Reference for ultralytics/models/yolo/classify/predict.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/classify/predict.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.models.yolo.classify.predict.ClassificationPredictor
Bases: BasePredictor
A class extending the BasePredictor class for prediction based on a classification model.
This predictor handles the specific requirements of classification models, including preprocessing images and postprocessing predictions to generate classification results.
Attributes:
Name | Type | Description |
---|---|---|
args |
dict
|
Configuration arguments for the predictor. |
_legacy_transform_name |
str
|
Name of the legacy transform class for backward compatibility. |
Methods:
Name | Description |
---|---|
preprocess |
Convert input images to model-compatible format. |
postprocess |
Process model predictions into Results objects. |
Notes
- Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'.
Examples:
>>> from ultralytics.utils import ASSETS
>>> from ultralytics.models.yolo.classify import ClassificationPredictor
>>> args = dict(model="yolo11n-cls.pt", source=ASSETS)
>>> predictor = ClassificationPredictor(overrides=args)
>>> predictor.predict_cli()
Source code in ultralytics/models/yolo/classify/predict.py
postprocess
Process predictions to return Results objects with classification probabilities.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
preds
|
Tensor
|
Raw predictions from the model. |
required |
img
|
Tensor
|
Input images after preprocessing. |
required |
orig_imgs
|
List[ndarray] | Tensor
|
Original images before preprocessing. |
required |
Returns:
Type | Description |
---|---|
List[Results]
|
List of Results objects containing classification results for each image. |
Source code in ultralytics/models/yolo/classify/predict.py
preprocess
Convert input images to model-compatible tensor format with appropriate normalization.