跳至内容

YOLOv8 🚀关于 AzureML

什么是 Azure?

Azure是微软的云计算平台,旨在帮助企业将其工作负载从内部数据中心转移到云中。Azure 提供包括计算、数据库、分析、机器学习和网络在内的全方位云服务,用户可以从中挑选服务,在公共云中开发和扩展新应用,或运行现有应用。

什么是 Azure 机器学习(AzureML)?

Azure Machine Learning(通常称为 AzureML)是一种完全托管的云服务,它使数据科学家和开发人员能够高效地将预测分析嵌入到他们的应用程序中,帮助企业使用海量数据集,并将云的所有优势引入机器学习。AzureML 提供了各种服务和功能,旨在使机器学习易于访问、使用和扩展。它提供的功能包括自动机器学习、拖放模型训练以及强大的Python SDK,使开发人员可以充分利用机器学习模型。

AzureML 如何使YOLO 用户受益?

对于YOLO (You Only Look Once)的用户来说,AzureML 为训练和部署机器学习模型提供了一个强大、可扩展且高效的平台。无论您是要运行快速原型,还是要扩大规模以处理更多数据,AzureML 灵活且用户友好的环境都能提供各种工具和服务来满足您的需求。您可以利用 AzureML

  • 轻松管理用于训练的大型数据集和计算资源。
  • 利用内置工具进行数据预处理、特征选择和模型训练。
  • 利用 MLOps(机器学习运营)功能,包括但不限于模型和数据的监控、审计和版本管理,提高协作效率。

在随后的章节中,您将看到一份快速入门指南,详细介绍如何使用 AzureML 从计算终端或笔记本电脑运行YOLOv8 物体检测模型。

先决条件

在开始之前,请确保您可以访问 AzureML 工作区。如果没有,可以按照 Azure 的官方文档创建一个新的AzureML 工作区。该工作区是管理所有 AzureML 资源的集中场所。

创建计算实例

在 AzureML 工作区中,选择 "计算">"计算实例">"新建",选择具有所需资源的实例。

创建 Azure 计算实例

从终端快速启动

启动计算机并打开终端:

开放式终端

创建 virtualenv

创建 conda 虚拟环境,并在其中安装 pip:

conda create --name yolov8env -y
conda activate yolov8env
conda install pip -y

安装所需的依赖项:

cd ultralytics
pip install -r requirements.txt
pip install ultralytics
pip install onnx>=1.12.0

执行YOLOv8 任务

预测:

yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

训练检测模型 10 次,初始学习率为 0.01:

yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01

您可以在这里找到使用Ultralytics CLI 的更多 说明

从笔记本电脑快速启动

创建新的 IPython 内核

打开计算终端。

开放式终端

在计算终端,你需要创建一个新的 ipykernel,笔记本将使用它来管理你的依赖关系:

conda create --name yolov8env -y
conda activate yolov8env
conda install pip -y
conda install ipykernel -y
python -m ipykernel install --user --name yolov8env --display-name "yolov8env"

关闭终端,新建一个笔记本。在笔记本中,您可以选择新内核。

然后打开笔记本单元,安装所需的依赖项:

%%bash
source activate yolov8env
cd ultralytics
pip install -r requirements.txt
pip install ultralytics
pip install onnx>=1.12.0

请注意,我们需要使用 source activate yolov8env 的所有 %%bash 单元,以确保 %%bash 单元使用我们想要的环境。

使用 Ultralytics CLI:

%%bash
source activate yolov8env
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

或者使用Ultralytics Python 界面,例如训练模型:

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.pt")  # load an official YOLOv8n model

# Use the model
model.train(data="coco128.yaml", epochs=3)  # train the model
metrics = model.val()  # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
path = model.export(format="onnx")  # export the model to ONNX format

如上文终端部分所述,您可以使用Ultralytics CLI 或Python 界面运行YOLOv8 任务。

按照这些步骤,您应该能够在 AzureML 上快速运行YOLOv8 ,进行快速试验。对于更高级的使用,您可以参考本指南开头链接的完整 AzureML 文档。

使用 AzureML 探索更多

本指南可作为入门指南,帮助您在 AzureML 上运行YOLOv8 。然而,这只是对 AzureML 所能提供功能的表面介绍。要深入了解 AzureML 并充分释放其在机器学习项目中的潜力,请考虑探索以下资源:



创建于 2023-11-12,更新于 2023-11-16
作者:glenn-jocher(2)、ouphi(1)

评论