Simple Utilities
The ultralytics
package comes with a myriad of utilities that can support, enhance, and speed up your workflows. There are many more available, but here are some that will be useful for most developers. They're also a great reference point to use when learning to program.
Watch: Ultralytics Utilities | Auto Annotation, Explorer API and Dataset Conversion
Data
Auto Labeling / Annotations
Dataset annotation is a very resource intensive and time-consuming process. If you have a YOLO object detection model trained on a reasonable amount of data, you can use it and SAM to auto-annotate additional data (segmentation format).
from ultralytics.data.annotator import auto_annotate
auto_annotate(
data="path/to/new/data",
det_model="yolo11n.pt",
sam_model="mobile_sam.pt",
device="cuda",
output_dir="path/to/save_labels",
)
This function does not return any value. For further details on how the function operates:
- See the reference section for
annotator.auto_annotate
for more insight on how the function operates. - Use in combination with the function
segments2boxes
to generate object detection bounding boxes as well
Visualize Dataset Annotations
This function visualizes YOLO annotations on an image before training, helping to identify and correct any wrong annotations that could lead to incorrect detection results. It draws bounding boxes, labels objects with class names, and adjusts text color based on the background's luminance for better readability.
from ultralytics.data.utils import visualize_image_annotations
label_map = { # Define the label map with all annotated class labels.
0: "person",
1: "car",
}
# Visualize
visualize_image_annotations(
"path/to/image.jpg", # Input image path.
"path/to/annotations.txt", # Annotation file path for the image.
label_map,
)
Convert Segmentation Masks into YOLO Format
Use to convert a dataset of segmentation mask images to the YOLO
segmentation format.
This function takes the directory containing the binary format mask images and converts them into YOLO segmentation format.
The converted masks will be saved in the specified output directory.
from ultralytics.data.converter import convert_segment_masks_to_yolo_seg
# The classes here is the total classes in the dataset.
# for COCO dataset we have 80 classes.
convert_segment_masks_to_yolo_seg(masks_dir="path/to/masks_dir", output_dir="path/to/output_dir", classes=80)
Convert COCO into YOLO Format
Use to convert COCO JSON annotations into proper YOLO format. For object detection (bounding box) datasets, use_segments
and use_keypoints
should both be False
from ultralytics.data.converter import convert_coco
convert_coco( # (1)!
"../datasets/coco/annotations/",
use_segments=False,
use_keypoints=False,
cls91to80=True,
)
- Nothing returns from this function
For additional information about the convert_coco
function, visit the reference page
Get Bounding Box Dimensions
from ultralytics.utils.plotting import Annotator
from ultralytics import YOLO
import cv2
model = YOLO('yolo11n.pt') # Load pretrain or fine-tune model
# Process the image
source = cv2.imread('path/to/image.jpg')
results = model(source)
# Extract results
annotator = Annotator(source, example=model.names)
for box in results[0].boxes.xyxy.cpu():
width, height, area = annotator.get_bbox_dimension(box)
print("Bounding Box Width {}, Height {}, Area {}".format(
width.item(), height.item(), area.item()))
Convert Bounding Boxes to Segments
With existing x y w h
bounding box data, convert to segments using the yolo_bbox2segment
function. The files for images and annotations need to be organized like this:
data
|__ images
├─ 001.jpg
├─ 002.jpg
├─ ..
└─ NNN.jpg
|__ labels
├─ 001.txt
├─ 002.txt
├─ ..
└─ NNN.txt
from ultralytics.data.converter import yolo_bbox2segment
yolo_bbox2segment( # (1)!
im_dir="path/to/images",
save_dir=None, # saved to "labels-segment" in images directory
sam_model="sam_b.pt",
)
- Nothing returns from this function
Visit the yolo_bbox2segment
reference page for more information regarding the function.
Convert Segments to Bounding Boxes
If you have a dataset that uses the segmentation dataset format you can easily convert these into up-right (or horizontal) bounding boxes (x y w h
format) with this function.
import numpy as np
from ultralytics.utils.ops import segments2boxes
segments = np.array(
[
[805, 392, 797, 400, ..., 808, 714, 808, 392],
[115, 398, 113, 400, ..., 150, 400, 149, 298],
[267, 412, 265, 413, ..., 300, 413, 299, 412],
]
)
segments2boxes([s.reshape(-1, 2) for s in segments])
# >>> array([[ 741.66, 631.12, 133.31, 479.25],
# [ 146.81, 649.69, 185.62, 502.88],
# [ 281.81, 636.19, 118.12, 448.88]],
# dtype=float32) # xywh bounding boxes
To understand how this function works, visit the reference page
Utilities
Image Compression
Compresses a single image file to reduced size while preserving its aspect ratio and quality. If the input image is smaller than the maximum dimension, it will not be resized.
from pathlib import Path
from ultralytics.data.utils import compress_one_image
for f in Path("path/to/dataset").rglob("*.jpg"):
compress_one_image(f) # (1)!
- Nothing returns from this function
Auto-split Dataset
Automatically split a dataset into train
/val
/test
splits and save the resulting splits into autosplit_*.txt
files. This function will use random sampling, which is not included when using fraction
argument for training.
from ultralytics.data.utils import autosplit
autosplit( # (1)!
path="path/to/images",
weights=(0.9, 0.1, 0.0), # (train, validation, test) fractional splits
annotated_only=False, # split only images with annotation file when True
)
- Nothing returns from this function
See the Reference page for additional details on this function.
Segment-polygon to Binary Mask
Convert a single polygon (as list) to a binary mask of the specified image size. Polygon in the form of [N, 2]
with N
as the number of (x, y)
points defining the polygon contour.
Warning
N
must always be even.
import numpy as np
from ultralytics.data.utils import polygon2mask
imgsz = (1080, 810)
polygon = np.array([805, 392, 797, 400, ..., 808, 714, 808, 392]) # (238, 2)
mask = polygon2mask(
imgsz, # tuple
[polygon], # input as list
color=255, # 8-bit binary
downsample_ratio=1,
)
Bounding Boxes
Bounding Box (horizontal) Instances
To manage bounding box data, the Bboxes
class will help to convert between box coordinate formatting, scale box dimensions, calculate areas, include offsets, and more!
import numpy as np
from ultralytics.utils.instance import Bboxes
boxes = Bboxes(
bboxes=np.array(
[
[22.878, 231.27, 804.98, 756.83],
[48.552, 398.56, 245.35, 902.71],
[669.47, 392.19, 809.72, 877.04],
[221.52, 405.8, 344.98, 857.54],
[0, 550.53, 63.01, 873.44],
[0.0584, 254.46, 32.561, 324.87],
]
),
format="xyxy",
)
boxes.areas()
# >>> array([ 4.1104e+05, 99216, 68000, 55772, 20347, 2288.5])
boxes.convert("xywh")
print(boxes.bboxes)
# >>> array(
# [[ 413.93, 494.05, 782.1, 525.56],
# [ 146.95, 650.63, 196.8, 504.15],
# [ 739.6, 634.62, 140.25, 484.85],
# [ 283.25, 631.67, 123.46, 451.74],
# [ 31.505, 711.99, 63.01, 322.91],
# [ 16.31, 289.67, 32.503, 70.41]]
# )
See the Bboxes
reference section for more attributes and methods available.
Tip
Many of the following functions (and more) can be accessed using the Bboxes
class but if you prefer to work with the functions directly, see the next subsections on how to import these independently.
Scaling Boxes
When scaling and image up or down, corresponding bounding box coordinates can be appropriately scaled to match using ultralytics.utils.ops.scale_boxes
.
import cv2 as cv
import numpy as np
from ultralytics.utils.ops import scale_boxes
image = cv.imread("ultralytics/assets/bus.jpg")
h, w, c = image.shape
resized = cv.resize(image, None, (), fx=1.2, fy=1.2)
new_h, new_w, _ = resized.shape
xyxy_boxes = np.array(
[
[22.878, 231.27, 804.98, 756.83],
[48.552, 398.56, 245.35, 902.71],
[669.47, 392.19, 809.72, 877.04],
[221.52, 405.8, 344.98, 857.54],
[0, 550.53, 63.01, 873.44],
[0.0584, 254.46, 32.561, 324.87],
]
)
new_boxes = scale_boxes(
img1_shape=(h, w), # original image dimensions
boxes=xyxy_boxes, # boxes from original image
img0_shape=(new_h, new_w), # resized image dimensions (scale to)
ratio_pad=None,
padding=False,
xywh=False,
)
print(new_boxes) # (1)!
# >>> array(
# [[ 27.454, 277.52, 965.98, 908.2],
# [ 58.262, 478.27, 294.42, 1083.3],
# [ 803.36, 470.63, 971.66, 1052.4],
# [ 265.82, 486.96, 413.98, 1029],
# [ 0, 660.64, 75.612, 1048.1],
# [ 0.0701, 305.35, 39.073, 389.84]]
# )
- Bounding boxes scaled for the new image size
Bounding Box Format Conversions
XYXY → XYWH
Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format where (x1, y1) is the top-left corner and (x2, y2) is the bottom-right corner.
import numpy as np
from ultralytics.utils.ops import xyxy2xywh
xyxy_boxes = np.array(
[
[22.878, 231.27, 804.98, 756.83],
[48.552, 398.56, 245.35, 902.71],
[669.47, 392.19, 809.72, 877.04],
[221.52, 405.8, 344.98, 857.54],
[0, 550.53, 63.01, 873.44],
[0.0584, 254.46, 32.561, 324.87],
]
)
xywh = xyxy2xywh(xyxy_boxes)
print(xywh)
# >>> array(
# [[ 413.93, 494.05, 782.1, 525.56],
# [ 146.95, 650.63, 196.8, 504.15],
# [ 739.6, 634.62, 140.25, 484.85],
# [ 283.25, 631.67, 123.46, 451.74],
# [ 31.505, 711.99, 63.01, 322.91],
# [ 16.31, 289.67, 32.503, 70.41]]
# )
All Bounding Box Conversions
from ultralytics.utils.ops import (
ltwh2xywh,
ltwh2xyxy,
xywh2ltwh, # xywh → top-left corner, w, h
xywh2xyxy,
xywhn2xyxy, # normalized → pixel
xyxy2ltwh, # xyxy → top-left corner, w, h
xyxy2xywhn, # pixel → normalized
)
for func in (ltwh2xywh, ltwh2xyxy, xywh2ltwh, xywh2xyxy, xywhn2xyxy, xyxy2ltwh, xyxy2xywhn):
print(help(func)) # print function docstrings
See docstring for each function or visit the ultralytics.utils.ops
reference page to read more about each function.
Plotting
Drawing Annotations
Ultralytics includes an Annotator class that can be used to annotate any kind of data. It's easiest to use with object detection bounding boxes, pose key points, and oriented bounding boxes.
Ultralytics Sweep Annotation
Python Examples using YOLO11 🚀
import cv2
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors
# User defined video path and model file
cap = cv2.VideoCapture("Path/to/video/file.mp4")
model = YOLO(model="yolo11s-seg.pt") # Model file i.e. yolo11s.pt or yolo11m-seg.pt
if not cap.isOpened():
print("Error: Could not open video.")
exit()
# Initialize the video writer object.
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter("ultralytics.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
masks = None # Initialize variable to store masks data
f = 0 # Initialize frame count variable for enabling mouse event.
line_x = w # Store width of line.
dragging = False # Initialize bool variable for line dragging.
classes = model.names # Store model classes names for plotting.
window_name = "Ultralytics Sweep Annotator"
def drag_line(event, x, y, flags, param): # Mouse callback for dragging line.
global line_x, dragging
if event == cv2.EVENT_LBUTTONDOWN or (flags & cv2.EVENT_FLAG_LBUTTON):
line_x = max(0, min(x, w))
dragging = True
while cap.isOpened(): # Loop over the video capture object.
ret, im0 = cap.read()
if not ret:
break
f = f + 1 # Increment frame count.
count = 0 # Re-initialize count variable on every frame for precise counts.
annotator = Annotator(im0)
results = model.track(im0, persist=True) # Track objects using track method.
if f == 1:
cv2.namedWindow(window_name)
cv2.setMouseCallback(window_name, drag_line)
if results[0].boxes.id is not None:
if results[0].masks is not None:
masks = results[0].masks.xy
track_ids = results[0].boxes.id.int().cpu().tolist()
clss = results[0].boxes.cls.cpu().tolist()
boxes = results[0].boxes.xyxy.cpu()
for mask, box, cls, t_id in zip(masks or [None] * len(boxes), boxes, clss, track_ids):
color = colors(t_id, True) # Assign different color to each tracked object.
if mask is not None and mask.size > 0:
# If you want to overlay the masks
# mask[:, 0] = np.clip(mask[:, 0], line_x, w)
# mask_img = cv2.fillPoly(im0.copy(), [mask.astype(int)], color)
# cv2.addWeighted(mask_img, 0.5, im0, 0.5, 0, im0)
if box[0] > line_x:
count += 1
annotator.seg_bbox(mask=mask, mask_color=color, label=str(classes[cls]))
else:
if box[0] > line_x:
count += 1
annotator.box_label(box=box, color=color, label=str(classes[cls]))
annotator.sweep_annotator(line_x=line_x, line_y=h, label=f"COUNT:{count}") # Display the sweep
cv2.imshow(window_name, im0)
video_writer.write(im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release() # Release the video capture.
video_writer.release() # Release the video writer.
cv2.destroyAllWindows() # Destroy all opened windows.
Horizontal Bounding Boxes
import cv2 as cv
import numpy as np
from ultralytics.utils.plotting import Annotator, colors
names = { # (1)!
0: "person",
5: "bus",
11: "stop sign",
}
image = cv.imread("ultralytics/assets/bus.jpg")
ann = Annotator(
image,
line_width=None, # default auto-size
font_size=None, # default auto-size
font="Arial.ttf", # must be ImageFont compatible
pil=False, # use PIL, otherwise uses OpenCV
)
xyxy_boxes = np.array(
[
[5, 22.878, 231.27, 804.98, 756.83], # class-idx x1 y1 x2 y2
[0, 48.552, 398.56, 245.35, 902.71],
[0, 669.47, 392.19, 809.72, 877.04],
[0, 221.52, 405.8, 344.98, 857.54],
[0, 0, 550.53, 63.01, 873.44],
[11, 0.0584, 254.46, 32.561, 324.87],
]
)
for nb, box in enumerate(xyxy_boxes):
c_idx, *box = box
label = f"{str(nb).zfill(2)}:{names.get(int(c_idx))}"
ann.box_label(box, label, color=colors(c_idx, bgr=True))
image_with_bboxes = ann.result()
- Names can be used from
model.names
when working with detection results
Oriented Bounding Boxes (OBB)
import cv2 as cv
import numpy as np
from ultralytics.utils.plotting import Annotator, colors
obb_names = {10: "small vehicle"}
obb_image = cv.imread("datasets/dota8/images/train/P1142__1024__0___824.jpg")
obb_boxes = np.array(
[
[0, 635, 560, 919, 719, 1087, 420, 803, 261], # class-idx x1 y1 x2 y2 x3 y2 x4 y4
[0, 331, 19, 493, 260, 776, 70, 613, -171],
[9, 869, 161, 886, 147, 851, 101, 833, 115],
]
)
ann = Annotator(
obb_image,
line_width=None, # default auto-size
font_size=None, # default auto-size
font="Arial.ttf", # must be ImageFont compatible
pil=False, # use PIL, otherwise uses OpenCV
)
for obb in obb_boxes:
c_idx, *obb = obb
obb = np.array(obb).reshape(-1, 4, 2).squeeze()
label = f"{obb_names.get(int(c_idx))}"
ann.box_label(
obb,
label,
color=colors(c_idx, True),
rotated=True,
)
image_with_obb = ann.result()
Bounding Boxes Circle Annotation Circle Label
Watch: In-Depth Guide to Text & Circle Annotations with Python Live Demos | Ultralytics Annotations 🚀
import cv2
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator
model = YOLO("yolo11s.pt")
names = model.names
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
writer = cv2.VideoWriter("Ultralytics circle annotation.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))
while True:
ret, im0 = cap.read()
if not ret:
break
annotator = Annotator(im0)
results = model.predict(im0)
boxes = results[0].boxes.xyxy.cpu()
clss = results[0].boxes.cls.cpu().tolist()
for box, cls in zip(boxes, clss):
annotator.circle_label(box, label=names[int(cls)])
writer.write(im0)
cv2.imshow("Ultralytics circle annotation", im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
writer.release()
cap.release()
cv2.destroyAllWindows()
Bounding Boxes Text Annotation Text Label
import cv2
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator
model = YOLO("yolo11s.pt")
names = model.names
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
writer = cv2.VideoWriter("Ultralytics text annotation.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))
while True:
ret, im0 = cap.read()
if not ret:
break
annotator = Annotator(im0)
results = model.predict(im0)
boxes = results[0].boxes.xyxy.cpu()
clss = results[0].boxes.cls.cpu().tolist()
for box, cls in zip(boxes, clss):
annotator.text_label(box, label=names[int(cls)])
writer.write(im0)
cv2.imshow("Ultralytics text annotation", im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
writer.release()
cap.release()
cv2.destroyAllWindows()
See the Annotator
Reference Page for additional insight.
Miscellaneous
Code Profiling
Check duration for code to run/process either using with
or as a decorator.
from ultralytics.utils.ops import Profile
with Profile(device="cuda:0") as dt:
pass # operation to measure
print(dt)
# >>> "Elapsed time is 9.5367431640625e-07 s"
Ultralytics Supported Formats
Want or need to use the formats of images or videos types supported by Ultralytics programmatically? Use these constants if you need.
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
print(IMG_FORMATS)
# {'tiff', 'pfm', 'bmp', 'mpo', 'dng', 'jpeg', 'png', 'webp', 'tif', 'jpg'}
print(VID_FORMATS)
# {'avi', 'mpg', 'wmv', 'mpeg', 'm4v', 'mov', 'mp4', 'asf', 'mkv', 'ts', 'gif', 'webm'}
Make Divisible
Calculates the nearest whole number to x
to make evenly divisible when divided by y
.
from ultralytics.utils.ops import make_divisible
make_divisible(7, 3)
# >>> 9
make_divisible(7, 2)
# >>> 8
FAQ
What utilities are included in the Ultralytics package to enhance machine learning workflows?
The Ultralytics package includes a variety of utilities designed to streamline and optimize machine learning workflows. Key utilities include auto-annotation for labeling datasets, converting COCO to YOLO format with convert_coco, compressing images, and dataset auto-splitting. These tools aim to reduce manual effort, ensure consistency, and enhance data processing efficiency.
How can I use Ultralytics to auto-label my dataset?
If you have a pre-trained Ultralytics YOLO object detection model, you can use it with the SAM model to auto-annotate your dataset in segmentation format. Here's an example:
from ultralytics.data.annotator import auto_annotate
auto_annotate(
data="path/to/new/data",
det_model="yolo11n.pt",
sam_model="mobile_sam.pt",
device="cuda",
output_dir="path/to/save_labels",
)
For more details, check the auto_annotate reference section.
How do I convert COCO dataset annotations to YOLO format in Ultralytics?
To convert COCO JSON annotations into YOLO format for object detection, you can use the convert_coco
utility. Here's a sample code snippet:
from ultralytics.data.converter import convert_coco
convert_coco(
"../datasets/coco/annotations/",
use_segments=False,
use_keypoints=False,
cls91to80=True,
)
For additional information, visit the convert_coco reference page.
What is the purpose of the YOLO Data Explorer in the Ultralytics package?
The YOLO Explorer is a powerful tool introduced in the 8.1.0
update to enhance dataset understanding. It allows you to use text queries to find object instances in your dataset, making it easier to analyze and manage your data. This tool provides valuable insights into dataset composition and distribution, helping to improve model training and performance.
How can I convert bounding boxes to segments in Ultralytics?
To convert existing bounding box data (in x y w h
format) to segments, you can use the yolo_bbox2segment
function. Ensure your files are organized with separate directories for images and labels.
from ultralytics.data.converter import yolo_bbox2segment
yolo_bbox2segment(
im_dir="path/to/images",
save_dir=None, # saved to "labels-segment" in the images directory
sam_model="sam_b.pt",
)
For more information, visit the yolo_bbox2segment reference page.