Saltar al contenido

Referencia para ultralytics/nn/modules/head.py

Nota

Este archivo est谩 disponible en https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/nn/modules/head .py. Si detectas alg煤n problema, por favor, ayuda a solucionarlo contribuyendo con una Pull Request 馃洜锔. 隆Gracias 馃檹!



ultralytics.nn.modules.head.Detect

Bases: Module

YOLOv8 Detectar cabeza para modelos de detecci贸n.

C贸digo fuente en ultralytics/nn/modules/head.py
class Detect(nn.Module):
    """YOLOv8 Detect head for detection models."""

    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, ch=()):
        """Initializes the YOLOv8 detection layer with specified number of classes and channels."""
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch)  # number of detection layers
        self.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.stride = torch.zeros(self.nl)  # strides computed during build
        c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
        )
        self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()

    def forward(self, x):
        """Concatenates and returns predicted bounding boxes and class probabilities."""
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
        if self.training:  # Training path
            return x

        # Inference path
        shape = x[0].shape  # BCHW
        x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
        if self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape

        if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}:  # avoid TF FlexSplitV ops
            box = x_cat[:, : self.reg_max * 4]
            cls = x_cat[:, self.reg_max * 4 :]
        else:
            box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)

        if self.export and self.format in {"tflite", "edgetpu"}:
            # Precompute normalization factor to increase numerical stability
            # See https://github.com/ultralytics/ultralytics/issues/7371
            grid_h = shape[2]
            grid_w = shape[3]
            grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
            norm = self.strides / (self.stride[0] * grid_size)
            dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
        else:
            dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides

        y = torch.cat((dbox, cls.sigmoid()), 1)
        return y if self.export else (y, x)

    def bias_init(self):
        """Initialize Detect() biases, WARNING: requires stride availability."""
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)

    def decode_bboxes(self, bboxes, anchors):
        """Decode bounding boxes."""
        return dist2bbox(bboxes, anchors, xywh=True, dim=1)

__init__(nc=80, ch=())

Inicializa la capa de detecci贸n YOLOv8 con el n煤mero especificado de clases y canales.

C贸digo fuente en ultralytics/nn/modules/head.py
def __init__(self, nc=80, ch=()):
    """Initializes the YOLOv8 detection layer with specified number of classes and channels."""
    super().__init__()
    self.nc = nc  # number of classes
    self.nl = len(ch)  # number of detection layers
    self.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
    self.no = nc + self.reg_max * 4  # number of outputs per anchor
    self.stride = torch.zeros(self.nl)  # strides computed during build
    c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))  # channels
    self.cv2 = nn.ModuleList(
        nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
    )
    self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
    self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()

bias_init()

Inicializar los sesgos de Detect(), ADVERTENCIA: requiere disponibilidad de stride.

C贸digo fuente en ultralytics/nn/modules/head.py
def bias_init(self):
    """Initialize Detect() biases, WARNING: requires stride availability."""
    m = self  # self.model[-1]  # Detect() module
    # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
    # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
    for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
        a[-1].bias.data[:] = 1.0  # box
        b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)

decode_bboxes(bboxes, anchors)

Descodifica las cajas delimitadoras.

C贸digo fuente en ultralytics/nn/modules/head.py
def decode_bboxes(self, bboxes, anchors):
    """Decode bounding boxes."""
    return dist2bbox(bboxes, anchors, xywh=True, dim=1)

forward(x)

Concatena y devuelve los cuadros delimitadores previstos y las probabilidades de clase.

C贸digo fuente en ultralytics/nn/modules/head.py
def forward(self, x):
    """Concatenates and returns predicted bounding boxes and class probabilities."""
    for i in range(self.nl):
        x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
    if self.training:  # Training path
        return x

    # Inference path
    shape = x[0].shape  # BCHW
    x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
    if self.dynamic or self.shape != shape:
        self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
        self.shape = shape

    if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}:  # avoid TF FlexSplitV ops
        box = x_cat[:, : self.reg_max * 4]
        cls = x_cat[:, self.reg_max * 4 :]
    else:
        box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)

    if self.export and self.format in {"tflite", "edgetpu"}:
        # Precompute normalization factor to increase numerical stability
        # See https://github.com/ultralytics/ultralytics/issues/7371
        grid_h = shape[2]
        grid_w = shape[3]
        grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
        norm = self.strides / (self.stride[0] * grid_size)
        dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
    else:
        dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides

    y = torch.cat((dbox, cls.sigmoid()), 1)
    return y if self.export else (y, x)



ultralytics.nn.modules.head.Segment

Bases: Detect

YOLOv8 Cabeza de segmento para modelos de segmentaci贸n.

C贸digo fuente en ultralytics/nn/modules/head.py
class Segment(Detect):
    """YOLOv8 Segment head for segmentation models."""

    def __init__(self, nc=80, nm=32, npr=256, ch=()):
        """Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers."""
        super().__init__(nc, ch)
        self.nm = nm  # number of masks
        self.npr = npr  # number of protos
        self.proto = Proto(ch[0], self.npr, self.nm)  # protos

        c4 = max(ch[0] // 4, self.nm)
        self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)

    def forward(self, x):
        """Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
        p = self.proto(x[0])  # mask protos
        bs = p.shape[0]  # batch size

        mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
        x = Detect.forward(self, x)
        if self.training:
            return x, mc, p
        return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))

__init__(nc=80, nm=32, npr=256, ch=())

Inicializa los atributos del modelo YOLO , como el n煤mero de m谩scaras, prototipos y las capas de convoluci贸n.

C贸digo fuente en ultralytics/nn/modules/head.py
def __init__(self, nc=80, nm=32, npr=256, ch=()):
    """Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers."""
    super().__init__(nc, ch)
    self.nm = nm  # number of masks
    self.npr = npr  # number of protos
    self.proto = Proto(ch[0], self.npr, self.nm)  # protos

    c4 = max(ch[0] // 4, self.nm)
    self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)

forward(x)

Devuelve las salidas del modelo y los coeficientes de la m谩scara si se est谩 entrenando; en caso contrario, devuelve las salidas y los coeficientes de la m谩scara.

C贸digo fuente en ultralytics/nn/modules/head.py
def forward(self, x):
    """Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
    p = self.proto(x[0])  # mask protos
    bs = p.shape[0]  # batch size

    mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
    x = Detect.forward(self, x)
    if self.training:
        return x, mc, p
    return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))



ultralytics.nn.modules.head.OBB

Bases: Detect

YOLOv8 Cabezal de detecci贸n OBB para la detecci贸n con modelos de rotaci贸n.

C贸digo fuente en ultralytics/nn/modules/head.py
class OBB(Detect):
    """YOLOv8 OBB detection head for detection with rotation models."""

    def __init__(self, nc=80, ne=1, ch=()):
        """Initialize OBB with number of classes `nc` and layer channels `ch`."""
        super().__init__(nc, ch)
        self.ne = ne  # number of extra parameters

        c4 = max(ch[0] // 4, self.ne)
        self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.ne, 1)) for x in ch)

    def forward(self, x):
        """Concatenates and returns predicted bounding boxes and class probabilities."""
        bs = x[0].shape[0]  # batch size
        angle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2)  # OBB theta logits
        # NOTE: set `angle` as an attribute so that `decode_bboxes` could use it.
        angle = (angle.sigmoid() - 0.25) * math.pi  # [-pi/4, 3pi/4]
        # angle = angle.sigmoid() * math.pi / 2  # [0, pi/2]
        if not self.training:
            self.angle = angle
        x = Detect.forward(self, x)
        if self.training:
            return x, angle
        return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))

    def decode_bboxes(self, bboxes, anchors):
        """Decode rotated bounding boxes."""
        return dist2rbox(bboxes, self.angle, anchors, dim=1)

__init__(nc=80, ne=1, ch=())

Inicializar OBB con n煤mero de clases nc y canales de capas ch.

C贸digo fuente en ultralytics/nn/modules/head.py
def __init__(self, nc=80, ne=1, ch=()):
    """Initialize OBB with number of classes `nc` and layer channels `ch`."""
    super().__init__(nc, ch)
    self.ne = ne  # number of extra parameters

    c4 = max(ch[0] // 4, self.ne)
    self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.ne, 1)) for x in ch)

decode_bboxes(bboxes, anchors)

Descodifica las cajas delimitadoras rotadas.

C贸digo fuente en ultralytics/nn/modules/head.py
def decode_bboxes(self, bboxes, anchors):
    """Decode rotated bounding boxes."""
    return dist2rbox(bboxes, self.angle, anchors, dim=1)

forward(x)

Concatena y devuelve los cuadros delimitadores previstos y las probabilidades de clase.

C贸digo fuente en ultralytics/nn/modules/head.py
def forward(self, x):
    """Concatenates and returns predicted bounding boxes and class probabilities."""
    bs = x[0].shape[0]  # batch size
    angle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2)  # OBB theta logits
    # NOTE: set `angle` as an attribute so that `decode_bboxes` could use it.
    angle = (angle.sigmoid() - 0.25) * math.pi  # [-pi/4, 3pi/4]
    # angle = angle.sigmoid() * math.pi / 2  # [0, pi/2]
    if not self.training:
        self.angle = angle
    x = Detect.forward(self, x)
    if self.training:
        return x, angle
    return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))



ultralytics.nn.modules.head.Pose

Bases: Detect

YOLOv8 Cabeza de pose para modelos de puntos clave.

C贸digo fuente en ultralytics/nn/modules/head.py
class Pose(Detect):
    """YOLOv8 Pose head for keypoints models."""

    def __init__(self, nc=80, kpt_shape=(17, 3), ch=()):
        """Initialize YOLO network with default parameters and Convolutional Layers."""
        super().__init__(nc, ch)
        self.kpt_shape = kpt_shape  # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
        self.nk = kpt_shape[0] * kpt_shape[1]  # number of keypoints total

        c4 = max(ch[0] // 4, self.nk)
        self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)

    def forward(self, x):
        """Perform forward pass through YOLO model and return predictions."""
        bs = x[0].shape[0]  # batch size
        kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1)  # (bs, 17*3, h*w)
        x = Detect.forward(self, x)
        if self.training:
            return x, kpt
        pred_kpt = self.kpts_decode(bs, kpt)
        return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))

    def kpts_decode(self, bs, kpts):
        """Decodes keypoints."""
        ndim = self.kpt_shape[1]
        if self.export:  # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
            y = kpts.view(bs, *self.kpt_shape, -1)
            a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
            if ndim == 3:
                a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
            return a.view(bs, self.nk, -1)
        else:
            y = kpts.clone()
            if ndim == 3:
                y[:, 2::3] = y[:, 2::3].sigmoid()  # sigmoid (WARNING: inplace .sigmoid_() Apple MPS bug)
            y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
            y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
            return y

__init__(nc=80, kpt_shape=(17, 3), ch=())

Inicializa la red YOLO con los par谩metros por defecto y las Capas Convolucionales.

C贸digo fuente en ultralytics/nn/modules/head.py
def __init__(self, nc=80, kpt_shape=(17, 3), ch=()):
    """Initialize YOLO network with default parameters and Convolutional Layers."""
    super().__init__(nc, ch)
    self.kpt_shape = kpt_shape  # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
    self.nk = kpt_shape[0] * kpt_shape[1]  # number of keypoints total

    c4 = max(ch[0] // 4, self.nk)
    self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)

forward(x)

Realiza el paso hacia delante a trav茅s del modelo YOLO y devuelve las predicciones.

C贸digo fuente en ultralytics/nn/modules/head.py
def forward(self, x):
    """Perform forward pass through YOLO model and return predictions."""
    bs = x[0].shape[0]  # batch size
    kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1)  # (bs, 17*3, h*w)
    x = Detect.forward(self, x)
    if self.training:
        return x, kpt
    pred_kpt = self.kpts_decode(bs, kpt)
    return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))

kpts_decode(bs, kpts)

Descodifica los puntos clave.

C贸digo fuente en ultralytics/nn/modules/head.py
def kpts_decode(self, bs, kpts):
    """Decodes keypoints."""
    ndim = self.kpt_shape[1]
    if self.export:  # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
        y = kpts.view(bs, *self.kpt_shape, -1)
        a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
        if ndim == 3:
            a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
        return a.view(bs, self.nk, -1)
    else:
        y = kpts.clone()
        if ndim == 3:
            y[:, 2::3] = y[:, 2::3].sigmoid()  # sigmoid (WARNING: inplace .sigmoid_() Apple MPS bug)
        y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
        y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
        return y



ultralytics.nn.modules.head.Classify

Bases: Module

YOLOv8 cabeza de clasificaci贸n, es decir, de x(b,c1,20,20) a x(b,c2).

C贸digo fuente en ultralytics/nn/modules/head.py
class Classify(nn.Module):
    """YOLOv8 classification head, i.e. x(b,c1,20,20) to x(b,c2)."""

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1):
        """Initializes YOLOv8 classification head with specified input and output channels, kernel size, stride,
        padding, and groups.
        """
        super().__init__()
        c_ = 1280  # efficientnet_b0 size
        self.conv = Conv(c1, c_, k, s, p, g)
        self.pool = nn.AdaptiveAvgPool2d(1)  # to x(b,c_,1,1)
        self.drop = nn.Dropout(p=0.0, inplace=True)
        self.linear = nn.Linear(c_, c2)  # to x(b,c2)

    def forward(self, x):
        """Performs a forward pass of the YOLO model on input image data."""
        if isinstance(x, list):
            x = torch.cat(x, 1)
        x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
        return x if self.training else x.softmax(1)

__init__(c1, c2, k=1, s=1, p=None, g=1)

Inicializa el cabezal de clasificaci贸n YOLOv8 con los canales de entrada y salida especificados, el tama帽o del n煤cleo, el stride relleno y grupos.

C贸digo fuente en ultralytics/nn/modules/head.py
def __init__(self, c1, c2, k=1, s=1, p=None, g=1):
    """Initializes YOLOv8 classification head with specified input and output channels, kernel size, stride,
    padding, and groups.
    """
    super().__init__()
    c_ = 1280  # efficientnet_b0 size
    self.conv = Conv(c1, c_, k, s, p, g)
    self.pool = nn.AdaptiveAvgPool2d(1)  # to x(b,c_,1,1)
    self.drop = nn.Dropout(p=0.0, inplace=True)
    self.linear = nn.Linear(c_, c2)  # to x(b,c2)

forward(x)

Realiza una pasada hacia delante del modelo YOLO sobre los datos de imagen de entrada.

C贸digo fuente en ultralytics/nn/modules/head.py
def forward(self, x):
    """Performs a forward pass of the YOLO model on input image data."""
    if isinstance(x, list):
        x = torch.cat(x, 1)
    x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
    return x if self.training else x.softmax(1)



ultralytics.nn.modules.head.WorldDetect

Bases: Detect

C贸digo fuente en ultralytics/nn/modules/head.py
class WorldDetect(Detect):
    def __init__(self, nc=80, embed=512, with_bn=False, ch=()):
        """Initialize YOLOv8 detection layer with nc classes and layer channels ch."""
        super().__init__(nc, ch)
        c3 = max(ch[0], min(self.nc, 100))
        self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
        self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)

    def forward(self, x, text):
        """Concatenates and returns predicted bounding boxes and class probabilities."""
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), text)), 1)
        if self.training:
            return x

        # Inference path
        shape = x[0].shape  # BCHW
        x_cat = torch.cat([xi.view(shape[0], self.nc + self.reg_max * 4, -1) for xi in x], 2)
        if self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape

        if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}:  # avoid TF FlexSplitV ops
            box = x_cat[:, : self.reg_max * 4]
            cls = x_cat[:, self.reg_max * 4 :]
        else:
            box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)

        if self.export and self.format in {"tflite", "edgetpu"}:
            # Precompute normalization factor to increase numerical stability
            # See https://github.com/ultralytics/ultralytics/issues/7371
            grid_h = shape[2]
            grid_w = shape[3]
            grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
            norm = self.strides / (self.stride[0] * grid_size)
            dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
        else:
            dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides

        y = torch.cat((dbox, cls.sigmoid()), 1)
        return y if self.export else (y, x)

    def bias_init(self):
        """Initialize Detect() biases, WARNING: requires stride availability."""
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box

__init__(nc=80, embed=512, with_bn=False, ch=())

Inicializa la capa de detecci贸n YOLOv8 con las clases nc y los canales de capa ch.

C贸digo fuente en ultralytics/nn/modules/head.py
def __init__(self, nc=80, embed=512, with_bn=False, ch=()):
    """Initialize YOLOv8 detection layer with nc classes and layer channels ch."""
    super().__init__(nc, ch)
    c3 = max(ch[0], min(self.nc, 100))
    self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
    self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)

bias_init()

Inicializar los sesgos de Detect(), ADVERTENCIA: requiere disponibilidad de stride.

C贸digo fuente en ultralytics/nn/modules/head.py
def bias_init(self):
    """Initialize Detect() biases, WARNING: requires stride availability."""
    m = self  # self.model[-1]  # Detect() module
    # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
    # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
    for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
        a[-1].bias.data[:] = 1.0  # box

forward(x, text)

Concatena y devuelve los cuadros delimitadores previstos y las probabilidades de clase.

C贸digo fuente en ultralytics/nn/modules/head.py
def forward(self, x, text):
    """Concatenates and returns predicted bounding boxes and class probabilities."""
    for i in range(self.nl):
        x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), text)), 1)
    if self.training:
        return x

    # Inference path
    shape = x[0].shape  # BCHW
    x_cat = torch.cat([xi.view(shape[0], self.nc + self.reg_max * 4, -1) for xi in x], 2)
    if self.dynamic or self.shape != shape:
        self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
        self.shape = shape

    if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}:  # avoid TF FlexSplitV ops
        box = x_cat[:, : self.reg_max * 4]
        cls = x_cat[:, self.reg_max * 4 :]
    else:
        box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)

    if self.export and self.format in {"tflite", "edgetpu"}:
        # Precompute normalization factor to increase numerical stability
        # See https://github.com/ultralytics/ultralytics/issues/7371
        grid_h = shape[2]
        grid_w = shape[3]
        grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
        norm = self.strides / (self.stride[0] * grid_size)
        dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
    else:
        dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides

    y = torch.cat((dbox, cls.sigmoid()), 1)
    return y if self.export else (y, x)



ultralytics.nn.modules.head.RTDETRDecoder

Bases: Module

M贸dulo Decodificador de Transformadas Deformables en Tiempo Real (RTDETRDecoder) para la detecci贸n de objetos.

Este m贸dulo descodificador utiliza la arquitectura Transformer junto con convoluciones deformables para predecir recuadros delimitadores y etiquetas de clase para los objetos de una imagen. Integra caracter铆sticas de m煤ltiples capas y las ejecuta a trav茅s de una serie de capas decodificadoras Transformer para dar como resultado las predicciones finales. capas decodificadoras Transformer para obtener las predicciones finales.

C贸digo fuente en ultralytics/nn/modules/head.py
class RTDETRDecoder(nn.Module):
    """
    Real-Time Deformable Transformer Decoder (RTDETRDecoder) module for object detection.

    This decoder module utilizes Transformer architecture along with deformable convolutions to predict bounding boxes
    and class labels for objects in an image. It integrates features from multiple layers and runs through a series of
    Transformer decoder layers to output the final predictions.
    """

    export = False  # export mode

    def __init__(
        self,
        nc=80,
        ch=(512, 1024, 2048),
        hd=256,  # hidden dim
        nq=300,  # num queries
        ndp=4,  # num decoder points
        nh=8,  # num head
        ndl=6,  # num decoder layers
        d_ffn=1024,  # dim of feedforward
        dropout=0.0,
        act=nn.ReLU(),
        eval_idx=-1,
        # Training args
        nd=100,  # num denoising
        label_noise_ratio=0.5,
        box_noise_scale=1.0,
        learnt_init_query=False,
    ):
        """
        Initializes the RTDETRDecoder module with the given parameters.

        Args:
            nc (int): Number of classes. Default is 80.
            ch (tuple): Channels in the backbone feature maps. Default is (512, 1024, 2048).
            hd (int): Dimension of hidden layers. Default is 256.
            nq (int): Number of query points. Default is 300.
            ndp (int): Number of decoder points. Default is 4.
            nh (int): Number of heads in multi-head attention. Default is 8.
            ndl (int): Number of decoder layers. Default is 6.
            d_ffn (int): Dimension of the feed-forward networks. Default is 1024.
            dropout (float): Dropout rate. Default is 0.
            act (nn.Module): Activation function. Default is nn.ReLU.
            eval_idx (int): Evaluation index. Default is -1.
            nd (int): Number of denoising. Default is 100.
            label_noise_ratio (float): Label noise ratio. Default is 0.5.
            box_noise_scale (float): Box noise scale. Default is 1.0.
            learnt_init_query (bool): Whether to learn initial query embeddings. Default is False.
        """
        super().__init__()
        self.hidden_dim = hd
        self.nhead = nh
        self.nl = len(ch)  # num level
        self.nc = nc
        self.num_queries = nq
        self.num_decoder_layers = ndl

        # Backbone feature projection
        self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch)
        # NOTE: simplified version but it's not consistent with .pt weights.
        # self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch)

        # Transformer module
        decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp)
        self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx)

        # Denoising part
        self.denoising_class_embed = nn.Embedding(nc, hd)
        self.num_denoising = nd
        self.label_noise_ratio = label_noise_ratio
        self.box_noise_scale = box_noise_scale

        # Decoder embedding
        self.learnt_init_query = learnt_init_query
        if learnt_init_query:
            self.tgt_embed = nn.Embedding(nq, hd)
        self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2)

        # Encoder head
        self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd))
        self.enc_score_head = nn.Linear(hd, nc)
        self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3)

        # Decoder head
        self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)])
        self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)])

        self._reset_parameters()

    def forward(self, x, batch=None):
        """Runs the forward pass of the module, returning bounding box and classification scores for the input."""
        from ultralytics.models.utils.ops import get_cdn_group

        # Input projection and embedding
        feats, shapes = self._get_encoder_input(x)

        # Prepare denoising training
        dn_embed, dn_bbox, attn_mask, dn_meta = get_cdn_group(
            batch,
            self.nc,
            self.num_queries,
            self.denoising_class_embed.weight,
            self.num_denoising,
            self.label_noise_ratio,
            self.box_noise_scale,
            self.training,
        )

        embed, refer_bbox, enc_bboxes, enc_scores = self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)

        # Decoder
        dec_bboxes, dec_scores = self.decoder(
            embed,
            refer_bbox,
            feats,
            shapes,
            self.dec_bbox_head,
            self.dec_score_head,
            self.query_pos_head,
            attn_mask=attn_mask,
        )
        x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta
        if self.training:
            return x
        # (bs, 300, 4+nc)
        y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
        return y if self.export else (y, x)

    def _generate_anchors(self, shapes, grid_size=0.05, dtype=torch.float32, device="cpu", eps=1e-2):
        """Generates anchor bounding boxes for given shapes with specific grid size and validates them."""
        anchors = []
        for i, (h, w) in enumerate(shapes):
            sy = torch.arange(end=h, dtype=dtype, device=device)
            sx = torch.arange(end=w, dtype=dtype, device=device)
            grid_y, grid_x = torch.meshgrid(sy, sx, indexing="ij") if TORCH_1_10 else torch.meshgrid(sy, sx)
            grid_xy = torch.stack([grid_x, grid_y], -1)  # (h, w, 2)

            valid_WH = torch.tensor([w, h], dtype=dtype, device=device)
            grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH  # (1, h, w, 2)
            wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0**i)
            anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4))  # (1, h*w, 4)

        anchors = torch.cat(anchors, 1)  # (1, h*w*nl, 4)
        valid_mask = ((anchors > eps) & (anchors < 1 - eps)).all(-1, keepdim=True)  # 1, h*w*nl, 1
        anchors = torch.log(anchors / (1 - anchors))
        anchors = anchors.masked_fill(~valid_mask, float("inf"))
        return anchors, valid_mask

    def _get_encoder_input(self, x):
        """Processes and returns encoder inputs by getting projection features from input and concatenating them."""
        # Get projection features
        x = [self.input_proj[i](feat) for i, feat in enumerate(x)]
        # Get encoder inputs
        feats = []
        shapes = []
        for feat in x:
            h, w = feat.shape[2:]
            # [b, c, h, w] -> [b, h*w, c]
            feats.append(feat.flatten(2).permute(0, 2, 1))
            # [nl, 2]
            shapes.append([h, w])

        # [b, h*w, c]
        feats = torch.cat(feats, 1)
        return feats, shapes

    def _get_decoder_input(self, feats, shapes, dn_embed=None, dn_bbox=None):
        """Generates and prepares the input required for the decoder from the provided features and shapes."""
        bs = feats.shape[0]
        # Prepare input for decoder
        anchors, valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device)
        features = self.enc_output(valid_mask * feats)  # bs, h*w, 256

        enc_outputs_scores = self.enc_score_head(features)  # (bs, h*w, nc)

        # Query selection
        # (bs, num_queries)
        topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1)
        # (bs, num_queries)
        batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1)

        # (bs, num_queries, 256)
        top_k_features = features[batch_ind, topk_ind].view(bs, self.num_queries, -1)
        # (bs, num_queries, 4)
        top_k_anchors = anchors[:, topk_ind].view(bs, self.num_queries, -1)

        # Dynamic anchors + static content
        refer_bbox = self.enc_bbox_head(top_k_features) + top_k_anchors

        enc_bboxes = refer_bbox.sigmoid()
        if dn_bbox is not None:
            refer_bbox = torch.cat([dn_bbox, refer_bbox], 1)
        enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1)

        embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1) if self.learnt_init_query else top_k_features
        if self.training:
            refer_bbox = refer_bbox.detach()
            if not self.learnt_init_query:
                embeddings = embeddings.detach()
        if dn_embed is not None:
            embeddings = torch.cat([dn_embed, embeddings], 1)

        return embeddings, refer_bbox, enc_bboxes, enc_scores

    # TODO
    def _reset_parameters(self):
        """Initializes or resets the parameters of the model's various components with predefined weights and biases."""
        # Class and bbox head init
        bias_cls = bias_init_with_prob(0.01) / 80 * self.nc
        # NOTE: the weight initialization in `linear_init` would cause NaN when training with custom datasets.
        # linear_init(self.enc_score_head)
        constant_(self.enc_score_head.bias, bias_cls)
        constant_(self.enc_bbox_head.layers[-1].weight, 0.0)
        constant_(self.enc_bbox_head.layers[-1].bias, 0.0)
        for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
            # linear_init(cls_)
            constant_(cls_.bias, bias_cls)
            constant_(reg_.layers[-1].weight, 0.0)
            constant_(reg_.layers[-1].bias, 0.0)

        linear_init(self.enc_output[0])
        xavier_uniform_(self.enc_output[0].weight)
        if self.learnt_init_query:
            xavier_uniform_(self.tgt_embed.weight)
        xavier_uniform_(self.query_pos_head.layers[0].weight)
        xavier_uniform_(self.query_pos_head.layers[1].weight)
        for layer in self.input_proj:
            xavier_uniform_(layer[0].weight)

__init__(nc=80, ch=(512, 1024, 2048), hd=256, nq=300, ndp=4, nh=8, ndl=6, d_ffn=1024, dropout=0.0, act=nn.ReLU(), eval_idx=-1, nd=100, label_noise_ratio=0.5, box_noise_scale=1.0, learnt_init_query=False)

Inicializa el m贸dulo RTDETRDecodificador con los par谩metros dados.

Par谩metros:

Nombre Tipo Descripci贸n Por defecto
nc int

N煤mero de clases. Por defecto es 80.

80
ch tuple

Canales en los mapas de caracter铆sticas de la red troncal. Por defecto es (512, 1024, 2048).

(512, 1024, 2048)
hd int

Dimensi贸n de las capas ocultas. Por defecto es 256.

256
nq int

N煤mero de puntos de consulta. Por defecto es 300.

300
ndp int

N煤mero de puntos del descodificador. Por defecto son 4.

4
nh int

N煤mero de cabezales en la atenci贸n multicabezal. Por defecto es 8.

8
ndl int

N煤mero de capas del descodificador. Por defecto es 6.

6
d_ffn int

Dimensi贸n de las redes feed-forward. Por defecto es 1024.

1024
dropout float

Tasa de abandono. Por defecto es 0.

0.0
act Module

Funci贸n de activaci贸n. Por defecto es nn.ReLU.

ReLU()
eval_idx int

脥ndice de evaluaci贸n. Por defecto es -1.

-1
nd int

N煤mero de eliminaci贸n de ruido. Por defecto es 100.

100
label_noise_ratio float

Relaci贸n de ruido de la etiqueta. Por defecto es 0,5.

0.5
box_noise_scale float

Escala de ruido de la caja. Por defecto es 1,0.

1.0
learnt_init_query bool

Si se aprenden las incrustaciones iniciales de la consulta. Por defecto es Falso.

False
C贸digo fuente en ultralytics/nn/modules/head.py
def __init__(
    self,
    nc=80,
    ch=(512, 1024, 2048),
    hd=256,  # hidden dim
    nq=300,  # num queries
    ndp=4,  # num decoder points
    nh=8,  # num head
    ndl=6,  # num decoder layers
    d_ffn=1024,  # dim of feedforward
    dropout=0.0,
    act=nn.ReLU(),
    eval_idx=-1,
    # Training args
    nd=100,  # num denoising
    label_noise_ratio=0.5,
    box_noise_scale=1.0,
    learnt_init_query=False,
):
    """
    Initializes the RTDETRDecoder module with the given parameters.

    Args:
        nc (int): Number of classes. Default is 80.
        ch (tuple): Channels in the backbone feature maps. Default is (512, 1024, 2048).
        hd (int): Dimension of hidden layers. Default is 256.
        nq (int): Number of query points. Default is 300.
        ndp (int): Number of decoder points. Default is 4.
        nh (int): Number of heads in multi-head attention. Default is 8.
        ndl (int): Number of decoder layers. Default is 6.
        d_ffn (int): Dimension of the feed-forward networks. Default is 1024.
        dropout (float): Dropout rate. Default is 0.
        act (nn.Module): Activation function. Default is nn.ReLU.
        eval_idx (int): Evaluation index. Default is -1.
        nd (int): Number of denoising. Default is 100.
        label_noise_ratio (float): Label noise ratio. Default is 0.5.
        box_noise_scale (float): Box noise scale. Default is 1.0.
        learnt_init_query (bool): Whether to learn initial query embeddings. Default is False.
    """
    super().__init__()
    self.hidden_dim = hd
    self.nhead = nh
    self.nl = len(ch)  # num level
    self.nc = nc
    self.num_queries = nq
    self.num_decoder_layers = ndl

    # Backbone feature projection
    self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch)
    # NOTE: simplified version but it's not consistent with .pt weights.
    # self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch)

    # Transformer module
    decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp)
    self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx)

    # Denoising part
    self.denoising_class_embed = nn.Embedding(nc, hd)
    self.num_denoising = nd
    self.label_noise_ratio = label_noise_ratio
    self.box_noise_scale = box_noise_scale

    # Decoder embedding
    self.learnt_init_query = learnt_init_query
    if learnt_init_query:
        self.tgt_embed = nn.Embedding(nq, hd)
    self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2)

    # Encoder head
    self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd))
    self.enc_score_head = nn.Linear(hd, nc)
    self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3)

    # Decoder head
    self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)])
    self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)])

    self._reset_parameters()

forward(x, batch=None)

Ejecuta el paso hacia delante del m贸dulo, devolviendo el cuadro delimitador y las puntuaciones de clasificaci贸n de la entrada.

C贸digo fuente en ultralytics/nn/modules/head.py
def forward(self, x, batch=None):
    """Runs the forward pass of the module, returning bounding box and classification scores for the input."""
    from ultralytics.models.utils.ops import get_cdn_group

    # Input projection and embedding
    feats, shapes = self._get_encoder_input(x)

    # Prepare denoising training
    dn_embed, dn_bbox, attn_mask, dn_meta = get_cdn_group(
        batch,
        self.nc,
        self.num_queries,
        self.denoising_class_embed.weight,
        self.num_denoising,
        self.label_noise_ratio,
        self.box_noise_scale,
        self.training,
    )

    embed, refer_bbox, enc_bboxes, enc_scores = self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)

    # Decoder
    dec_bboxes, dec_scores = self.decoder(
        embed,
        refer_bbox,
        feats,
        shapes,
        self.dec_bbox_head,
        self.dec_score_head,
        self.query_pos_head,
        attn_mask=attn_mask,
    )
    x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta
    if self.training:
        return x
    # (bs, 300, 4+nc)
    y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
    return y if self.export else (y, x)





Creado 2023-11-12, Actualizado 2024-05-18
Autores: glenn-jocher (6), Burhan-Q (1)