Zum Inhalt springen

Test-Time Augmentation (TTA)

📚 In diesem Leitfaden wird erklärt, wie man Test Time Augmentation (TTA) während des Testens und der Inferenz verwendet, um mAP und Recall mit YOLOv5 zu verbessern 🚀.

Bevor Sie beginnen

Repo klonen und requirements.txt in einem Python>=3.8.0 Umgebung, einschließlich PyTorch>=1.8. Modelle und Datensätze werden automatisch von der neuestenVersion von YOLOv5 heruntergeladen.

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Test Normalerweise

Bevor wir TTA ausprobieren, wollen wir eine Basisleistung ermitteln, mit der wir vergleichen können. Dieser Befehl testet YOLOv5x auf COCO val2017 bei einer Bildgröße von 640 Pixeln. yolov5x.pt ist das größte und genaueste verfügbare Modell. Andere Optionen sind yolov5s.pt, yolov5m.pt und yolov5l.ptoder Ihren eigenen Kontrollpunkt aus dem Training eines benutzerdefinierten Datensatzes ./weights/best.pt. Details zu allen verfügbaren Modellen finden Sie in unserer README Tabelle.

python val.py --weights yolov5x.pt --data coco.yaml --img 640 --half

Ausgabe:

val: data=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True
YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Fusing layers...
Model Summary: 476 layers, 87730285 parameters, 0 gradients

val: Scanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2846.03it/s]
val: New cache created: ../datasets/coco/val2017.cache
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [02:30<00:00,  1.05it/s]
                 all       5000      36335      0.746      0.626       0.68       0.49
Speed: 0.1ms pre-process, 22.4ms inference, 1.4ms NMS per image at shape (32, 3, 640, 640)  # <--- baseline speed

Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.504  # <--- baseline mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.688
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.546
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.351
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.551
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.644
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.628
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.681  # <--- baseline mAR
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.826

Test mit TTA

Anhängen --augment zu jeder bestehenden val.py um TTA zu aktivieren, und erhöhen Sie die Bildgröße um etwa 30 %, um bessere Ergebnisse zu erzielen. Beachten Sie, dass die Ableitung mit aktivierter TTA in der Regel etwa 2-3 Mal so lange dauert wie die normale Ableitung, da die Bilder links-rechts gespiegelt und in drei verschiedenen Auflösungen verarbeitet werden, wobei die Ergebnisse vor NMS zusammengeführt werden. Ein Teil des Geschwindigkeitsrückgangs ist einfach auf die größeren Bildgrößen zurückzuführen (832 gegenüber 640), ein Teil auf die eigentlichen TTA-Operationen.

python val.py --weights yolov5x.pt --data coco.yaml --img 832 --augment --half

Ausgabe:

val: data=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=832, conf_thres=0.001, iou_thres=0.6, task=val, device=, single_cls=False, augment=True, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True
YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Fusing layers...
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  /pytorch/c10/core/TensorImpl.h:1156.)
  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
Model Summary: 476 layers, 87730285 parameters, 0 gradients
val: Scanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2885.61it/s]
val: New cache created: ../datasets/coco/val2017.cache
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [07:29<00:00,  2.86s/it]
                 all       5000      36335      0.718      0.656      0.695      0.503
Speed: 0.2ms pre-process, 80.6ms inference, 2.7ms NMS per image at shape (32, 3, 832, 832)  # <--- TTA speed

Evaluating pycocotools mAP... saving runs/val/exp2/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.516  # <--- TTA mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.701
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.562
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.361
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.564
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.656
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.388
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.640
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.696  # <--- TTA mAR
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.553
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.744
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.833

Inferenz mit TTA

detect.py Die TTA-Schlussfolgerung funktioniert genauso wie val.py TTA: einfach anhängen --augment zu jeder bestehenden detect.py Befehl:

python detect.py --weights yolov5s.pt --img 832 --source data/images --augment

Ausgabe:

YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 81.9MB/s]

Fusing layers...
Model Summary: 224 layers, 7266973 parameters, 0 gradients
image 1/2 /content/yolov5/data/images/bus.jpg: 832x640 4 persons, 1 bus, 1 fire hydrant, Done. (0.029s)
image 2/2 /content/yolov5/data/images/zidane.jpg: 480x832 3 persons, 3 ties, Done. (0.024s)
Results saved to runs/detect/exp
Done. (0.156s)

YOLOv5 Testzeitverlängerungen

PyTorch Nabe TTA

Die TTA wird automatisch in alle YOLOv5 PyTorch Nabe Modelle und kann durch die Übergabe von augment=True zur Zeit der Inferenz.

import torch

# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s")  # or yolov5m, yolov5x, custom

# Images
img = "https://ultralytics.com/images/zidane.jpg"  # or file, PIL, OpenCV, numpy, multiple

# Inference
results = model(img, augment=True)  # <--- TTA inference

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

Anpassen

Sie können die TTA-OPs anpassen, die in der Datei YOLOv5 forward_augment() Methode hier.

Unterstützte Umgebungen

Ultralytics bietet eine Reihe gebrauchsfertiger Umgebungen, die jeweils mit wichtigen Abhängigkeiten vorinstalliert sind, z. B. CUDA, CUDNN, Python, und PyTorchvorinstalliert, um Ihre Projekte in Gang zu bringen.

Projektstatus

YOLOv5 CI

Dieses Abzeichen zeigt an, dass alle YOLOv5 GitHub Actions Continuous Integration (CI) Tests erfolgreich bestanden wurden. Diese CI-Tests überprüfen die Funktionalität und Leistung von YOLOv5 in verschiedenen Schlüsselbereichen: Training, Validierung, Inferenz, Export und Benchmarks. Sie gewährleisten einen konsistenten und zuverlässigen Betrieb unter macOS, Windows und Ubuntu, wobei die Tests alle 24 Stunden und bei jeder neuen Übertragung durchgeführt werden.

📅 Erstellt vor 1 Jahr ✏️ Aktualisiert vor 2 Monaten

Kommentare