Skip to content

xView Dataset

The xView dataset is one of the largest publicly available datasets of overhead imagery, containing images from complex scenes around the world annotated using bounding boxes. The goal of the xView dataset is to accelerate progress in four computer vision frontiers:

  1. Reduce minimum resolution for detection.
  2. Improve learning efficiency.
  3. Enable discovery of more object classes.
  4. Improve detection of fine-grained classes.

xView builds on the success of challenges like Common Objects in Context (COCO) and aims to leverage computer vision to analyze the growing amount of available imagery from space in order to understand the visual world in new ways and address a range of important applications.

Key Features

  • xView contains over 1 million object instances across 60 classes.
  • The dataset has a resolution of 0.3 meters, providing higher resolution imagery than most public satellite imagery datasets.
  • xView features a diverse collection of small, rare, fine-grained, and multi-type objects with bounding box annotation.
  • Comes with a pre-trained baseline model using the TensorFlow object detection API and an example for PyTorch.

Dataset Structure

The xView dataset is composed of satellite images collected from WorldView-3 satellites at a 0.3m ground sample distance. It contains over 1 million objects across 60 classes in over 1,400 km² of imagery.

Applications

The xView dataset is widely used for training and evaluating deep learning models for object detection in overhead imagery. The dataset's diverse set of object classes and high-resolution imagery make it a valuable resource for researchers and practitioners in the field of computer vision, especially for satellite imagery analysis.

Dataset YAML

A YAML (Yet Another Markup Language) file is used to define the dataset configuration. It contains information about the dataset's paths, classes, and other relevant information. In the case of the xView dataset, the xView.yaml file is maintained at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/xView.yaml.

ultralytics/cfg/datasets/xView.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
# --------  DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command!  --------
# Documentation: https://docs.ultralytics.com/datasets/detect/xview/
# Example usage: yolo train data=xView.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── xView  ← downloads here (20.7 GB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/xView # dataset root dir
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images

# Classes
names:
  0: Fixed-wing Aircraft
  1: Small Aircraft
  2: Cargo Plane
  3: Helicopter
  4: Passenger Vehicle
  5: Small Car
  6: Bus
  7: Pickup Truck
  8: Utility Truck
  9: Truck
  10: Cargo Truck
  11: Truck w/Box
  12: Truck Tractor
  13: Trailer
  14: Truck w/Flatbed
  15: Truck w/Liquid
  16: Crane Truck
  17: Railway Vehicle
  18: Passenger Car
  19: Cargo Car
  20: Flat Car
  21: Tank car
  22: Locomotive
  23: Maritime Vessel
  24: Motorboat
  25: Sailboat
  26: Tugboat
  27: Barge
  28: Fishing Vessel
  29: Ferry
  30: Yacht
  31: Container Ship
  32: Oil Tanker
  33: Engineering Vehicle
  34: Tower crane
  35: Container Crane
  36: Reach Stacker
  37: Straddle Carrier
  38: Mobile Crane
  39: Dump Truck
  40: Haul Truck
  41: Scraper/Tractor
  42: Front loader/Bulldozer
  43: Excavator
  44: Cement Mixer
  45: Ground Grader
  46: Hut/Tent
  47: Shed
  48: Building
  49: Aircraft Hangar
  50: Damaged Building
  51: Facility
  52: Construction Site
  53: Vehicle Lot
  54: Helipad
  55: Storage Tank
  56: Shipping container lot
  57: Shipping Container
  58: Pylon
  59: Tower

# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
  import json
  import os
  from pathlib import Path

  import numpy as np
  from PIL import Image
  from tqdm import tqdm

  from ultralytics.data.utils import autosplit
  from ultralytics.utils.ops import xyxy2xywhn


  def convert_labels(fname=Path('xView/xView_train.geojson')):
      # Convert xView geoJSON labels to YOLO format
      path = fname.parent
      with open(fname) as f:
          print(f'Loading {fname}...')
          data = json.load(f)

      # Make dirs
      labels = Path(path / 'labels' / 'train')
      os.system(f'rm -rf {labels}')
      labels.mkdir(parents=True, exist_ok=True)

      # xView classes 11-94 to 0-59
      xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
                           12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
                           29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
                           47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]

      shapes = {}
      for feature in tqdm(data['features'], desc=f'Converting {fname}'):
          p = feature['properties']
          if p['bounds_imcoords']:
              id = p['image_id']
              file = path / 'train_images' / id
              if file.exists():  # 1395.tif missing
                  try:
                      box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
                      assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
                      cls = p['type_id']
                      cls = xview_class2index[int(cls)]  # xView class to 0-60
                      assert 59 >= cls >= 0, f'incorrect class index {cls}'

                      # Write YOLO label
                      if id not in shapes:
                          shapes[id] = Image.open(file).size
                      box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
                      with open((labels / id).with_suffix('.txt'), 'a') as f:
                          f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n")  # write label.txt
                  except Exception as e:
                      print(f'WARNING: skipping one label for {file}: {e}')


  # Download manually from https://challenge.xviewdataset.org
  dir = Path(yaml['path'])  # dataset root dir
  # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip',  # train labels
  #         'https://d307kc0mrhucc3.cloudfront.net/train_images.zip',  # 15G, 847 train images
  #         'https://d307kc0mrhucc3.cloudfront.net/val_images.zip']  # 5G, 282 val images (no labels)
  # download(urls, dir=dir)

  # Convert labels
  convert_labels(dir / 'xView_train.geojson')

  # Move images
  images = Path(dir / 'images')
  images.mkdir(parents=True, exist_ok=True)
  Path(dir / 'train_images').rename(dir / 'images' / 'train')
  Path(dir / 'val_images').rename(dir / 'images' / 'val')

  # Split
  autosplit(dir / 'images' / 'train')

Usage

To train a model on the xView dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.

Train Example

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="xView.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=xView.yaml model=yolov8n.pt epochs=100 imgsz=640

Sample Data and Annotations

The xView dataset contains high-resolution satellite images with a diverse set of objects annotated using bounding boxes. Here are some examples of data from the dataset, along with their corresponding annotations:

Dataset sample image

  • Overhead Imagery: This image demonstrates an example of object detection in overhead imagery, where objects are annotated with bounding boxes. The dataset provides high-resolution satellite images to facilitate the development of models for this task.

The example showcases the variety and complexity of the data in the xView dataset and highlights the importance of high-quality satellite imagery for object detection tasks.

Citations and Acknowledgments

If you use the xView dataset in your research or development work, please cite the following paper:

@misc{lam2018xview,
      title={xView: Objects in Context in Overhead Imagery},
      author={Darius Lam and Richard Kuzma and Kevin McGee and Samuel Dooley and Michael Laielli and Matthew Klaric and Yaroslav Bulatov and Brendan McCord},
      year={2018},
      eprint={1802.07856},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

We would like to acknowledge the Defense Innovation Unit (DIU) and the creators of the xView dataset for their valuable contribution to the computer vision research community. For more information about the xView dataset and its creators, visit the xView dataset website.



Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (5), Laughing-q (1)

Comments