Skip to content

Reference for ultralytics/models/sam/modules/transformer.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/transformer.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.models.sam.modules.transformer.TwoWayTransformer

TwoWayTransformer(
    depth: int,
    embedding_dim: int,
    num_heads: int,
    mlp_dim: int,
    activation: Type[nn.Module] = nn.ReLU,
    attention_downsample_rate: int = 2,
)

Bases: Module

A Two-Way Transformer module for simultaneous attention to image and query points.

This class implements a specialized transformer decoder that attends to an input image using queries with supplied positional embeddings. It's useful for tasks like object detection, image segmentation, and point cloud processing.

Attributes:

Name Type Description
depth int

Number of layers in the transformer.

embedding_dim int

Channel dimension for input embeddings.

num_heads int

Number of heads for multihead attention.

mlp_dim int

Internal channel dimension for the MLP block.

layers ModuleList

List of TwoWayAttentionBlock layers composing the transformer.

final_attn_token_to_image Attention

Final attention layer from queries to image.

norm_final_attn LayerNorm

Layer normalization applied to final queries.

Methods:

Name Description
forward

Processes image and point embeddings through the transformer.

Examples:

>>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048)
>>> image_embedding = torch.randn(1, 256, 32, 32)
>>> image_pe = torch.randn(1, 256, 32, 32)
>>> point_embedding = torch.randn(1, 100, 256)
>>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding)
>>> print(output_queries.shape, output_image.shape)

Parameters:

Name Type Description Default
depth int

Number of layers in the transformer.

required
embedding_dim int

Channel dimension for input embeddings.

required
num_heads int

Number of heads for multihead attention. Must divide embedding_dim.

required
mlp_dim int

Internal channel dimension for the MLP block.

required
activation Type[Module]

Activation function to use in the MLP block.

ReLU
attention_downsample_rate int

Downsampling rate for attention mechanism.

2

Attributes:

Name Type Description
depth int

Number of layers in the transformer.

embedding_dim int

Channel dimension for input embeddings.

num_heads int

Number of heads for multihead attention.

mlp_dim int

Internal channel dimension for the MLP block.

layers ModuleList

List of TwoWayAttentionBlock layers.

final_attn_token_to_image Attention

Final attention layer from queries to image.

norm_final_attn LayerNorm

Layer normalization applied to final queries.

Examples:

>>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048)
>>> image_embedding = torch.randn(1, 256, 32, 32)
>>> image_pe = torch.randn(1, 256, 32, 32)
>>> point_embedding = torch.randn(1, 100, 256)
>>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding)
>>> print(output_queries.shape, output_image.shape)
Source code in ultralytics/models/sam/modules/transformer.py
def __init__(
    self,
    depth: int,
    embedding_dim: int,
    num_heads: int,
    mlp_dim: int,
    activation: Type[nn.Module] = nn.ReLU,
    attention_downsample_rate: int = 2,
) -> None:
    """
    Initialize a Two-Way Transformer for simultaneous attention to image and query points.

    Args:
        depth (int): Number of layers in the transformer.
        embedding_dim (int): Channel dimension for input embeddings.
        num_heads (int): Number of heads for multihead attention. Must divide embedding_dim.
        mlp_dim (int): Internal channel dimension for the MLP block.
        activation (Type[nn.Module]): Activation function to use in the MLP block.
        attention_downsample_rate (int): Downsampling rate for attention mechanism.

    Attributes:
        depth (int): Number of layers in the transformer.
        embedding_dim (int): Channel dimension for input embeddings.
        num_heads (int): Number of heads for multihead attention.
        mlp_dim (int): Internal channel dimension for the MLP block.
        layers (nn.ModuleList): List of TwoWayAttentionBlock layers.
        final_attn_token_to_image (Attention): Final attention layer from queries to image.
        norm_final_attn (nn.LayerNorm): Layer normalization applied to final queries.

    Examples:
        >>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048)
        >>> image_embedding = torch.randn(1, 256, 32, 32)
        >>> image_pe = torch.randn(1, 256, 32, 32)
        >>> point_embedding = torch.randn(1, 100, 256)
        >>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding)
        >>> print(output_queries.shape, output_image.shape)
    """
    super().__init__()
    self.depth = depth
    self.embedding_dim = embedding_dim
    self.num_heads = num_heads
    self.mlp_dim = mlp_dim
    self.layers = nn.ModuleList()

    for i in range(depth):
        self.layers.append(
            TwoWayAttentionBlock(
                embedding_dim=embedding_dim,
                num_heads=num_heads,
                mlp_dim=mlp_dim,
                activation=activation,
                attention_downsample_rate=attention_downsample_rate,
                skip_first_layer_pe=(i == 0),
            )
        )

    self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
    self.norm_final_attn = nn.LayerNorm(embedding_dim)

forward

forward(
    image_embedding: Tensor, image_pe: Tensor, point_embedding: Tensor
) -> Tuple[Tensor, Tensor]

Processes image and point embeddings through the Two-Way Transformer.

Parameters:

Name Type Description Default
image_embedding Tensor

Image to attend to, with shape (B, embedding_dim, H, W).

required
image_pe Tensor

Positional encoding to add to the image, with same shape as image_embedding.

required
point_embedding Tensor

Embedding to add to query points, with shape (B, N_points, embedding_dim).

required

Returns:

Type Description
Tuple[Tensor, Tensor]

Processed point_embedding and image_embedding.

Examples:

>>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048)
>>> image_embedding = torch.randn(1, 256, 32, 32)
>>> image_pe = torch.randn(1, 256, 32, 32)
>>> point_embedding = torch.randn(1, 100, 256)
>>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding)
>>> print(output_queries.shape, output_image.shape)
Source code in ultralytics/models/sam/modules/transformer.py
def forward(
    self,
    image_embedding: Tensor,
    image_pe: Tensor,
    point_embedding: Tensor,
) -> Tuple[Tensor, Tensor]:
    """
    Processes image and point embeddings through the Two-Way Transformer.

    Args:
        image_embedding (torch.Tensor): Image to attend to, with shape (B, embedding_dim, H, W).
        image_pe (torch.Tensor): Positional encoding to add to the image, with same shape as image_embedding.
        point_embedding (torch.Tensor): Embedding to add to query points, with shape (B, N_points, embedding_dim).

    Returns:
        (Tuple[torch.Tensor, torch.Tensor]): Processed point_embedding and image_embedding.

    Examples:
        >>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048)
        >>> image_embedding = torch.randn(1, 256, 32, 32)
        >>> image_pe = torch.randn(1, 256, 32, 32)
        >>> point_embedding = torch.randn(1, 100, 256)
        >>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding)
        >>> print(output_queries.shape, output_image.shape)
    """
    # BxCxHxW -> BxHWxC == B x N_image_tokens x C
    image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
    image_pe = image_pe.flatten(2).permute(0, 2, 1)

    # Prepare queries
    queries = point_embedding
    keys = image_embedding

    # Apply transformer blocks and final layernorm
    for layer in self.layers:
        queries, keys = layer(
            queries=queries,
            keys=keys,
            query_pe=point_embedding,
            key_pe=image_pe,
        )

    # Apply the final attention layer from the points to the image
    q = queries + point_embedding
    k = keys + image_pe
    attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
    queries = queries + attn_out
    queries = self.norm_final_attn(queries)

    return queries, keys





ultralytics.models.sam.modules.transformer.TwoWayAttentionBlock

TwoWayAttentionBlock(
    embedding_dim: int,
    num_heads: int,
    mlp_dim: int = 2048,
    activation: Type[nn.Module] = nn.ReLU,
    attention_downsample_rate: int = 2,
    skip_first_layer_pe: bool = False,
)

Bases: Module

A two-way attention block for simultaneous attention to image and query points.

This class implements a specialized transformer block with four main layers: self-attention on sparse inputs, cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention of dense inputs to sparse inputs.

Attributes:

Name Type Description
self_attn Attention

Self-attention layer for queries.

norm1 LayerNorm

Layer normalization after self-attention.

cross_attn_token_to_image Attention

Cross-attention layer from queries to keys.

norm2 LayerNorm

Layer normalization after token-to-image attention.

mlp MLPBlock

MLP block for transforming query embeddings.

norm3 LayerNorm

Layer normalization after MLP block.

norm4 LayerNorm

Layer normalization after image-to-token attention.

cross_attn_image_to_token Attention

Cross-attention layer from keys to queries.

skip_first_layer_pe bool

Whether to skip positional encoding in the first layer.

Methods:

Name Description
forward

Applies self-attention and cross-attention to queries and keys.

Examples:

>>> embedding_dim, num_heads = 256, 8
>>> block = TwoWayAttentionBlock(embedding_dim, num_heads)
>>> queries = torch.randn(1, 100, embedding_dim)
>>> keys = torch.randn(1, 1000, embedding_dim)
>>> query_pe = torch.randn(1, 100, embedding_dim)
>>> key_pe = torch.randn(1, 1000, embedding_dim)
>>> processed_queries, processed_keys = block(queries, keys, query_pe, key_pe)

This block implements a specialized transformer layer with four main components: self-attention on sparse inputs, cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention of dense inputs to sparse inputs.

Parameters:

Name Type Description Default
embedding_dim int

Channel dimension of the embeddings.

required
num_heads int

Number of attention heads in the attention layers.

required
mlp_dim int

Hidden dimension of the MLP block.

2048
activation Type[Module]

Activation function for the MLP block.

ReLU
attention_downsample_rate int

Downsampling rate for the attention mechanism.

2
skip_first_layer_pe bool

Whether to skip positional encoding in the first layer.

False

Examples:

>>> embedding_dim, num_heads = 256, 8
>>> block = TwoWayAttentionBlock(embedding_dim, num_heads)
>>> queries = torch.randn(1, 100, embedding_dim)
>>> keys = torch.randn(1, 1000, embedding_dim)
>>> query_pe = torch.randn(1, 100, embedding_dim)
>>> key_pe = torch.randn(1, 1000, embedding_dim)
>>> processed_queries, processed_keys = block(queries, keys, query_pe, key_pe)
Source code in ultralytics/models/sam/modules/transformer.py
def __init__(
    self,
    embedding_dim: int,
    num_heads: int,
    mlp_dim: int = 2048,
    activation: Type[nn.Module] = nn.ReLU,
    attention_downsample_rate: int = 2,
    skip_first_layer_pe: bool = False,
) -> None:
    """
    Initializes a TwoWayAttentionBlock for simultaneous attention to image and query points.

    This block implements a specialized transformer layer with four main components: self-attention on sparse
    inputs, cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention
    of dense inputs to sparse inputs.

    Args:
        embedding_dim (int): Channel dimension of the embeddings.
        num_heads (int): Number of attention heads in the attention layers.
        mlp_dim (int): Hidden dimension of the MLP block.
        activation (Type[nn.Module]): Activation function for the MLP block.
        attention_downsample_rate (int): Downsampling rate for the attention mechanism.
        skip_first_layer_pe (bool): Whether to skip positional encoding in the first layer.

    Examples:
        >>> embedding_dim, num_heads = 256, 8
        >>> block = TwoWayAttentionBlock(embedding_dim, num_heads)
        >>> queries = torch.randn(1, 100, embedding_dim)
        >>> keys = torch.randn(1, 1000, embedding_dim)
        >>> query_pe = torch.randn(1, 100, embedding_dim)
        >>> key_pe = torch.randn(1, 1000, embedding_dim)
        >>> processed_queries, processed_keys = block(queries, keys, query_pe, key_pe)
    """
    super().__init__()
    self.self_attn = Attention(embedding_dim, num_heads)
    self.norm1 = nn.LayerNorm(embedding_dim)

    self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
    self.norm2 = nn.LayerNorm(embedding_dim)

    self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
    self.norm3 = nn.LayerNorm(embedding_dim)

    self.norm4 = nn.LayerNorm(embedding_dim)
    self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)

    self.skip_first_layer_pe = skip_first_layer_pe

forward

forward(
    queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
) -> Tuple[Tensor, Tensor]

Applies two-way attention to process query and key embeddings in a transformer block.

Source code in ultralytics/models/sam/modules/transformer.py
def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]:
    """Applies two-way attention to process query and key embeddings in a transformer block."""
    # Self attention block
    if self.skip_first_layer_pe:
        queries = self.self_attn(q=queries, k=queries, v=queries)
    else:
        q = queries + query_pe
        attn_out = self.self_attn(q=q, k=q, v=queries)
        queries = queries + attn_out
    queries = self.norm1(queries)

    # Cross attention block, tokens attending to image embedding
    q = queries + query_pe
    k = keys + key_pe
    attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
    queries = queries + attn_out
    queries = self.norm2(queries)

    # MLP block
    mlp_out = self.mlp(queries)
    queries = queries + mlp_out
    queries = self.norm3(queries)

    # Cross attention block, image embedding attending to tokens
    q = queries + query_pe
    k = keys + key_pe
    attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
    keys = keys + attn_out
    keys = self.norm4(keys)

    return queries, keys





ultralytics.models.sam.modules.transformer.Attention

Attention(
    embedding_dim: int,
    num_heads: int,
    downsample_rate: int = 1,
    kv_in_dim: int = None,
)

Bases: Module

An attention layer with downscaling capability for embedding size after projection.

This class implements a multi-head attention mechanism with the option to downsample the internal dimension of queries, keys, and values.

Attributes:

Name Type Description
embedding_dim int

Dimensionality of input embeddings.

kv_in_dim int

Dimensionality of key and value inputs.

internal_dim int

Internal dimension after downsampling.

num_heads int

Number of attention heads.

q_proj Linear

Linear projection for queries.

k_proj Linear

Linear projection for keys.

v_proj Linear

Linear projection for values.

out_proj Linear

Linear projection for output.

Methods:

Name Description
_separate_heads

Separates input tensor into attention heads.

_recombine_heads

Recombines separated attention heads.

forward

Computes attention output for given query, key, and value tensors.

Examples:

>>> attn = Attention(embedding_dim=256, num_heads=8, downsample_rate=2)
>>> q = torch.randn(1, 100, 256)
>>> k = v = torch.randn(1, 50, 256)
>>> output = attn(q, k, v)
>>> print(output.shape)
torch.Size([1, 100, 256])

This class implements a multi-head attention mechanism with optional downsampling of the internal dimension for queries, keys, and values.

Parameters:

Name Type Description Default
embedding_dim int

Dimensionality of input embeddings.

required
num_heads int

Number of attention heads.

required
downsample_rate int

Factor by which internal dimensions are downsampled. Defaults to 1.

1
kv_in_dim int | None

Dimensionality of key and value inputs. If None, uses embedding_dim.

None

Raises:

Type Description
AssertionError

If num_heads does not evenly divide the internal dim (embedding_dim / downsample_rate).

Examples:

>>> attn = Attention(embedding_dim=256, num_heads=8, downsample_rate=2)
>>> q = torch.randn(1, 100, 256)
>>> k = v = torch.randn(1, 50, 256)
>>> output = attn(q, k, v)
>>> print(output.shape)
torch.Size([1, 100, 256])
Source code in ultralytics/models/sam/modules/transformer.py
def __init__(
    self,
    embedding_dim: int,
    num_heads: int,
    downsample_rate: int = 1,
    kv_in_dim: int = None,
) -> None:
    """
    Initializes the Attention module with specified dimensions and settings.

    This class implements a multi-head attention mechanism with optional downsampling of the internal
    dimension for queries, keys, and values.

    Args:
        embedding_dim (int): Dimensionality of input embeddings.
        num_heads (int): Number of attention heads.
        downsample_rate (int): Factor by which internal dimensions are downsampled. Defaults to 1.
        kv_in_dim (int | None): Dimensionality of key and value inputs. If None, uses embedding_dim.

    Raises:
        AssertionError: If num_heads does not evenly divide the internal dim (embedding_dim / downsample_rate).

    Examples:
        >>> attn = Attention(embedding_dim=256, num_heads=8, downsample_rate=2)
        >>> q = torch.randn(1, 100, 256)
        >>> k = v = torch.randn(1, 50, 256)
        >>> output = attn(q, k, v)
        >>> print(output.shape)
        torch.Size([1, 100, 256])
    """
    super().__init__()
    self.embedding_dim = embedding_dim
    self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
    self.internal_dim = embedding_dim // downsample_rate
    self.num_heads = num_heads
    assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."

    self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
    self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
    self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
    self.out_proj = nn.Linear(self.internal_dim, embedding_dim)

forward

forward(q: Tensor, k: Tensor, v: Tensor) -> Tensor

Applies multi-head attention to query, key, and value tensors with optional downsampling.

Source code in ultralytics/models/sam/modules/transformer.py
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
    """Applies multi-head attention to query, key, and value tensors with optional downsampling."""
    # Input projections
    q = self.q_proj(q)
    k = self.k_proj(k)
    v = self.v_proj(v)

    # Separate into heads
    q = self._separate_heads(q, self.num_heads)
    k = self._separate_heads(k, self.num_heads)
    v = self._separate_heads(v, self.num_heads)

    # Attention
    _, _, _, c_per_head = q.shape
    attn = q @ k.permute(0, 1, 3, 2)  # B x N_heads x N_tokens x N_tokens
    attn = attn / math.sqrt(c_per_head)
    attn = torch.softmax(attn, dim=-1)

    # Get output
    out = attn @ v
    out = self._recombine_heads(out)
    return self.out_proj(out)



📅 Created 1 year ago ✏️ Updated 3 months ago