting.

    Args:
        box (list): Bounding box coordinates
        center_point (tuple): center point for vision eye view
        color (tuple): object centroid and line color value
        pin_color (tuple): visioneye point color value
    """
    center_bbox = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
    cv2.circle(self.im, center_point, self.tf * 2, pin_color, -1)
    cv2.circle(self.im, center_bbox, self.tf * 2, color, -1)
    cv2.line(self.im, center_point, center_bbox, color, self.tf)



ultralytics.utils.plotting.plot_labels(boxes, cls, names=(), save_dir=Path(''), on_plot=None)

Traza etiquetas de entrenamiento incluyendo histogramas de clase y estadísticos de caja.

Código fuente en ultralytics/utils/plotting.py
@TryExcept()  # known issue https://github.com/ultralytics/yolov5/issues/5395
@plt_settings()
def plot_labels(boxes, cls, names=(), save_dir=Path(""), on_plot=None):
    """Plot training labels including class histograms and box statistics."""
    import pandas  # scope for faster 'import ultralytics'
    import seaborn  # scope for faster 'import ultralytics'

    # Filter matplotlib>=3.7.2 warning and Seaborn use_inf and is_categorical FutureWarnings
    warnings.filterwarnings("ignore", category=UserWarning, message="The figure layout has changed to tight")
    warnings.filterwarnings("ignore", category=FutureWarning)

    # Plot dataset labels
    LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
    nc = int(cls.max() + 1)  # number of classes
    boxes = boxes[:1000000]  # limit to 1M boxes
    x = pandas.DataFrame(boxes, columns=["x", "y", "width", "height"])

    # Seaborn correlogram
    seaborn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
    plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200)
    plt.close()

    # Matplotlib labels
    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
    y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
    for i in range(nc):
        y[2].patches[i].set_color([x / 255 for x in colors(i)])
    ax[0].set_ylabel("instances")
    if 0 < len(names) < 30:
        ax[0].set_xticks(range(len(names)))
        ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
    else:
        ax[0].set_xlabel("classes")
    seaborn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9)
    seaborn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9)

    # Rectangles
    boxes[:, 0:2] = 0.5  # center
    boxes = ops.xywh2xyxy(boxes) * 1000
    img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255)
    for cls, box in zip(cls[:500], boxes[:500]):
        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls))  # plot
    ax[1].imshow(img)
    ax[1].axis("off")

    for a in [0, 1, 2, 3]:
        for s in ["top", "right", "left", "bottom"]:
            ax[a].spines[s].set_visible(False)

    fname = save_dir / "labels.jpg"
    plt.savefig(fname, dpi=200)
    plt.close()
    if on_plot:
        on_plot(fname)



ultralytics.utils.plotting.save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True)

Guarda el recorte de imagen como {archivo} con tama√Īo de recorte m√ļltiple {ganancia} y {almohadilla} p√≠xeles. Guarda y/o devuelve el recorte.

Esta funci√≥n toma un cuadro delimitador y una imagen, y luego guarda una parte recortada de la imagen seg√ļn seg√ļn el cuadro delimitador. Opcionalmente, el recorte puede ser cuadrado, y la funci√≥n permite ajustes de ganancia y relleno en el cuadro delimitador.

Par√°metros:

Nombre Tipo Descripción Por defecto
xyxy Tensor or list

Un tensor o lista que representa el cuadro delimitador en formato xyxy.

necesario
im ndarray

La imagen de entrada.

necesario
file Path

La ruta donde se guardar√° la imagen recortada. Por defecto es 'im.jpg'.

Path('im.jpg')
gain float

Factor multiplicativo para aumentar el tama√Īo de la caja delimitadora. Por defecto es 1,02.

1.02
pad int

El n√ļmero de p√≠xeles que hay que a√Īadir a la anchura y altura del cuadro delimitador. Por defecto es 10.

10
square bool

Si es Verdadero, la caja delimitadora se transformar√° en un cuadrado. Por defecto es Falso.

False
BGR bool

Si es Verdadero, la imagen se guardar√° en formato BGR; si no, en RGB. Por defecto es Falso.

False
save bool

Si es Verdadero, la imagen recortada se guardar√° en el disco. Por defecto es Verdadero.

True

Devuelve:

Tipo Descripción
ndarray

La imagen recortada.

Ejemplo
from ultralytics.utils.plotting import save_one_box

xyxy = [50, 50, 150, 150]
im = cv2.imread('image.jpg')
cropped_im = save_one_box(xyxy, im, file='cropped.jpg', square=True)
Código fuente en ultralytics/utils/plotting.py
def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True):
    """
    Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop.

    This function takes a bounding box and an image, and then saves a cropped portion of the image according
    to the bounding box. Optionally, the crop can be squared, and the function allows for gain and padding
    adjustments to the bounding box.

    Args:
        xyxy (torch.Tensor or list): A tensor or list representing the bounding box in xyxy format.
        im (numpy.ndarray): The input image.
        file (Path, optional): The path where the cropped image will be saved. Defaults to 'im.jpg'.
        gain (float, optional): A multiplicative factor to increase the size of the bounding box. Defaults to 1.02.
        pad (int, optional): The number of pixels to add to the width and height of the bounding box. Defaults to 10.
        square (bool, optional): If True, the bounding box will be transformed into a square. Defaults to False.
        BGR (bool, optional): If True, the image will be saved in BGR format, otherwise in RGB. Defaults to False.
        save (bool, optional): If True, the cropped image will be saved to disk. Defaults to True.

    Returns:
        (numpy.ndarray): The cropped image.

    Example:
        ```python
        from ultralytics.utils.plotting import save_one_box

        xyxy = [50, 50, 150, 150]
        im = cv2.imread('image.jpg')
        cropped_im = save_one_box(xyxy, im, file='cropped.jpg', square=True)
        ```
    """

    if not isinstance(xyxy, torch.Tensor):  # may be list
        xyxy = torch.stack(xyxy)
    b = ops.xyxy2xywh(xyxy.view(-1, 4))  # boxes
    if square:
        b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # attempt rectangle to square
    b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
    xyxy = ops.xywh2xyxy(b).long()
    xyxy = ops.clip_boxes(xyxy, im.shape)
    crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)]
    if save:
        file.parent.mkdir(parents=True, exist_ok=True)  # make directory
        f = str(increment_path(file).with_suffix(".jpg"))
        # cv2.imwrite(f, crop)  # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
        Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0)  # save RGB
    return crop



ultralytics.utils.plotting.plot_images(images, batch_idx, cls, bboxes=np.zeros(0, dtype=np.float32), confs=None, masks=np.zeros(0, dtype=np.uint8), kpts=np.zeros((0, 51), dtype=np.float32), paths=None, fname='images.jpg', names=None, on_plot=None, max_subplots=16, save=True, conf_thres=0.25)

Traza una cuadrícula de imagen con etiquetas.

Código fuente en ultralytics/utils/plotting.py
@threaded
def plot_images(
    images,
    batch_idx,
    cls,
    bboxes=np.zeros(0, dtype=np.float32),
    confs=None,
    masks=np.zeros(0, dtype=np.uint8),
    kpts=np.zeros((0, 51), dtype=np.float32),
    paths=None,
    fname="images.jpg",
    names=None,
    on_plot=None,
    max_subplots=16,
    save=True,
    conf_thres=0.25,
):
    """Plot image grid with labels."""
    if isinstance(images, torch.Tensor):
        images = images.cpu().float().numpy()
    if isinstance(cls, torch.Tensor):
        cls = cls.cpu().numpy()
    if isinstance(bboxes, torch.Tensor):
        bboxes = bboxes.cpu().numpy()
    if isinstance(masks, torch.Tensor):
        masks = masks.cpu().numpy().astype(int)
    if isinstance(kpts, torch.Tensor):
        kpts = kpts.cpu().numpy()
    if isinstance(batch_idx, torch.Tensor):
        batch_idx = batch_idx.cpu().numpy()

    max_size = 1920  # max image size
    bs, _, h, w = images.shape  # batch size, _, height, width
    bs = min(bs, max_subplots)  # limit plot images
    ns = np.ceil(bs**0.5)  # number of subplots (square)
    if np.max(images[0]) <= 1:
        images *= 255  # de-normalise (optional)

    # Build Image
    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
    for i in range(bs):
        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
        mosaic[y : y + h, x : x + w, :] = images[i].transpose(1, 2, 0)

    # Resize (optional)
    scale = max_size / ns / max(h, w)
    if scale < 1:
        h = math.ceil(scale * h)
        w = math.ceil(scale * w)
        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))

    # Annotate
    fs = int((h + w) * ns * 0.01)  # font size
    annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
    for i in range(bs):
        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
        annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders
        if paths:
            annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames
        if len(cls) > 0:
            idx = batch_idx == i
            classes = cls[idx].astype("int")
            labels = confs is None

            if len(bboxes):
                boxes = bboxes[idx]
                conf = confs[idx] if confs is not None else None  # check for confidence presence (label vs pred)
                if len(boxes):
                    if boxes[:, :4].max() <= 1.1:  # if normalized with tolerance 0.1
                        boxes[..., [0, 2]] *= w  # scale to pixels
                        boxes[..., [1, 3]] *= h
                    elif scale < 1:  # absolute coords need scale if image scales
                        boxes[..., :4] *= scale
                boxes[..., 0] += x
                boxes[..., 1] += y
                is_obb = boxes.shape[-1] == 5  # xywhr
                boxes = ops.xywhr2xyxyxyxy(boxes) if is_obb else ops.xywh2xyxy(boxes)
                for j, box in enumerate(boxes.astype(np.int64).tolist()):
                    c = classes[j]
                    color = colors(c)
                    c = names.get(c, c) if names else c
                    if labels or conf[j] > conf_thres:
                        label = f"{c}" if labels else f"{c} {conf[j]:.1f}"
                        annotator.box_label(box, label, color=color, rotated=is_obb)

            elif len(classes):
                for c in classes:
                    color = colors(c)
                    c = names.get(c, c) if names else c
                    annotator.text((x, y), f"{c}", txt_color=color, box_style=True)

            # Plot keypoints
            if len(kpts):
                kpts_ = kpts[idx].copy()
                if len(kpts_):
                    if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01:  # if normalized with tolerance .01
                        kpts_[..., 0] *= w  # scale to pixels
                        kpts_[..., 1] *= h
                    elif scale < 1:  # absolute coords need scale if image scales
                        kpts_ *= scale
                kpts_[..., 0] += x
                kpts_[..., 1] += y
                for j in range(len(kpts_)):
                    if labels or conf[j] > conf_thres:
                        annotator.kpts(kpts_[j], conf_thres=conf_thres)

            # Plot masks
            if len(masks):
                if idx.shape[0] == masks.shape[0]:  # overlap_masks=False
                    image_masks = masks[idx]
                else:  # overlap_masks=True
                    image_masks = masks[[i]]  # (1, 640, 640)
                    nl = idx.sum()
                    index = np.arange(nl).reshape((nl, 1, 1)) + 1
                    image_masks = np.repeat(image_masks, nl, axis=0)
                    image_masks = np.where(image_masks == index, 1.0, 0.0)

                im = np.asarray(annotator.im).copy()
                for j in range(len(image_masks)):
                    if labels or conf[j] > conf_thres:
                        color = colors(classes[j])
                        mh, mw = image_masks[j].shape
                        if mh != h or mw != w:
                            mask = image_masks[j].astype(np.uint8)
                            mask = cv2.resize(mask, (w, h))
                            mask = mask.astype(bool)
                        else:
                            mask = image_masks[j].astype(bool)
                        with contextlib.suppress(Exception):
                            im[y : y + h, x : x + w, :][mask] = (
                                im[y : y + h, x : x + w, :][mask] * 0.4 + np.array(color) * 0.6
                            )
                annotator.fromarray(im)
    if not save:
        return np.asarray(annotator.im)
    annotator.im.save(fname)  # save
    if on_plot:
        on_plot(fname)



ultralytics.utils.plotting.plot_results(file='path/to/results.csv', dir='', segment=False, pose=False, classify=False, on_plot=None)

Traza los resultados del entrenamiento a partir de un archivo CSV de resultados. La función admite varios tipos de datos, incluida la segmentación estimación de la pose y clasificación. Los gráficos se guardan como "results.png" en el directorio donde se encuentra el archivo CSV.

Par√°metros:

Nombre Tipo Descripción Por defecto
file str

Ruta al archivo CSV que contiene los resultados del entrenamiento. Por defecto es 'ruta/a/resultados.csv'.

'path/to/results.csv'
dir str

Directorio donde se encuentra el archivo CSV si no se proporciona 'archivo'. Por defecto es ''.

''
segment bool

Bandera para indicar si los datos son para segmentación. Por defecto es Falso.

False
pose bool

Marca que indica si los datos son para estimar la pose. Por defecto es Falso.

False
classify bool

Bandera para indicar si los datos son para clasificación. Por defecto es Falso.

False
on_plot callable

Función de llamada de retorno que se ejecutará después del trazado. Toma el nombre del archivo como argumento. Por defecto es Ninguno.

None
Ejemplo
from ultralytics.utils.plotting import plot_results

plot_results('path/to/results.csv', segment=True)
Código fuente en ultralytics/utils/plotting.py
@plt_settings()
def plot_results(file="path/to/results.csv", dir="", segment=False, pose=False, classify=False, on_plot=None):
    """
    Plot training results from a results CSV file. The function supports various types of data including segmentation,
    pose estimation, and classification. Plots are saved as 'results.png' in the directory where the CSV is located.

    Args:
        file (str, optional): Path to the CSV file containing the training results. Defaults to 'path/to/results.csv'.
        dir (str, optional): Directory where the CSV file is located if 'file' is not provided. Defaults to ''.
        segment (bool, optional): Flag to indicate if the data is for segmentation. Defaults to False.
        pose (bool, optional): Flag to indicate if the data is for pose estimation. Defaults to False.
        classify (bool, optional): Flag to indicate if the data is for classification. Defaults to False.
        on_plot (callable, optional): Callback function to be executed after plotting. Takes filename as an argument.
            Defaults to None.

    Example:
        ```python
        from ultralytics.utils.plotting import plot_results

        plot_results('path/to/results.csv', segment=True)
        ```
    """
    import pandas as pd  # scope for faster 'import ultralytics'
    from scipy.ndimage import gaussian_filter1d

    save_dir = Path(file).parent if file else Path(dir)
    if classify:
        fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
        index = [1, 4, 2, 3]
    elif segment:
        fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
    elif pose:
        fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13]
    else:
        fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
    ax = ax.ravel()
    files = list(save_dir.glob("results*.csv"))
    assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
    for f in files:
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate(index):
                y = data.values[:, j].astype("float")
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8)  # actual results
                ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2)  # smoothing line
                ax[i].set_title(s[j], fontsize=12)
                # if j in {8, 9, 10}:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            LOGGER.warning(f"WARNING: Plotting error for {f}: {e}")
    ax[1].legend()
    fname = save_dir / "results.png"
    fig.savefig(fname, dpi=200)
    plt.close()
    if on_plot:
        on_plot(fname)



ultralytics.utils.plotting.plt_color_scatter(v, f, bins=20, cmap='viridis', alpha=0.8, edgecolors='none')

Traza un gr√°fico de dispersi√≥n con los puntos coloreados seg√ļn un histograma 2D.

Par√°metros:

Nombre Tipo Descripción Por defecto
v array - like

Valores para el eje x.

necesario
f array - like

Valores para el eje y.

necesario
bins int

N√ļmero de bins para el histograma. Por defecto es 20.

20
cmap str

Mapa de colores para el gráfico de dispersión. Por defecto es "viridis".

'viridis'
alpha float

Alfa del gráfico de dispersión. Por defecto es 0,8.

0.8
edgecolors str

Colores de los bordes del gráfico de dispersión. Por defecto es "ninguno".

'none'

Ejemplos:

>>> v = np.random.rand(100)
>>> f = np.random.rand(100)
>>> plt_color_scatter(v, f)
Código fuente en ultralytics/utils/plotting.py
def plt_color_scatter(v, f, bins=20, cmap="viridis", alpha=0.8, edgecolors="none"):
    """
    Plots a scatter plot with points colored based on a 2D histogram.

    Args:
        v (array-like): Values for the x-axis.
        f (array-like): Values for the y-axis.
        bins (int, optional): Number of bins for the histogram. Defaults to 20.
        cmap (str, optional): Colormap for the scatter plot. Defaults to 'viridis'.
        alpha (float, optional): Alpha for the scatter plot. Defaults to 0.8.
        edgecolors (str, optional): Edge colors for the scatter plot. Defaults to 'none'.

    Examples:
        >>> v = np.random.rand(100)
        >>> f = np.random.rand(100)
        >>> plt_color_scatter(v, f)
    """

    # Calculate 2D histogram and corresponding colors
    hist, xedges, yedges = np.histogram2d(v, f, bins=bins)
    colors = [
        hist[
            min(np.digitize(v[i], xedges, right=True) - 1, hist.shape[0] - 1),
            min(np.digitize(f[i], yedges, right=True) - 1, hist.shape[1] - 1),
        ]
        for i in range(len(v))
    ]

    # Scatter plot
    plt.scatter(v, f, c=colors, cmap=cmap, alpha=alpha, edgecolors=edgecolors)



ultralytics.utils.plotting.plot_tune_results(csv_file='tune_results.csv')

Traza los resultados de la evolución almacenados en un archivo 'tune_results.csv'. La función genera un gráfico de dispersión para cada clave del CSV, con un código de colores basado en las puntuaciones de aptitud. Las configuraciones con mejores resultados aparecen resaltadas en los gráficos.

Par√°metros:

Nombre Tipo Descripción Por defecto
csv_file str

Ruta al archivo CSV que contiene los resultados de la sintonización. Por defecto es 'tune_results.csv'.

'tune_results.csv'

Ejemplos:

>>> plot_tune_results('path/to/tune_results.csv')
Código fuente en ultralytics/utils/plotting.py
def plot_tune_results(csv_file="tune_results.csv"):
    """
    Plot the evolution results stored in an 'tune_results.csv' file. The function generates a scatter plot for each key
    in the CSV, color-coded based on fitness scores. The best-performing configurations are highlighted on the plots.

    Args:
        csv_file (str, optional): Path to the CSV file containing the tuning results. Defaults to 'tune_results.csv'.

    Examples:
        >>> plot_tune_results('path/to/tune_results.csv')
    """

    import pandas as pd  # scope for faster 'import ultralytics'
    from scipy.ndimage import gaussian_filter1d

    # Scatter plots for each hyperparameter
    csv_file = Path(csv_file)
    data = pd.read_csv(csv_file)
    num_metrics_columns = 1
    keys = [x.strip() for x in data.columns][num_metrics_columns:]
    x = data.values
    fitness = x[:, 0]  # fitness
    j = np.argmax(fitness)  # max fitness index
    n = math.ceil(len(keys) ** 0.5)  # columns and rows in plot
    plt.figure(figsize=(10, 10), tight_layout=True)
    for i, k in enumerate(keys):
        v = x[:, i + num_metrics_columns]
        mu = v[j]  # best single result
        plt.subplot(n, n, i + 1)
        plt_color_scatter(v, fitness, cmap="viridis", alpha=0.8, edgecolors="none")
        plt.plot(mu, fitness.max(), "k+", markersize=15)
        plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9})  # limit to 40 characters
        plt.tick_params(axis="both", labelsize=8)  # Set axis label size to 8
        if i % n != 0:
            plt.yticks([])

    file = csv_file.with_name("tune_scatter_plots.png")  # filename
    plt.savefig(file, dpi=200)
    plt.close()
    LOGGER.info(f"Saved {file}")

    # Fitness vs iteration
    x = range(1, len(fitness) + 1)
    plt.figure(figsize=(10, 6), tight_layout=True)
    plt.plot(x, fitness, marker="o", linestyle="none", label="fitness")
    plt.plot(x, gaussian_filter1d(fitness, sigma=3), ":", label="smoothed", linewidth=2)  # smoothing line
    plt.title("Fitness vs Iteration")
    plt.xlabel("Iteration")
    plt.ylabel("Fitness")
    plt.grid(True)
    plt.legend()

    file = csv_file.with_name("tune_fitness.png")  # filename
    plt.savefig(file, dpi=200)
    plt.close()
    LOGGER.info(f"Saved {file}")



ultralytics.utils.plotting.output_to_target(output, max_det=300)

Convierte la salida del modelo al formato objetivo [batch_id, class_id, x, y, w, h, conf] para trazarlo.

Código fuente en ultralytics/utils/plotting.py
def output_to_target(output, max_det=300):
    """Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
    targets = []
    for i, o in enumerate(output):
        box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
        j = torch.full((conf.shape[0], 1), i)
        targets.append(torch.cat((j, cls, ops.xyxy2xywh(box), conf), 1))
    targets = torch.cat(targets, 0).numpy()
    return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1]



ultralytics.utils.plotting.output_to_rotated_target(output, max_det=300)

Convierte la salida del modelo al formato objetivo [batch_id, class_id, x, y, w, h, conf] para trazarlo.

Código fuente en ultralytics/utils/plotting.py
def output_to_rotated_target(output, max_det=300):
    """Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
    targets = []
    for i, o in enumerate(output):
        box, conf, cls, angle = o[:max_det].cpu().split((4, 1, 1, 1), 1)
        j = torch.full((conf.shape[0], 1), i)
        targets.append(torch.cat((j, cls, box, angle, conf), 1))
    targets = torch.cat(targets, 0).numpy()
    return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1]



ultralytics.utils.plotting.feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp'))

Visualiza los mapas de características de un determinado módulo del modelo durante la inferencia.

Par√°metros:

Nombre Tipo Descripción Por defecto
x Tensor

Características a visualizar.

necesario
module_type str

Tipo de módulo.

necesario
stage int

Etapa del módulo dentro del modelo.

necesario
n int

N√ļmero m√°ximo de mapas de caracter√≠sticas a trazar. Por defecto, 32.

32
save_dir Path

Directorio para guardar los resultados. Por defecto es Path('runs/detect/exp').

Path('runs/detect/exp')
Código fuente en ultralytics/utils/plotting.py
def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")):
    """
    Visualize feature maps of a given model module during inference.

    Args:
        x (torch.Tensor): Features to be visualized.
        module_type (str): Module type.
        stage (int): Module stage within the model.
        n (int, optional): Maximum number of feature maps to plot. Defaults to 32.
        save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp').
    """
    for m in {"Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder"}:  # all model heads
        if m in module_type:
            return
    if isinstance(x, torch.Tensor):
        _, channels, height, width = x.shape  # batch, channels, height, width
        if height > 1 and width > 1:
            f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png"  # filename

            blocks = torch.chunk(x[0].cpu(), channels, dim=0)  # select batch index 0, block by channels
            n = min(n, channels)  # number of plots
            _, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True)  # 8 rows x n/8 cols
            ax = ax.ravel()
            plt.subplots_adjust(wspace=0.05, hspace=0.05)
            for i in range(n):
                ax[i].imshow(blocks[i].squeeze())  # cmap='gray'
                ax[i].axis("off")

            LOGGER.info(f"Saving {f}... ({n}/{channels})")
            plt.savefig(f, dpi=300, bbox_inches="tight")
            plt.close()
            np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy())  # npy save





Creado 2023-11-12, Actualizado 2024-05-18
Autores: glenn-jocher (5), Burhan-Q (1), Laughing-q (1)