Skip to content

Reference for ultralytics/models/sam/modules/blocks.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/blocks.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.models.sam.modules.blocks.DropPath

DropPath(drop_prob=0.0, scale_by_keep=True)

Bases: Module

Implements stochastic depth regularization for neural networks during training.

Attributes:

Name Type Description
drop_prob float

Probability of dropping a path during training.

scale_by_keep bool

Whether to scale the output by the keep probability.

Methods:

Name Description
forward

Applies stochastic depth to input tensor during training, with optional scaling.

Examples:

>>> drop_path = DropPath(drop_prob=0.2, scale_by_keep=True)
>>> x = torch.randn(32, 64, 224, 224)
>>> output = drop_path(x)
Source code in ultralytics/models/sam/modules/blocks.py
def __init__(self, drop_prob=0.0, scale_by_keep=True):
    """Initialize DropPath module for stochastic depth regularization during training."""
    super().__init__()
    self.drop_prob = drop_prob
    self.scale_by_keep = scale_by_keep

forward

forward(x)

Applies stochastic depth to input tensor during training, with optional scaling.

Source code in ultralytics/models/sam/modules/blocks.py
def forward(self, x):
    """Applies stochastic depth to input tensor during training, with optional scaling."""
    if self.drop_prob == 0.0 or not self.training:
        return x
    keep_prob = 1 - self.drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)
    random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
    if keep_prob > 0.0 and self.scale_by_keep:
        random_tensor.div_(keep_prob)
    return x * random_tensor





ultralytics.models.sam.modules.blocks.MaskDownSampler

MaskDownSampler(
    embed_dim=256,
    kernel_size=4,
    stride=4,
    padding=0,
    total_stride=16,
    activation=nn.GELU,
)

Bases: Module

A mask downsampling and embedding module for efficient processing of input masks.

This class implements a mask downsampler that progressively reduces the spatial dimensions of input masks while expanding their channel dimensions using convolutional layers, layer normalization, and activation functions.

Attributes:

Name Type Description
encoder Sequential

A sequential container of convolutional layers, layer normalization, and activation functions for downsampling and embedding masks.

Methods:

Name Description
forward

Downsamples and encodes input mask to embed_dim channels.

Examples:

>>> mask_downsampler = MaskDownSampler(embed_dim=256, kernel_size=4, stride=4, padding=0, total_stride=16)
>>> input_mask = torch.randn(1, 1, 256, 256)
>>> output = mask_downsampler(input_mask)
>>> print(output.shape)
torch.Size([1, 256, 16, 16])
Source code in ultralytics/models/sam/modules/blocks.py
def __init__(
    self,
    embed_dim=256,
    kernel_size=4,
    stride=4,
    padding=0,
    total_stride=16,
    activation=nn.GELU,
):
    """Initializes a mask downsampler module for progressive downsampling and channel expansion."""
    super().__init__()
    num_layers = int(math.log2(total_stride) // math.log2(stride))
    assert stride**num_layers == total_stride
    self.encoder = nn.Sequential()
    mask_in_chans, mask_out_chans = 1, 1
    for _ in range(num_layers):
        mask_out_chans = mask_in_chans * (stride**2)
        self.encoder.append(
            nn.Conv2d(
                mask_in_chans,
                mask_out_chans,
                kernel_size=kernel_size,
                stride=stride,
                padding=padding,
            )
        )
        self.encoder.append(LayerNorm2d(mask_out_chans))
        self.encoder.append(activation())
        mask_in_chans = mask_out_chans

    self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))

forward

forward(x)

Downsamples and encodes input mask to embed_dim channels using convolutional layers and LayerNorm2d.

Source code in ultralytics/models/sam/modules/blocks.py
def forward(self, x):
    """Downsamples and encodes input mask to embed_dim channels using convolutional layers and LayerNorm2d."""
    return self.encoder(x)





ultralytics.models.sam.modules.blocks.CXBlock

CXBlock(
    dim,
    kernel_size=7,
    padding=3,
    drop_path=0.0,
    layer_scale_init_value=1e-06,
    use_dwconv=True,
)

Bases: Module

ConvNeXt Block for efficient feature extraction in convolutional neural networks.

This block implements a modified version of the ConvNeXt architecture, offering improved performance and flexibility in feature extraction.

Attributes:

Name Type Description
dwconv Conv2d

Depthwise or standard 2D convolution layer.

norm LayerNorm2d

Layer normalization applied to channels.

pwconv1 Linear

First pointwise convolution implemented as a linear layer.

act GELU

GELU activation function.

pwconv2 Linear

Second pointwise convolution implemented as a linear layer.

gamma Parameter | None

Learnable scale parameter for layer scaling.

drop_path Module

DropPath layer for stochastic depth regularization.

Methods:

Name Description
forward

Processes the input tensor through the ConvNeXt block.

Examples:

>>> import torch
>>> x = torch.randn(1, 64, 56, 56)
>>> block = CXBlock(dim=64, kernel_size=7, padding=3)
>>> output = block(x)
>>> print(output.shape)
torch.Size([1, 64, 56, 56])

This block implements a modified version of the ConvNeXt architecture, offering improved performance and flexibility in feature extraction.

Parameters:

Name Type Description Default
dim int

Number of input channels.

required
kernel_size int

Size of the convolutional kernel.

7
padding int

Padding size for the convolution.

3
drop_path float

Stochastic depth rate.

0.0
layer_scale_init_value float

Initial value for Layer Scale.

1e-06
use_dwconv bool

Whether to use depthwise convolution.

True

Examples:

>>> block = CXBlock(dim=64, kernel_size=7, padding=3)
>>> x = torch.randn(1, 64, 32, 32)
>>> output = block(x)
>>> print(output.shape)
torch.Size([1, 64, 32, 32])
Source code in ultralytics/models/sam/modules/blocks.py
def __init__(
    self,
    dim,
    kernel_size=7,
    padding=3,
    drop_path=0.0,
    layer_scale_init_value=1e-6,
    use_dwconv=True,
):
    """
    Initialize a ConvNeXt Block for efficient feature extraction in convolutional neural networks.

    This block implements a modified version of the ConvNeXt architecture, offering improved performance and
    flexibility in feature extraction.

    Args:
        dim (int): Number of input channels.
        kernel_size (int): Size of the convolutional kernel.
        padding (int): Padding size for the convolution.
        drop_path (float): Stochastic depth rate.
        layer_scale_init_value (float): Initial value for Layer Scale.
        use_dwconv (bool): Whether to use depthwise convolution.

    Examples:
        >>> block = CXBlock(dim=64, kernel_size=7, padding=3)
        >>> x = torch.randn(1, 64, 32, 32)
        >>> output = block(x)
        >>> print(output.shape)
        torch.Size([1, 64, 32, 32])
    """
    super().__init__()
    self.dwconv = nn.Conv2d(
        dim,
        dim,
        kernel_size=kernel_size,
        padding=padding,
        groups=dim if use_dwconv else 1,
    )  # depthwise conv
    self.norm = LayerNorm2d(dim, eps=1e-6)
    self.pwconv1 = nn.Linear(dim, 4 * dim)  # pointwise/1x1 convs, implemented with linear layers
    self.act = nn.GELU()
    self.pwconv2 = nn.Linear(4 * dim, dim)
    self.gamma = (
        nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
        if layer_scale_init_value > 0
        else None
    )
    self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

forward

forward(x)

Applies ConvNeXt block operations to input tensor, including convolutions and residual connection.

Source code in ultralytics/models/sam/modules/blocks.py
def forward(self, x):
    """Applies ConvNeXt block operations to input tensor, including convolutions and residual connection."""
    input = x
    x = self.dwconv(x)
    x = self.norm(x)
    x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
    x = self.pwconv1(x)
    x = self.act(x)
    x = self.pwconv2(x)
    if self.gamma is not None:
        x = self.gamma * x
    x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

    x = input + self.drop_path(x)
    return x





ultralytics.models.sam.modules.blocks.Fuser

Fuser(layer, num_layers, dim=None, input_projection=False)

Bases: Module

A module for fusing features through multiple layers of a neural network.

This class applies a series of identical layers to an input tensor, optionally projecting the input first.

Attributes:

Name Type Description
proj Module

An optional input projection layer. Identity if no projection is needed.

layers ModuleList

A list of identical layers to be applied sequentially.

Methods:

Name Description
forward

Applies the fuser to an input tensor.

Examples:

>>> layer = CXBlock(dim=256)
>>> fuser = Fuser(layer, num_layers=3, dim=256, input_projection=True)
>>> x = torch.randn(1, 256, 32, 32)
>>> output = fuser(x)
>>> print(output.shape)
torch.Size([1, 256, 32, 32])

This module creates a sequence of identical layers and optionally applies an input projection.

Parameters:

Name Type Description Default
layer Module

The layer to be replicated in the fuser.

required
num_layers int

The number of times to replicate the layer.

required
dim int | None

The dimension for input projection, if used.

None
input_projection bool

Whether to use input projection.

False

Examples:

>>> layer = nn.Linear(64, 64)
>>> fuser = Fuser(layer, num_layers=3, dim=64, input_projection=True)
>>> input_tensor = torch.randn(1, 64)
>>> output = fuser(input_tensor)
Source code in ultralytics/models/sam/modules/blocks.py
def __init__(self, layer, num_layers, dim=None, input_projection=False):
    """
    Initializes the Fuser module for feature fusion through multiple layers.

    This module creates a sequence of identical layers and optionally applies an input projection.

    Args:
        layer (nn.Module): The layer to be replicated in the fuser.
        num_layers (int): The number of times to replicate the layer.
        dim (int | None): The dimension for input projection, if used.
        input_projection (bool): Whether to use input projection.

    Examples:
        >>> layer = nn.Linear(64, 64)
        >>> fuser = Fuser(layer, num_layers=3, dim=64, input_projection=True)
        >>> input_tensor = torch.randn(1, 64)
        >>> output = fuser(input_tensor)
    """
    super().__init__()
    self.proj = nn.Identity()
    self.layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_layers)])

    if input_projection:
        assert dim is not None
        self.proj = nn.Conv2d(dim, dim, kernel_size=1)

forward

forward(x)

Applies a series of layers to the input tensor, optionally projecting it first.

Source code in ultralytics/models/sam/modules/blocks.py
def forward(self, x):
    """Applies a series of layers to the input tensor, optionally projecting it first."""
    x = self.proj(x)
    for layer in self.layers:
        x = layer(x)
    return x





ultralytics.models.sam.modules.blocks.SAM2TwoWayAttentionBlock

SAM2TwoWayAttentionBlock(
    embedding_dim: int,
    num_heads: int,
    mlp_dim: int = 2048,
    activation: Type[nn.Module] = nn.ReLU,
    attention_downsample_rate: int = 2,
    skip_first_layer_pe: bool = False,
)

Bases: TwoWayAttentionBlock

A two-way attention block for performing self-attention and cross-attention in both directions.

This block extends the TwoWayAttentionBlock and consists of four main components: self-attention on sparse inputs, cross-attention from sparse to dense inputs, an MLP block on sparse inputs, and cross-attention from dense to sparse inputs.

Attributes:

Name Type Description
self_attn Attention

Self-attention layer for queries.

norm1 LayerNorm

Layer normalization after the first attention block.

cross_attn_token_to_image Attention

Cross-attention layer from queries to keys.

norm2 LayerNorm

Layer normalization after the second attention block.

mlp MLP

MLP block for transforming query embeddings.

norm3 LayerNorm

Layer normalization after the MLP block.

norm4 LayerNorm

Layer normalization after the third attention block.

cross_attn_image_to_token Attention

Cross-attention layer from keys to queries.

skip_first_layer_pe bool

Flag to skip positional encoding in the first layer.

Methods:

Name Description
forward

Processes input through the attention blocks and MLP.

Examples:

>>> block = SAM2TwoWayAttentionBlock(embedding_dim=256, num_heads=8)
>>> sparse_input = torch.randn(1, 100, 256)
>>> dense_input = torch.randn(1, 256, 16, 16)
>>> sparse_output, dense_output = block(sparse_input, dense_input)

This block extends the TwoWayAttentionBlock and consists of four main components: self-attention on sparse inputs, cross-attention from sparse to dense inputs, an MLP block on sparse inputs, and cross-attention from dense to sparse inputs.

Parameters:

Name Type Description Default
embedding_dim int

The channel dimension of the embeddings.

required
num_heads int

The number of heads in the attention layers.

required
mlp_dim int

The hidden dimension of the MLP block.

2048
activation Type[Module]

The activation function of the MLP block.

ReLU
attention_downsample_rate int

The downsample rate for attention computations.

2
skip_first_layer_pe bool

Whether to skip the positional encoding in the first layer.

False

Examples:

>>> block = SAM2TwoWayAttentionBlock(embedding_dim=256, num_heads=8, mlp_dim=2048)
>>> sparse_inputs = torch.randn(1, 100, 256)
>>> dense_inputs = torch.randn(1, 256, 32, 32)
>>> sparse_outputs, dense_outputs = block(sparse_inputs, dense_inputs)
Source code in ultralytics/models/sam/modules/blocks.py
def __init__(
    self,
    embedding_dim: int,
    num_heads: int,
    mlp_dim: int = 2048,
    activation: Type[nn.Module] = nn.ReLU,
    attention_downsample_rate: int = 2,
    skip_first_layer_pe: bool = False,
) -> None:
    """
    Initializes a SAM2TwoWayAttentionBlock for performing self-attention and cross-attention in two directions.

    This block extends the TwoWayAttentionBlock and consists of four main components: self-attention on sparse
    inputs, cross-attention from sparse to dense inputs, an MLP block on sparse inputs, and cross-attention
    from dense to sparse inputs.

    Args:
        embedding_dim (int): The channel dimension of the embeddings.
        num_heads (int): The number of heads in the attention layers.
        mlp_dim (int): The hidden dimension of the MLP block.
        activation (Type[nn.Module]): The activation function of the MLP block.
        attention_downsample_rate (int): The downsample rate for attention computations.
        skip_first_layer_pe (bool): Whether to skip the positional encoding in the first layer.

    Examples:
        >>> block = SAM2TwoWayAttentionBlock(embedding_dim=256, num_heads=8, mlp_dim=2048)
        >>> sparse_inputs = torch.randn(1, 100, 256)
        >>> dense_inputs = torch.randn(1, 256, 32, 32)
        >>> sparse_outputs, dense_outputs = block(sparse_inputs, dense_inputs)
    """
    super().__init__(embedding_dim, num_heads, mlp_dim, activation, attention_downsample_rate, skip_first_layer_pe)
    self.mlp = MLP(embedding_dim, mlp_dim, embedding_dim, num_layers=2, act=activation)





ultralytics.models.sam.modules.blocks.SAM2TwoWayTransformer

SAM2TwoWayTransformer(
    depth: int,
    embedding_dim: int,
    num_heads: int,
    mlp_dim: int,
    activation: Type[nn.Module] = nn.ReLU,
    attention_downsample_rate: int = 2,
)

Bases: TwoWayTransformer

A Two-Way Transformer module for simultaneous attention to image and query points.

This class extends the TwoWayTransformer, implementing a specialized transformer decoder that attends to an input image using queries with supplied positional embeddings. It is particularly useful for tasks like object detection, image segmentation, and point cloud processing.

Attributes:

Name Type Description
depth int

Number of layers in the transformer.

embedding_dim int

Channel dimension for input embeddings.

num_heads int

Number of heads for multihead attention.

mlp_dim int

Internal channel dimension for the MLP block.

layers ModuleList

List of SAM2TwoWayAttentionBlock layers comprising the transformer.

final_attn_token_to_image Attention

Final attention layer from queries to image.

norm_final_attn LayerNorm

Layer normalization applied to final queries.

Methods:

Name Description
forward

Processes input image embeddings and query embeddings through the transformer.

Examples:

>>> transformer = SAM2TwoWayTransformer(depth=5, embedding_dim=256, num_heads=8, mlp_dim=2048)
>>> image_embedding = torch.randn(1, 256, 64, 64)
>>> query_embedding = torch.randn(1, 100, 256)
>>> output = transformer(image_embedding, query_embedding)
>>> print(output[0].shape, output[1].shape)
torch.Size([1, 100, 256]) torch.Size([1, 256, 64, 64])

This transformer decoder attends to an input image using queries with supplied positional embeddings. It is designed for tasks like object detection, image segmentation, and point cloud processing.

Parameters:

Name Type Description Default
depth int

Number of layers in the transformer.

required
embedding_dim int

Channel dimension for the input embeddings.

required
num_heads int

Number of heads for multihead attention. Must divide embedding_dim.

required
mlp_dim int

Channel dimension internal to the MLP block.

required
activation Type[Module]

Activation function to use in the MLP block.

ReLU
attention_downsample_rate int

Downsampling rate for attention computations.

2

Examples:

>>> transformer = SAM2TwoWayTransformer(depth=5, embedding_dim=256, num_heads=8, mlp_dim=2048)
>>> transformer
SAM2TwoWayTransformer(
  (layers): ModuleList(
    (0-4): 5 x SAM2TwoWayAttentionBlock(...)
  )
  (final_attn_token_to_image): Attention(...)
  (norm_final_attn): LayerNorm(...)
)
Source code in ultralytics/models/sam/modules/blocks.py
def __init__(
    self,
    depth: int,
    embedding_dim: int,
    num_heads: int,
    mlp_dim: int,
    activation: Type[nn.Module] = nn.ReLU,
    attention_downsample_rate: int = 2,
) -> None:
    """
    Initializes a SAM2TwoWayTransformer instance.

    This transformer decoder attends to an input image using queries with supplied positional embeddings.
    It is designed for tasks like object detection, image segmentation, and point cloud processing.

    Args:
        depth (int): Number of layers in the transformer.
        embedding_dim (int): Channel dimension for the input embeddings.
        num_heads (int): Number of heads for multihead attention. Must divide embedding_dim.
        mlp_dim (int): Channel dimension internal to the MLP block.
        activation (Type[nn.Module]): Activation function to use in the MLP block.
        attention_downsample_rate (int): Downsampling rate for attention computations.

    Examples:
        >>> transformer = SAM2TwoWayTransformer(depth=5, embedding_dim=256, num_heads=8, mlp_dim=2048)
        >>> transformer
        SAM2TwoWayTransformer(
          (layers): ModuleList(
            (0-4): 5 x SAM2TwoWayAttentionBlock(...)
          )
          (final_attn_token_to_image): Attention(...)
          (norm_final_attn): LayerNorm(...)
        )
    """
    super().__init__(depth, embedding_dim, num_heads, mlp_dim, activation, attention_downsample_rate)
    self.layers = nn.ModuleList()
    for i in range(depth):
        self.layers.append(
            SAM2TwoWayAttentionBlock(
                embedding_dim=embedding_dim,
                num_heads=num_heads,
                mlp_dim=mlp_dim,
                activation=activation,
                attention_downsample_rate=attention_downsample_rate,
                skip_first_layer_pe=(i == 0),
            )
        )





ultralytics.models.sam.modules.blocks.RoPEAttention

RoPEAttention(
    *args,
    rope_theta=10000.0,
    rope_k_repeat=False,
    feat_sizes=(32, 32),
    **kwargs
)

Bases: Attention

Implements rotary position encoding for attention mechanisms in transformer architectures.

This class extends the base Attention class by incorporating Rotary Position Encoding (RoPE) to enhance the positional awareness of the attention mechanism.

Attributes:

Name Type Description
compute_cis Callable

Function to compute axial complex numbers for rotary encoding.

freqs_cis Tensor

Precomputed frequency tensor for rotary encoding.

rope_k_repeat bool

Flag to repeat query RoPE to match key length for cross-attention to memories.

Methods:

Name Description
forward

Applies rotary position encoding and computes attention between query, key, and value tensors.

Examples:

>>> rope_attn = RoPEAttention(embedding_dim=256, num_heads=8, rope_theta=10000.0, feat_sizes=(32, 32))
>>> q = torch.randn(1, 1024, 256)
>>> k = torch.randn(1, 1024, 256)
>>> v = torch.randn(1, 1024, 256)
>>> output = rope_attn(q, k, v)
>>> print(output.shape)
torch.Size([1, 1024, 256])
Source code in ultralytics/models/sam/modules/blocks.py
def __init__(
    self,
    *args,
    rope_theta=10000.0,
    rope_k_repeat=False,
    feat_sizes=(32, 32),  # [w, h] for stride 16 feats at 512 resolution
    **kwargs,
):
    """Initializes RoPEAttention with rotary position encoding for enhanced positional awareness."""
    super().__init__(*args, **kwargs)

    self.compute_cis = partial(compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta)
    freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
    self.freqs_cis = freqs_cis
    self.rope_k_repeat = rope_k_repeat  # repeat q rope to match k length, needed for cross-attention to memories

forward

forward(q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0) -> Tensor

Applies rotary position encoding and computes attention between query, key, and value tensors.

Source code in ultralytics/models/sam/modules/blocks.py
def forward(self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0) -> Tensor:
    """Applies rotary position encoding and computes attention between query, key, and value tensors."""
    q = self.q_proj(q)
    k = self.k_proj(k)
    v = self.v_proj(v)

    # Separate into heads
    q = self._separate_heads(q, self.num_heads)
    k = self._separate_heads(k, self.num_heads)
    v = self._separate_heads(v, self.num_heads)

    # Apply rotary position encoding
    w = h = math.sqrt(q.shape[-2])
    self.freqs_cis = self.freqs_cis.to(q.device)
    if self.freqs_cis.shape[0] != q.shape[-2]:
        self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
    if q.shape[-2] != k.shape[-2]:
        assert self.rope_k_repeat

    num_k_rope = k.size(-2) - num_k_exclude_rope
    q, k[:, :, :num_k_rope] = apply_rotary_enc(
        q,
        k[:, :, :num_k_rope],
        freqs_cis=self.freqs_cis,
        repeat_freqs_k=self.rope_k_repeat,
    )

    # Attention
    _, _, _, c_per_head = q.shape
    attn = q @ k.permute(0, 1, 3, 2)  # B x N_heads x N_tokens x N_tokens
    attn = attn / math.sqrt(c_per_head)
    attn = torch.softmax(attn, dim=-1)

    # Get output
    out = attn @ v

    out = self._recombine_heads(out)
    out = self.out_proj(out)

    return out





ultralytics.models.sam.modules.blocks.MultiScaleAttention

MultiScaleAttention(
    dim: int, dim_out: int, num_heads: int, q_pool: nn.Module = None
)

Bases: Module

Implements multi-scale self-attention with optional query pooling for efficient feature extraction.

This class provides a flexible implementation of multi-scale attention, allowing for optional downsampling of query features through pooling. It's designed to enhance the model's ability to capture multi-scale information in visual tasks.

Attributes:

Name Type Description
dim int

Input dimension of the feature map.

dim_out int

Output dimension of the attention module.

num_heads int

Number of attention heads.

scale float

Scaling factor for dot-product attention.

q_pool Module | None

Optional pooling module for query features.

qkv Linear

Linear projection for query, key, and value.

proj Linear

Output projection.

Methods:

Name Description
forward

Applies multi-scale attention to the input tensor.

Examples:

>>> import torch
>>> from torch import nn
>>> x = torch.randn(1, 64, 64, 256)
>>> msa = MultiScaleAttention(dim=256, dim_out=256, num_heads=8)
>>> output = msa(x)
>>> print(output.shape)
torch.Size([1, 64, 64, 256])
Source code in ultralytics/models/sam/modules/blocks.py
def __init__(
    self,
    dim: int,
    dim_out: int,
    num_heads: int,
    q_pool: nn.Module = None,
):
    """Initializes multi-scale attention with optional query pooling for efficient feature extraction."""
    super().__init__()

    self.dim = dim
    self.dim_out = dim_out

    self.num_heads = num_heads
    head_dim = dim_out // num_heads
    self.scale = head_dim**-0.5

    self.q_pool = q_pool
    self.qkv = nn.Linear(dim, dim_out * 3)
    self.proj = nn.Linear(dim_out, dim_out)

forward

forward(x: torch.Tensor) -> torch.Tensor

Applies multi-scale attention with optional query pooling to extract multi-scale features.

Source code in ultralytics/models/sam/modules/blocks.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Applies multi-scale attention with optional query pooling to extract multi-scale features."""
    B, H, W, _ = x.shape
    # qkv with shape (B, H * W, 3, nHead, C)
    qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
    # q, k, v with shape (B, H * W, nheads, C)
    q, k, v = torch.unbind(qkv, 2)

    # Q pooling (for downsample at stage changes)
    if self.q_pool:
        q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
        H, W = q.shape[1:3]  # downsampled shape
        q = q.reshape(B, H * W, self.num_heads, -1)

    # Torch's SDPA expects [B, nheads, H*W, C] so we transpose
    x = F.scaled_dot_product_attention(
        q.transpose(1, 2),
        k.transpose(1, 2),
        v.transpose(1, 2),
    )
    # Transpose back
    x = x.transpose(1, 2)
    x = x.reshape(B, H, W, -1)

    x = self.proj(x)

    return x





ultralytics.models.sam.modules.blocks.MultiScaleBlock

MultiScaleBlock(
    dim: int,
    dim_out: int,
    num_heads: int,
    mlp_ratio: float = 4.0,
    drop_path: float = 0.0,
    norm_layer: Union[nn.Module, str] = "LayerNorm",
    q_stride: Tuple[int, int] = None,
    act_layer: nn.Module = nn.GELU,
    window_size: int = 0,
)

Bases: Module

A multi-scale attention block with window partitioning and query pooling for efficient vision transformers.

This class implements a multi-scale attention mechanism with optional window partitioning and downsampling, designed for use in vision transformer architectures.

Attributes:

Name Type Description
dim int

Input dimension of the block.

dim_out int

Output dimension of the block.

norm1 Module

First normalization layer.

window_size int

Size of the window for partitioning.

pool Module | None

Pooling layer for query downsampling.

q_stride Tuple[int, int] | None

Stride for query pooling.

attn MultiScaleAttention

Multi-scale attention module.

drop_path Module

Drop path layer for regularization.

norm2 Module

Second normalization layer.

mlp MLP

Multi-layer perceptron module.

proj Linear | None

Projection layer for dimension mismatch.

Methods:

Name Description
forward

Processes input tensor through the multi-scale block.

Examples:

>>> block = MultiScaleBlock(dim=256, dim_out=512, num_heads=8, window_size=7)
>>> x = torch.randn(1, 56, 56, 256)
>>> output = block(x)
>>> print(output.shape)
torch.Size([1, 28, 28, 512])
Source code in ultralytics/models/sam/modules/blocks.py
def __init__(
    self,
    dim: int,
    dim_out: int,
    num_heads: int,
    mlp_ratio: float = 4.0,
    drop_path: float = 0.0,
    norm_layer: Union[nn.Module, str] = "LayerNorm",
    q_stride: Tuple[int, int] = None,
    act_layer: nn.Module = nn.GELU,
    window_size: int = 0,
):
    """Initializes a multi-scale attention block with window partitioning and optional query pooling."""
    super().__init__()

    if isinstance(norm_layer, str):
        norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)

    self.dim = dim
    self.dim_out = dim_out
    self.norm1 = norm_layer(dim)

    self.window_size = window_size

    self.pool, self.q_stride = None, q_stride
    if self.q_stride:
        self.pool = nn.MaxPool2d(kernel_size=q_stride, stride=q_stride, ceil_mode=False)

    self.attn = MultiScaleAttention(
        dim,
        dim_out,
        num_heads=num_heads,
        q_pool=self.pool,
    )
    self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    self.norm2 = norm_layer(dim_out)
    self.mlp = MLP(
        dim_out,
        int(dim_out * mlp_ratio),
        dim_out,
        num_layers=2,
        act=act_layer,
    )

    if dim != dim_out:
        self.proj = nn.Linear(dim, dim_out)

forward

forward(x: torch.Tensor) -> torch.Tensor

Processes input through multi-scale attention and MLP, with optional windowing and downsampling.

Source code in ultralytics/models/sam/modules/blocks.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Processes input through multi-scale attention and MLP, with optional windowing and downsampling."""
    shortcut = x  # B, H, W, C
    x = self.norm1(x)

    # Skip connection
    if self.dim != self.dim_out:
        shortcut = do_pool(self.proj(x), self.pool)

    # Window partition
    window_size = self.window_size
    if window_size > 0:
        H, W = x.shape[1], x.shape[2]
        x, pad_hw = window_partition(x, window_size)

    # Window Attention + Q Pooling (if stage change)
    x = self.attn(x)
    if self.q_stride:
        # Shapes have changed due to Q pooling
        window_size = self.window_size // self.q_stride[0]
        H, W = shortcut.shape[1:3]

        pad_h = (window_size - H % window_size) % window_size
        pad_w = (window_size - W % window_size) % window_size
        pad_hw = (H + pad_h, W + pad_w)

    # Reverse window partition
    if self.window_size > 0:
        x = window_unpartition(x, window_size, pad_hw, (H, W))

    x = shortcut + self.drop_path(x)
    # MLP
    x = x + self.drop_path(self.mlp(self.norm2(x)))
    return x





ultralytics.models.sam.modules.blocks.PositionEmbeddingSine

PositionEmbeddingSine(
    num_pos_feats,
    temperature: int = 10000,
    normalize: bool = True,
    scale: Optional[float] = None,
)

Bases: Module

A module for generating sinusoidal positional embeddings for 2D inputs like images.

This class implements sinusoidal position encoding for 2D spatial positions, which can be used in transformer-based models for computer vision tasks.

Attributes:

Name Type Description
num_pos_feats int

Number of positional features (half of the embedding dimension).

temperature int

Temperature parameter for the sinusoidal functions.

normalize bool

Whether to normalize the positional embeddings.

scale float

Scaling factor for the embeddings when normalize is True.

cache Dict

Cache for storing precomputed embeddings.

Methods:

Name Description
_encode_xy

Encodes 2D positions using sine and cosine functions.

encode_boxes

Encodes box coordinates and dimensions into positional embeddings.

encode_points

Encodes 2D point coordinates with sinusoidal positional embeddings.

forward

Generates sinusoidal position embeddings for 2D inputs.

Examples:

>>> pos_emb = PositionEmbeddingSine(num_pos_feats=128)
>>> x = torch.randn(1, 3, 224, 224)
>>> embeddings = pos_emb(x)
>>> print(embeddings.shape)
torch.Size([1, 256, 224, 224])
Source code in ultralytics/models/sam/modules/blocks.py
def __init__(
    self,
    num_pos_feats,
    temperature: int = 10000,
    normalize: bool = True,
    scale: Optional[float] = None,
):
    """Initializes sinusoidal position embeddings for 2D image inputs."""
    super().__init__()
    assert num_pos_feats % 2 == 0, "Expecting even model width"
    self.num_pos_feats = num_pos_feats // 2
    self.temperature = temperature
    self.normalize = normalize
    if scale is not None and not normalize:
        raise ValueError("normalize should be True if scale is passed")
    if scale is None:
        scale = 2 * math.pi
    self.scale = scale

    self.cache = {}

encode_boxes

encode_boxes(x, y, w, h)

Encodes box coordinates and dimensions into positional embeddings for detection.

Source code in ultralytics/models/sam/modules/blocks.py
@torch.no_grad()
def encode_boxes(self, x, y, w, h):
    """Encodes box coordinates and dimensions into positional embeddings for detection."""
    pos_x, pos_y = self._encode_xy(x, y)
    return torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)

encode_points

encode_points(x, y, labels)

Encodes 2D points with sinusoidal embeddings and appends labels.

Source code in ultralytics/models/sam/modules/blocks.py
@torch.no_grad()
def encode_points(self, x, y, labels):
    """Encodes 2D points with sinusoidal embeddings and appends labels."""
    (bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
    assert bx == by and nx == ny and bx == bl and nx == nl
    pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
    pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
    return torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)

forward

forward(x: torch.Tensor)

Generates sinusoidal position embeddings for 2D inputs like images.

Source code in ultralytics/models/sam/modules/blocks.py
@torch.no_grad()
def forward(self, x: torch.Tensor):
    """Generates sinusoidal position embeddings for 2D inputs like images."""
    cache_key = (x.shape[-2], x.shape[-1])
    if cache_key in self.cache:
        return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
    y_embed = (
        torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device)
        .view(1, -1, 1)
        .repeat(x.shape[0], 1, x.shape[-1])
    )
    x_embed = (
        torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device)
        .view(1, 1, -1)
        .repeat(x.shape[0], x.shape[-2], 1)
    )

    if self.normalize:
        eps = 1e-6
        y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
        x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale

    dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
    dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)

    pos_x = x_embed[:, :, :, None] / dim_t
    pos_y = y_embed[:, :, :, None] / dim_t
    pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
    pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
    pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
    self.cache[cache_key] = pos[0]
    return pos





ultralytics.models.sam.modules.blocks.PositionEmbeddingRandom

PositionEmbeddingRandom(num_pos_feats: int = 64, scale: Optional[float] = None)

Bases: Module

Positional encoding using random spatial frequencies.

This class generates positional embeddings for input coordinates using random spatial frequencies. It is particularly useful for transformer-based models that require position information.

Attributes:

Name Type Description
positional_encoding_gaussian_matrix Tensor

A buffer containing random values for encoding.

Methods:

Name Description
_pe_encoding

Positionally encodes points that are normalized to [0,1].

forward

Generates positional encoding for a grid of the specified size.

forward_with_coords

Positionally encodes points that are not normalized to [0,1].

Examples:

>>> pe = PositionEmbeddingRandom(num_pos_feats=64)
>>> size = (32, 32)
>>> encoding = pe(size)
>>> print(encoding.shape)
torch.Size([128, 32, 32])
Source code in ultralytics/models/sam/modules/blocks.py
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
    """Initializes random spatial frequency position embedding for transformers."""
    super().__init__()
    if scale is None or scale <= 0.0:
        scale = 1.0
    self.register_buffer("positional_encoding_gaussian_matrix", scale * torch.randn((2, num_pos_feats)))

    # Set non-deterministic for forward() error 'cumsum_cuda_kernel does not have a deterministic implementation'
    torch.use_deterministic_algorithms(False)
    torch.backends.cudnn.deterministic = False

forward

forward(size: Tuple[int, int]) -> torch.Tensor

Generates positional encoding for a grid using random spatial frequencies.

Source code in ultralytics/models/sam/modules/blocks.py
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
    """Generates positional encoding for a grid using random spatial frequencies."""
    h, w = size
    device: Any = self.positional_encoding_gaussian_matrix.device
    grid = torch.ones((h, w), device=device, dtype=torch.float32)
    y_embed = grid.cumsum(dim=0) - 0.5
    x_embed = grid.cumsum(dim=1) - 0.5
    y_embed = y_embed / h
    x_embed = x_embed / w

    pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
    return pe.permute(2, 0, 1)  # C x H x W

forward_with_coords

forward_with_coords(
    coords_input: torch.Tensor, image_size: Tuple[int, int]
) -> torch.Tensor

Positionally encodes input coordinates, normalizing them to [0,1] based on the given image size.

Source code in ultralytics/models/sam/modules/blocks.py
def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
    """Positionally encodes input coordinates, normalizing them to [0,1] based on the given image size."""
    coords = coords_input.clone()
    coords[:, :, 0] = coords[:, :, 0] / image_size[1]
    coords[:, :, 1] = coords[:, :, 1] / image_size[0]
    return self._pe_encoding(coords.to(torch.float))  # B x N x C





ultralytics.models.sam.modules.blocks.Block

Block(
    dim: int,
    num_heads: int,
    mlp_ratio: float = 4.0,
    qkv_bias: bool = True,
    norm_layer: Type[nn.Module] = nn.LayerNorm,
    act_layer: Type[nn.Module] = nn.GELU,
    use_rel_pos: bool = False,
    rel_pos_zero_init: bool = True,
    window_size: int = 0,
    input_size: Optional[Tuple[int, int]] = None,
)

Bases: Module

Transformer block with support for window attention and residual propagation.

This class implements a transformer block that can use either global or windowed self-attention, followed by a feed-forward network. It supports relative positional embeddings and is designed for use in vision transformer architectures.

Attributes:

Name Type Description
norm1 Module

First normalization layer.

attn REAttention

Self-attention layer with optional relative positional encoding.

norm2 Module

Second normalization layer.

mlp MLPBlock

Multi-layer perceptron block.

window_size int

Size of attention window. If 0, global attention is used.

Methods:

Name Description
forward

Processes input through the transformer block.

Examples:

>>> import torch
>>> block = Block(dim=256, num_heads=8, window_size=7)
>>> x = torch.randn(1, 56, 56, 256)
>>> output = block(x)
>>> print(output.shape)
torch.Size([1, 56, 56, 256])

This constructor sets up a transformer block that can use either global or windowed self-attention, followed by a feed-forward network. It supports relative positional embeddings and is designed for use in vision transformer architectures.

Parameters:

Name Type Description Default
dim int

Number of input channels.

required
num_heads int

Number of attention heads in the self-attention layer.

required
mlp_ratio float

Ratio of mlp hidden dimension to embedding dimension.

4.0
qkv_bias bool

If True, adds a learnable bias to query, key, value projections.

True
norm_layer Type[Module]

Type of normalization layer to use.

LayerNorm
act_layer Type[Module]

Type of activation function to use in the MLP block.

GELU
use_rel_pos bool

If True, uses relative positional embeddings in attention.

False
rel_pos_zero_init bool

If True, initializes relative positional parameters to zero.

True
window_size int

Size of attention window. If 0, uses global attention.

0
input_size Optional[Tuple[int, int]]

Input resolution for calculating relative positional parameter size.

None

Examples:

>>> block = Block(dim=256, num_heads=8, window_size=7)
>>> x = torch.randn(1, 56, 56, 256)
>>> output = block(x)
>>> print(output.shape)
torch.Size([1, 56, 56, 256])
Source code in ultralytics/models/sam/modules/blocks.py
def __init__(
    self,
    dim: int,
    num_heads: int,
    mlp_ratio: float = 4.0,
    qkv_bias: bool = True,
    norm_layer: Type[nn.Module] = nn.LayerNorm,
    act_layer: Type[nn.Module] = nn.GELU,
    use_rel_pos: bool = False,
    rel_pos_zero_init: bool = True,
    window_size: int = 0,
    input_size: Optional[Tuple[int, int]] = None,
) -> None:
    """
    Initializes a transformer block with optional window attention and relative positional embeddings.

    This constructor sets up a transformer block that can use either global or windowed self-attention,
    followed by a feed-forward network. It supports relative positional embeddings and is designed
    for use in vision transformer architectures.

    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads in the self-attention layer.
        mlp_ratio (float): Ratio of mlp hidden dimension to embedding dimension.
        qkv_bias (bool): If True, adds a learnable bias to query, key, value projections.
        norm_layer (Type[nn.Module]): Type of normalization layer to use.
        act_layer (Type[nn.Module]): Type of activation function to use in the MLP block.
        use_rel_pos (bool): If True, uses relative positional embeddings in attention.
        rel_pos_zero_init (bool): If True, initializes relative positional parameters to zero.
        window_size (int): Size of attention window. If 0, uses global attention.
        input_size (Optional[Tuple[int, int]]): Input resolution for calculating relative positional parameter size.

    Examples:
        >>> block = Block(dim=256, num_heads=8, window_size=7)
        >>> x = torch.randn(1, 56, 56, 256)
        >>> output = block(x)
        >>> print(output.shape)
        torch.Size([1, 56, 56, 256])
    """
    super().__init__()
    self.norm1 = norm_layer(dim)
    self.attn = REAttention(
        dim,
        num_heads=num_heads,
        qkv_bias=qkv_bias,
        use_rel_pos=use_rel_pos,
        rel_pos_zero_init=rel_pos_zero_init,
        input_size=input_size if window_size == 0 else (window_size, window_size),
    )

    self.norm2 = norm_layer(dim)
    self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)

    self.window_size = window_size

forward

forward(x: torch.Tensor) -> torch.Tensor

Processes input through transformer block with optional windowed self-attention and residual connection.

Source code in ultralytics/models/sam/modules/blocks.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Processes input through transformer block with optional windowed self-attention and residual connection."""
    shortcut = x
    x = self.norm1(x)
    # Window partition
    if self.window_size > 0:
        H, W = x.shape[1], x.shape[2]
        x, pad_hw = window_partition(x, self.window_size)

    x = self.attn(x)
    # Reverse window partition
    if self.window_size > 0:
        x = window_unpartition(x, self.window_size, pad_hw, (H, W))

    x = shortcut + x
    return x + self.mlp(self.norm2(x))





ultralytics.models.sam.modules.blocks.REAttention

REAttention(
    dim: int,
    num_heads: int = 8,
    qkv_bias: bool = True,
    use_rel_pos: bool = False,
    rel_pos_zero_init: bool = True,
    input_size: Optional[Tuple[int, int]] = None,
)

Bases: Module

Rotary Embedding Attention module for efficient self-attention in transformer architectures.

This class implements a multi-head attention mechanism with rotary positional embeddings, designed for use in vision transformer models. It supports optional query pooling and window partitioning for efficient processing of large inputs.

Attributes:

Name Type Description
compute_cis Callable

Function to compute axial complex numbers for rotary encoding.

freqs_cis Tensor

Precomputed frequency tensor for rotary encoding.

rope_k_repeat bool

Flag to repeat query RoPE to match key length for cross-attention to memories.

q_proj Linear

Linear projection for query.

k_proj Linear

Linear projection for key.

v_proj Linear

Linear projection for value.

out_proj Linear

Output projection.

num_heads int

Number of attention heads.

internal_dim int

Internal dimension for attention computation.

Methods:

Name Description
forward

Applies rotary position encoding and computes attention between query, key, and value tensors.

Examples:

>>> rope_attn = REAttention(embedding_dim=256, num_heads=8, rope_theta=10000.0, feat_sizes=(32, 32))
>>> q = torch.randn(1, 1024, 256)
>>> k = torch.randn(1, 1024, 256)
>>> v = torch.randn(1, 1024, 256)
>>> output = rope_attn(q, k, v)
>>> print(output.shape)
torch.Size([1, 1024, 256])

This module implements multi-head attention with optional relative positional encodings, designed specifically for vision tasks in transformer models.

Parameters:

Name Type Description Default
dim int

Number of input channels.

required
num_heads int

Number of attention heads. Default is 8.

8
qkv_bias bool

If True, adds a learnable bias to query, key, value projections. Default is True.

True
use_rel_pos bool

If True, uses relative positional encodings. Default is False.

False
rel_pos_zero_init bool

If True, initializes relative positional parameters to zero. Default is True.

True
input_size Tuple[int, int] | None

Input resolution for calculating relative positional parameter size. Required if use_rel_pos is True. Default is None.

None

Examples:

>>> attention = REAttention(dim=256, num_heads=8, input_size=(32, 32))
>>> x = torch.randn(1, 32, 32, 256)
>>> output = attention(x)
>>> print(output.shape)
torch.Size([1, 32, 32, 256])
Source code in ultralytics/models/sam/modules/blocks.py
def __init__(
    self,
    dim: int,
    num_heads: int = 8,
    qkv_bias: bool = True,
    use_rel_pos: bool = False,
    rel_pos_zero_init: bool = True,
    input_size: Optional[Tuple[int, int]] = None,
) -> None:
    """
    Initializes a Relative Position Attention module for transformer-based architectures.

    This module implements multi-head attention with optional relative positional encodings, designed
    specifically for vision tasks in transformer models.

    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads. Default is 8.
        qkv_bias (bool): If True, adds a learnable bias to query, key, value projections. Default is True.
        use_rel_pos (bool): If True, uses relative positional encodings. Default is False.
        rel_pos_zero_init (bool): If True, initializes relative positional parameters to zero. Default is True.
        input_size (Tuple[int, int] | None): Input resolution for calculating relative positional parameter size.
            Required if use_rel_pos is True. Default is None.

    Examples:
        >>> attention = REAttention(dim=256, num_heads=8, input_size=(32, 32))
        >>> x = torch.randn(1, 32, 32, 256)
        >>> output = attention(x)
        >>> print(output.shape)
        torch.Size([1, 32, 32, 256])
    """
    super().__init__()
    self.num_heads = num_heads
    head_dim = dim // num_heads
    self.scale = head_dim**-0.5

    self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
    self.proj = nn.Linear(dim, dim)

    self.use_rel_pos = use_rel_pos
    if self.use_rel_pos:
        assert input_size is not None, "Input size must be provided if using relative positional encoding."
        # Initialize relative positional embeddings
        self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
        self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))

forward

forward(x: torch.Tensor) -> torch.Tensor

Applies multi-head attention with optional relative positional encoding to input tensor.

Source code in ultralytics/models/sam/modules/blocks.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Applies multi-head attention with optional relative positional encoding to input tensor."""
    B, H, W, _ = x.shape
    # qkv with shape (3, B, nHead, H * W, C)
    qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
    # q, k, v with shape (B * nHead, H * W, C)
    q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)

    attn = (q * self.scale) @ k.transpose(-2, -1)

    if self.use_rel_pos:
        attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))

    attn = attn.softmax(dim=-1)
    x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
    return self.proj(x)





ultralytics.models.sam.modules.blocks.PatchEmbed

PatchEmbed(
    kernel_size: Tuple[int, int] = (16, 16),
    stride: Tuple[int, int] = (16, 16),
    padding: Tuple[int, int] = (0, 0),
    in_chans: int = 3,
    embed_dim: int = 768,
)

Bases: Module

Image to Patch Embedding module for vision transformer architectures.

This module converts an input image into a sequence of patch embeddings using a convolutional layer. It is commonly used as the first layer in vision transformer architectures to transform image data into a suitable format for subsequent transformer blocks.

Attributes:

Name Type Description
proj Conv2d

Convolutional layer for projecting image patches to embeddings.

Methods:

Name Description
forward

Applies patch embedding to the input tensor.

Examples:

>>> patch_embed = PatchEmbed(kernel_size=(16, 16), stride=(16, 16), in_chans=3, embed_dim=768)
>>> x = torch.randn(1, 3, 224, 224)
>>> output = patch_embed(x)
>>> print(output.shape)
torch.Size([1, 768, 14, 14])

This module is typically used as the first layer in vision transformer architectures to transform image data into a suitable format for subsequent transformer blocks.

Parameters:

Name Type Description Default
kernel_size Tuple[int, int]

Size of the convolutional kernel for patch extraction.

(16, 16)
stride Tuple[int, int]

Stride of the convolutional operation.

(16, 16)
padding Tuple[int, int]

Padding applied to the input before convolution.

(0, 0)
in_chans int

Number of input image channels.

3
embed_dim int

Dimensionality of the output patch embeddings.

768

Examples:

>>> patch_embed = PatchEmbed(kernel_size=(16, 16), stride=(16, 16), in_chans=3, embed_dim=768)
>>> x = torch.randn(1, 3, 224, 224)
>>> output = patch_embed(x)
>>> print(output.shape)
torch.Size([1, 768, 14, 14])
Source code in ultralytics/models/sam/modules/blocks.py
def __init__(
    self,
    kernel_size: Tuple[int, int] = (16, 16),
    stride: Tuple[int, int] = (16, 16),
    padding: Tuple[int, int] = (0, 0),
    in_chans: int = 3,
    embed_dim: int = 768,
) -> None:
    """
    Initializes the PatchEmbed module for converting image patches to embeddings.

    This module is typically used as the first layer in vision transformer architectures to transform
    image data into a suitable format for subsequent transformer blocks.

    Args:
        kernel_size (Tuple[int, int]): Size of the convolutional kernel for patch extraction.
        stride (Tuple[int, int]): Stride of the convolutional operation.
        padding (Tuple[int, int]): Padding applied to the input before convolution.
        in_chans (int): Number of input image channels.
        embed_dim (int): Dimensionality of the output patch embeddings.

    Examples:
        >>> patch_embed = PatchEmbed(kernel_size=(16, 16), stride=(16, 16), in_chans=3, embed_dim=768)
        >>> x = torch.randn(1, 3, 224, 224)
        >>> output = patch_embed(x)
        >>> print(output.shape)
        torch.Size([1, 768, 14, 14])
    """
    super().__init__()

    self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)

forward

forward(x: torch.Tensor) -> torch.Tensor

Computes patch embedding by applying convolution and transposing resulting tensor.

Source code in ultralytics/models/sam/modules/blocks.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Computes patch embedding by applying convolution and transposing resulting tensor."""
    return self.proj(x).permute(0, 2, 3, 1)  # B C H W -> B H W C





ultralytics.models.sam.modules.blocks.do_pool

do_pool(
    x: torch.Tensor, pool: nn.Module, norm: nn.Module = None
) -> torch.Tensor

Applies pooling and optional normalization to a tensor, handling spatial dimension permutations.

Source code in ultralytics/models/sam/modules/blocks.py
def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
    """Applies pooling and optional normalization to a tensor, handling spatial dimension permutations."""
    if pool is None:
        return x
    # (B, H, W, C) -> (B, C, H, W)
    x = x.permute(0, 3, 1, 2)
    x = pool(x)
    # (B, C, H', W') -> (B, H', W', C)
    x = x.permute(0, 2, 3, 1)
    if norm:
        x = norm(x)

    return x




📅 Created 1 month ago ✏️ Updated 1 month ago