Saltar para o conteúdo

Ultralytics API de inferência do HUB

Depois de treinar um modelo, pode utilizar a API de inferência partilhada gratuitamente. Se for um utilizador Pro, pode aceder à API de Inferência Dedicada. A API de inferência do Ultralytics HUB permite-lhe executar a inferência através da nossa API REST sem a necessidade de instalar e configurar localmente o ambiente Ultralytics YOLO .

Ultralytics Captura de ecrã do HUB do separador Implementar na página Modelo com uma seta a apontar para o cartão da API de Inferência Dedicada e outra para o cartão da API de Inferência Partilhada


Ver: Ultralytics Passo a passo da API de inferência do HUB

API de inferência dedicada

Em resposta à elevada procura e ao interesse generalizado, estamos entusiasmados por revelar a API de Inferência Dedicada do Ultralytics HUB, que oferece uma implementação com um único clique num ambiente dedicado para os nossos utilizadores Pro!

Nota

Estamos entusiasmados por oferecer esta funcionalidade GRATUITAMENTE durante a nossa versão beta pública como parte do Plano Pro, com níveis pagos possíveis no futuro.

  • Cobertura global: Implementado em 38 regiões em todo o mundo, garantindo acesso de baixa latência a partir de qualquer local. Veja a lista completa de regiões do Google Cloud.
  • Google Apoiado pelo Cloud Run: Apoiado por Google Cloud Run, fornecendo uma infraestrutura infinitamente escalável e altamente fiável.
  • Alta velocidade: É possível uma latência inferior a 100 ms para a inferência YOLOv8n com uma resolução de 640 a partir de regiões próximas, com base nos testes Ultralytics .
  • Segurança melhorada: Fornece funcionalidades de segurança robustas para proteger os seus dados e garantir a conformidade com as normas da indústria. Saiba mais sobre a segurança do Google Cloud.

Para utilizar a API de inferência dedicada do Ultralytics HUB, clique no botão Iniciar ponto final. De seguida, utilize o URL do ponto final único, conforme descrito nos guias abaixo.

Ultralytics Captura de ecrã do HUB do separador Implementar na página Modelo com uma seta a apontar para o botão Iniciar Ponto Final no cartão API de Inferência Dedicada

Dica

Escolha a região com a latência mais baixa para obter o melhor desempenho, conforme descrito na documentação.

Para encerrar o ponto de extremidade dedicado, clique no botão Parar ponto de extremidade.

Ultralytics Captura de ecrã do HUB do separador Implementar na página Modelo com uma seta a apontar para o botão Parar Ponto Final no cartão API de Inferência Dedicada

API de inferência partilhada

Para utilizar a API de inferência partilhada do Ultralytics HUB, siga os guias abaixo.

A API de inferência partilhada do Ultralytics HUB tem os seguintes limites de utilização:

  • 100 chamadas / hora

Python

Para aceder à API de inferência do Ultralytics HUB utilizando Python, utilize o seguinte código:

import requests

# API URL
url = "https://predict.ultralytics.com"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (use actual MODEL_ID)
data = {"model": "https://hub.ultralytics.com/models/MODEL_ID", "imgsz": 640, "conf": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"file": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())

Nota

Substituir MODEL_ID com o ID do modelo pretendido, API_KEY com a sua chave de API real, e path/to/image.jpg com o caminho para a imagem em que pretende executar a inferência.

Se estiver a utilizar o nosso API de inferência dedicada, substituir o url também.

cURL

Para aceder à API de inferência do Ultralytics HUB utilizando cURL, utilize o seguinte código:

curl -X POST "https://predict.ultralytics.com" \
  -H "x-api-key: API_KEY" \
  -F "model=https://hub.ultralytics.com/models/MODEL_ID" \
  -F "file=@/path/to/image.jpg" \
  -F "imgsz=640" \
  -F "conf=0.25" \
  -F "iou=0.45"

Nota

Substituir MODEL_ID com o ID do modelo pretendido, API_KEY com a sua chave de API real, e path/to/image.jpg com o caminho para a imagem em que pretende executar a inferência.

Se estiver a utilizar o nosso API de inferência dedicada, substituir o url também.

Argumentos

Consulte a tabela abaixo para obter uma lista completa dos argumentos de inferência disponíveis.

Argumento Predefinição Tipo Descrição
file file Ficheiro de imagem ou vídeo a utilizar para a inferência.
imgsz 640 int Tamanho da imagem de entrada, o intervalo válido é 32 - 1280 pixéis.
conf 0.25 float Limiar de confiança para previsões, intervalo válido 0.01 - 1.0.
iou 0.45 float Intersecção sobre Union (IoU) limiar, intervalo válido 0.0 - 0.95.

Resposta

A API de inferência do Ultralytics HUB devolve uma resposta JSON.

Classificação

Modelo de classificação

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-cls.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].to_json())
curl -X POST "https://predict.ultralytics.com" \
  -H "x-api-key: API_KEY" \
  -F "model=https://hub.ultralytics.com/models/MODEL_ID" \
  -F "file=@/path/to/image.jpg" \
  -F "imgsz=640" \
  -F "conf=0.25" \
  -F "iou=0.45"
import requests

# API URL
url = "https://predict.ultralytics.com"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (use actual MODEL_ID)
data = {"model": "https://hub.ultralytics.com/models/MODEL_ID", "imgsz": 640, "conf": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"file": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  "images": [
    {
      "results": [
        {
          "class": 0,
          "name": "person",
          "confidence": 0.92
        }
      ],
      "shape": [
        750,
        600
      ],
      "speed": {
        "inference": 200.8,
        "postprocess": 0.8,
        "preprocess": 2.8
      }
    }
  ],
  "metadata": ...
}

Deteção

Modelo de deteção

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].to_json())
curl -X POST "https://predict.ultralytics.com" \
  -H "x-api-key: API_KEY" \
  -F "model=https://hub.ultralytics.com/models/MODEL_ID" \
  -F "file=@/path/to/image.jpg" \
  -F "imgsz=640" \
  -F "conf=0.25" \
  -F "iou=0.45"
import requests

# API URL
url = "https://predict.ultralytics.com"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (use actual MODEL_ID)
data = {"model": "https://hub.ultralytics.com/models/MODEL_ID", "imgsz": 640, "conf": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"file": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  "images": [
    {
      "results": [
        {
          "class": 0,
          "name": "person",
          "confidence": 0.92,
          "box": {
            "x1": 118,
            "x2": 416,
            "y1": 112,
            "y2": 660
          }
        }
      ],
      "shape": [
        750,
        600
      ],
      "speed": {
        "inference": 200.8,
        "postprocess": 0.8,
        "preprocess": 2.8
      }
    }
  ],
  "metadata": ...
}

OBB

Modelo OBB

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-obb.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://predict.ultralytics.com" \
  -H "x-api-key: API_KEY" \
  -F "model=https://hub.ultralytics.com/models/MODEL_ID" \
  -F "file=@/path/to/image.jpg" \
  -F "imgsz=640" \
  -F "conf=0.25" \
  -F "iou=0.45"
import requests

# API URL
url = "https://predict.ultralytics.com"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (use actual MODEL_ID)
data = {"model": "https://hub.ultralytics.com/models/MODEL_ID", "imgsz": 640, "conf": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"file": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  "images": [
    {
      "results": [
        {
          "class": 0,
          "name": "person",
          "confidence": 0.92,
          "box": {
            "x1": 374.85565,
            "x2": 392.31824,
            "x3": 412.81805,
            "x4": 395.35547,
            "y1": 264.40704,
            "y2": 267.45728,
            "y3": 150.0966,
            "y4": 147.04634
          }
        }
      ],
      "shape": [
        750,
        600
      ],
      "speed": {
        "inference": 200.8,
        "postprocess": 0.8,
        "preprocess": 2.8
      }
    }
  ],
  "metadata": ...
}

Segmentação

Modelo de segmentação

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-seg.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://predict.ultralytics.com" \
  -H "x-api-key: API_KEY" \
  -F "model=https://hub.ultralytics.com/models/MODEL_ID" \
  -F "file=@/path/to/image.jpg" \
  -F "imgsz=640" \
  -F "conf=0.25" \
  -F "iou=0.45"
import requests

# API URL
url = "https://predict.ultralytics.com"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (use actual MODEL_ID)
data = {"model": "https://hub.ultralytics.com/models/MODEL_ID", "imgsz": 640, "conf": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"file": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  "images": [
    {
      "results": [
        {
          "class": 0,
          "name": "person",
          "confidence": 0.92,
          "box": {
            "x1": 118,
            "x2": 416,
            "y1": 112,
            "y2": 660
          },
          "segments": {
            "x": [
              266.015625,
              266.015625,
              258.984375,
              ...
            ],
            "y": [
              110.15625,
              113.67188262939453,
              120.70311737060547,
              ...
            ]
          }
        }
      ],
      "shape": [
        750,
        600
      ],
      "speed": {
        "inference": 200.8,
        "postprocess": 0.8,
        "preprocess": 2.8
      }
    }
  ],
  "metadata": ...
}

Pose

Modelo de pose

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-pose.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://predict.ultralytics.com" \
  -H "x-api-key: API_KEY" \
  -F "model=https://hub.ultralytics.com/models/MODEL_ID" \
  -F "file=@/path/to/image.jpg" \
  -F "imgsz=640" \
  -F "conf=0.25" \
  -F "iou=0.45"
import requests

# API URL
url = "https://predict.ultralytics.com"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (use actual MODEL_ID)
data = {"model": "https://hub.ultralytics.com/models/MODEL_ID", "imgsz": 640, "conf": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"file": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  "images": [
    {
      "results": [
        {
          "class": 0,
          "name": "person",
          "confidence": 0.92,
          "box": {
            "x1": 118,
            "x2": 416,
            "y1": 112,
            "y2": 660
          },
          "keypoints": {
            "visible": [
              0.9909399747848511,
              0.8162999749183655,
              0.9872099757194519,
              ...
            ],
            "x": [
              316.3871765136719,
              315.9374694824219,
              304.878173828125,
              ...
            ],
            "y": [
              156.4207763671875,
              148.05775451660156,
              144.93240356445312,
              ...
            ]
          }
        }
      ],
      "shape": [
        750,
        600
      ],
      "speed": {
        "inference": 200.8,
        "postprocess": 0.8,
        "preprocess": 2.8
      }
    }
  ],
  "metadata": ...
}
📅C riado há 1 ano ✏️ Atualizado há 6 dias

Comentários