コンテンツにスキップ

TFLite, ONNX, CoreML, TensorRTエクスポート

📚 このガイドでは、トレーニング済みのYOLOv5 🚀モデルをPyTorchからONNX、TensorRT、CoreMLなどのさまざまなデプロイメント形式にエクスポートする方法について説明します。

始める前に

requirements.txtをクローンして、Python>=3.8.0環境(PyTorch>=1.8を含む)にインストールします。モデルデータセットは、最新のYOLOv5 リリースから自動的にダウンロードされます。

git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install

次の場合 TensorRT エクスポートの例(GPUが必要)はColabを参照してください notebook 付録セクション Colabで開く

サポートされているエクスポート形式

YOLOv5の推論は、公式には12の形式でサポートされています。

パフォーマンスのヒント

  • 最大3倍のCPU高速化のためにONNXまたはOpenVINOにエクスポートします。CPUベンチマークを参照してください。
  • 最大5倍のGPU高速化のためにTensorRTにエクスポートします。GPUベンチマークを参照してください。
形式 export.py --include モデル
PyTorch - yolov5s.pt
TorchScript torchscript yolov5s.torchscript
ONNX onnx yolov5s.onnx
OpenVINO openvino yolov5s_openvino_model/
TensorRT engine yolov5s.engine
CoreML coreml yolov5s.mlmodel
TensorFlow SavedModel saved_model yolov5s_saved_model/
TensorFlow GraphDef pb yolov5s.pb
TensorFlow Lite tflite yolov5s.tflite
TensorFlow Edge TPU edgetpu yolov5s_edgetpu.tflite
TensorFlow.js tfjs yolov5s_web_model/
PaddlePaddle paddle yolov5s_paddle_model/

ベンチマーク

以下のベンチマークは、YOLOv5チュートリアルノートブックを使用したColab Proで実行されます Colabで開く。再現するには:

python benchmarks.py --weights yolov5s.pt --imgsz 640 --device 0

Colab Pro V100 GPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=0, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 46.7/166.8 GB disk)

Benchmarks complete (458.07s)
                   Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623                10.19
1             TorchScript        0.4623                 6.85
2                    ONNX        0.4623                14.63
3                OpenVINO           NaN                  NaN
4                TensorRT        0.4617                 1.89
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623                21.28
7     TensorFlow GraphDef        0.4623                21.22
8         TensorFlow Lite           NaN                  NaN
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

Colab Pro CPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=cpu, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CPU
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 41.5/166.8 GB disk)

Benchmarks complete (241.20s)
                   Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623               127.61
1             TorchScript        0.4623               131.23
2                    ONNX        0.4623                69.34
3                OpenVINO        0.4623                66.52
4                TensorRT           NaN                  NaN
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623               123.79
7     TensorFlow GraphDef        0.4623               121.57
8         TensorFlow Lite        0.4623               316.61
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

学習済みYOLOv5モデルのエクスポート

このコマンドは、事前トレーニング済みのYOLOv5sモデルをTorchScriptおよびONNX形式にエクスポートします。 yolov5s.pt は「small」モデルであり、利用可能な2番目に小さいモデルです。その他のオプションは次のとおりです。 yolov5n.pt, yolov5m.pt, yolov5l.pt および yolov5x.pt、およびそれらのP6対応物(すなわち、 yolov5s6.pt または、独自のカスタムトレーニングチェックポイント(例: runs/exp/weights/best.pt。利用可能なすべてのモデルの詳細については、READMEをご覧ください。 テーブル.

python export.py --weights yolov5s.pt --include torchscript onnx

ヒント

追加 --half FP16ハーフでモデルをエクスポートするには 適合率 ファイルサイズを小さくするため

出力:

export: data=data/coco128.yaml, weights=['yolov5s.pt'], imgsz=[640, 640], batch_size=1, device=cpu, half=False, inplace=False, train=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=12, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['torchscript', 'onnx']
YOLOv5 🚀 v6.2-104-ge3e5122 Python-3.8.0 torch-1.12.1+cu113 CPU

Downloading https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 274MB/s]

Fusing layers...
YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients

PyTorch: starting from yolov5s.pt with output shape (1, 25200, 85) (14.1 MB)

TorchScript: starting export with torch 1.12.1+cu113...
TorchScript: export success ✅ 1.7s, saved as yolov5s.torchscript (28.1 MB)

ONNX: starting export with onnx 1.12.0...
ONNX: export success ✅ 2.3s, saved as yolov5s.onnx (28.0 MB)

Export complete (5.5s)
Results saved to /content/yolov5
Detect:          python detect.py --weights yolov5s.onnx
Validate:        python val.py --weights yolov5s.onnx
PyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.onnx')
Visualize:       https://netron.app/

エクスポートされた3つのモデルは、元のPyTorchモデルとともに保存されます。

YOLO エクスポート場所

エクスポートされたモデルを視覚化するには、Netron Viewerをお勧めします。

YOLO モデルの可視化

エクスポートされたモデルの使用例

detect.py エクスポートされたモデルで推論を実行:

python detect.py --weights yolov5s.pt             # PyTorch
python detect.py --weights yolov5s.torchscript    # TorchScript
python detect.py --weights yolov5s.onnx           # ONNX Runtime or OpenCV DNN with dnn=True
python detect.py --weights yolov5s_openvino_model # OpenVINO
python detect.py --weights yolov5s.engine         # TensorRT
python detect.py --weights yolov5s.mlmodel        # CoreML (macOS only)
python detect.py --weights yolov5s_saved_model    # TensorFlow SavedModel
python detect.py --weights yolov5s.pb             # TensorFlow GraphDef
python detect.py --weights yolov5s.tflite         # TensorFlow Lite
python detect.py --weights yolov5s_edgetpu.tflite # TensorFlow Edge TPU
python detect.py --weights yolov5s_paddle_model   # PaddlePaddle

val.py エクスポートされたモデルで検証を実行:

python val.py --weights yolov5s.pt             # PyTorch
python val.py --weights yolov5s.torchscript    # TorchScript
python val.py --weights yolov5s.onnx           # ONNX Runtime or OpenCV DNN with dnn=True
python val.py --weights yolov5s_openvino_model # OpenVINO
python val.py --weights yolov5s.engine         # TensorRT
python val.py --weights yolov5s.mlmodel        # CoreML (macOS Only)
python val.py --weights yolov5s_saved_model    # TensorFlow SavedModel
python val.py --weights yolov5s.pb             # TensorFlow GraphDef
python val.py --weights yolov5s.tflite         # TensorFlow Lite
python val.py --weights yolov5s_edgetpu.tflite # TensorFlow Edge TPU
python val.py --weights yolov5s_paddle_model   # PaddlePaddle

エクスポートされたYOLOv5モデルでPyTorch Hubを使用する:

import torch

# Model
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pt")
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.torchscript ")  # TorchScript
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.onnx")  # ONNX Runtime
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_openvino_model")  # OpenVINO
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.engine")  # TensorRT
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.mlmodel")  # CoreML (macOS Only)
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_saved_model")  # TensorFlow SavedModel
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pb")  # TensorFlow GraphDef
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.tflite")  # TensorFlow Lite
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_edgetpu.tflite")  # TensorFlow Edge TPU
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_paddle_model")  # PaddlePaddle

# Images
img = "https://ultralytics.com/images/zidane.jpg"  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

OpenCV DNN推論

ONNXモデルを使用したOpenCV推論:

python export.py --weights yolov5s.pt --include onnx

python detect.py --weights yolov5s.onnx --dnn # detect
python val.py --weights yolov5s.onnx --dnn    # validate

C++推論

エクスポートされた ONNX モデルでの YOLOv5 OpenCV DNN C++ 推論の例:

YOLOv5 OpenVINO C++ 推論の例:

TensorFlow.js Webブラウザ推論

サポートされている環境

Ultralyticsは、CUDACUDNNPythonPyTorchなどの必須依存関係がプリインストールされた、すぐに使用できるさまざまな環境を提供し、プロジェクトをすぐに開始できます。

プロジェクトのステータス

YOLOv5 CI

このバッジは、すべてのYOLOv5 GitHub Actions継続的インテグレーション(CI)テストが正常に合格していることを示します。これらのCIテストでは、トレーニング検証推論エクスポートベンチマークなど、さまざまな重要な側面についてYOLOv5の機能と性能を厳密にチェックします。これらのテストは、macOS、Windows、Ubuntuでの一貫した信頼性の高い動作を保証し、24時間ごと、および新しいコミットごとに行われます。



📅 1年前に作成 ✏️ 2か月前に更新

コメント