Salta para o conteúdo

Referência para ultralytics/data/converter.py

Nota

Este ficheiro está disponível em https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/data/converter .py. Se detectares um problema, por favor ajuda a corrigi-lo contribuindo com um Pull Request 🛠️. Obrigado 🙏!



ultralytics.data.converter.coco91_to_coco80_class()

Converte IDs de classe COCO de 91 índices em IDs de classe COCO de 80 índices.

Devolve:

Tipo Descrição
list

Uma lista de 91 IDs de classe em que o índice representa o ID de classe de 80 índices e o valor é o ID de classe de 91 índices correspondente. ID de classe de 91 índices correspondente.

Código fonte em ultralytics/data/converter.py
def coco91_to_coco80_class():
    """
    Converts 91-index COCO class IDs to 80-index COCO class IDs.

    Returns:
        (list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the
            corresponding 91-index class ID.
    """
    return [
        0,
        1,
        2,
        3,
        4,
        5,
        6,
        7,
        8,
        9,
        10,
        None,
        11,
        12,
        13,
        14,
        15,
        16,
        17,
        18,
        19,
        20,
        21,
        22,
        23,
        None,
        24,
        25,
        None,
        None,
        26,
        27,
        28,
        29,
        30,
        31,
        32,
        33,
        34,
        35,
        36,
        37,
        38,
        39,
        None,
        40,
        41,
        42,
        43,
        44,
        45,
        46,
        47,
        48,
        49,
        50,
        51,
        52,
        53,
        54,
        55,
        56,
        57,
        58,
        59,
        None,
        60,
        None,
        None,
        61,
        None,
        62,
        63,
        64,
        65,
        66,
        67,
        68,
        69,
        70,
        71,
        72,
        None,
        73,
        74,
        75,
        76,
        77,
        78,
        79,
        None,
    ]



ultralytics.data.converter.coco80_to_coco91_class()

Converts 80-index (val2014) to 91-index (paper).
For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/.

Example:
    ```python
    import numpy as np

    a = np.loadtxt('data/coco.names', dtype='str', delimiter='

') b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter=' ') x1 = [list(list(a[i] == b).index(True) + 1 for i in range(80)] # darknet para coco x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # darknet to coco # coco para darknet ```

Código fonte em ultralytics/data/converter.py
def coco80_to_coco91_class():
    """
    Converts 80-index (val2014) to 91-index (paper).
    For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/.

    Example:
        ```python
        import numpy as np

        a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
        b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
        x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco
        x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknet
        ```
    """
    return [
        1,
        2,
        3,
        4,
        5,
        6,
        7,
        8,
        9,
        10,
        11,
        13,
        14,
        15,
        16,
        17,
        18,
        19,
        20,
        21,
        22,
        23,
        24,
        25,
        27,
        28,
        31,
        32,
        33,
        34,
        35,
        36,
        37,
        38,
        39,
        40,
        41,
        42,
        43,
        44,
        46,
        47,
        48,
        49,
        50,
        51,
        52,
        53,
        54,
        55,
        56,
        57,
        58,
        59,
        60,
        61,
        62,
        63,
        64,
        65,
        67,
        70,
        72,
        73,
        74,
        75,
        76,
        77,
        78,
        79,
        80,
        81,
        82,
        84,
        85,
        86,
        87,
        88,
        89,
        90,
    ]



ultralytics.data.converter.convert_coco(labels_dir='../coco/annotations/', save_dir='coco_converted/', use_segments=False, use_keypoints=False, cls91to80=True)

Converte as anotações do conjunto de dados COCO para um formato de anotação YOLO adequado para treinar modelos YOLO .

Parâmetros:

Nome Tipo Descrição Predefinição
labels_dir str

Caminho para o diretório que contém os ficheiros de anotação do conjunto de dados COCO.

'../coco/annotations/'
save_dir str

Caminho para o diretório onde guardar os resultados.

'coco_converted/'
use_segments bool

Se queres incluir máscaras de segmentação na saída.

False
use_keypoints bool

Se inclui anotações de pontos-chave na saída.

False
cls91to80 bool

Se mapeia 91 IDs de classe COCO para os correspondentes 80 IDs de classe COCO.

True
Exemplo
from ultralytics.data.converter import convert_coco

convert_coco('../datasets/coco/annotations/', use_segments=True, use_keypoints=False, cls91to80=True)
Saída

Gera arquivos de saída no diretório de saída especificado.

Código fonte em ultralytics/data/converter.py
def convert_coco(
    labels_dir="../coco/annotations/",
    save_dir="coco_converted/",
    use_segments=False,
    use_keypoints=False,
    cls91to80=True,
):
    """
    Converts COCO dataset annotations to a YOLO annotation format  suitable for training YOLO models.

    Args:
        labels_dir (str, optional): Path to directory containing COCO dataset annotation files.
        save_dir (str, optional): Path to directory to save results to.
        use_segments (bool, optional): Whether to include segmentation masks in the output.
        use_keypoints (bool, optional): Whether to include keypoint annotations in the output.
        cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs.

    Example:
        ```python
        from ultralytics.data.converter import convert_coco

        convert_coco('../datasets/coco/annotations/', use_segments=True, use_keypoints=False, cls91to80=True)
        ```

    Output:
        Generates output files in the specified output directory.
    """

    # Create dataset directory
    save_dir = increment_path(save_dir)  # increment if save directory already exists
    for p in save_dir / "labels", save_dir / "images":
        p.mkdir(parents=True, exist_ok=True)  # make dir

    # Convert classes
    coco80 = coco91_to_coco80_class()

    # Import json
    for json_file in sorted(Path(labels_dir).resolve().glob("*.json")):
        fn = Path(save_dir) / "labels" / json_file.stem.replace("instances_", "")  # folder name
        fn.mkdir(parents=True, exist_ok=True)
        with open(json_file) as f:
            data = json.load(f)

        # Create image dict
        images = {f'{x["id"]:d}': x for x in data["images"]}
        # Create image-annotations dict
        imgToAnns = defaultdict(list)
        for ann in data["annotations"]:
            imgToAnns[ann["image_id"]].append(ann)

        # Write labels file
        for img_id, anns in TQDM(imgToAnns.items(), desc=f"Annotations {json_file}"):
            img = images[f"{img_id:d}"]
            h, w, f = img["height"], img["width"], img["file_name"]

            bboxes = []
            segments = []
            keypoints = []
            for ann in anns:
                if ann["iscrowd"]:
                    continue
                # The COCO box format is [top left x, top left y, width, height]
                box = np.array(ann["bbox"], dtype=np.float64)
                box[:2] += box[2:] / 2  # xy top-left corner to center
                box[[0, 2]] /= w  # normalize x
                box[[1, 3]] /= h  # normalize y
                if box[2] <= 0 or box[3] <= 0:  # if w <= 0 and h <= 0
                    continue

                cls = coco80[ann["category_id"] - 1] if cls91to80 else ann["category_id"] - 1  # class
                box = [cls] + box.tolist()
                if box not in bboxes:
                    bboxes.append(box)
                    if use_segments and ann.get("segmentation") is not None:
                        if len(ann["segmentation"]) == 0:
                            segments.append([])
                            continue
                        elif len(ann["segmentation"]) > 1:
                            s = merge_multi_segment(ann["segmentation"])
                            s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist()
                        else:
                            s = [j for i in ann["segmentation"] for j in i]  # all segments concatenated
                            s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist()
                        s = [cls] + s
                        segments.append(s)
                    if use_keypoints and ann.get("keypoints") is not None:
                        keypoints.append(
                            box + (np.array(ann["keypoints"]).reshape(-1, 3) / np.array([w, h, 1])).reshape(-1).tolist()
                        )

            # Write
            with open((fn / f).with_suffix(".txt"), "a") as file:
                for i in range(len(bboxes)):
                    if use_keypoints:
                        line = (*(keypoints[i]),)  # cls, box, keypoints
                    else:
                        line = (
                            *(segments[i] if use_segments and len(segments[i]) > 0 else bboxes[i]),
                        )  # cls, box or segments
                    file.write(("%g " * len(line)).rstrip() % line + "\n")

    LOGGER.info(f"COCO data converted successfully.\nResults saved to {save_dir.resolve()}")



ultralytics.data.converter.convert_dota_to_yolo_obb(dota_root_path)

Converte as anotações do conjunto de dados DOTA para o formato YOLO OBB (Oriented Bounding Box).

A função processa imagens nas pastas 'train' e 'val' do conjunto de dados DOTA. Para cada imagem, lê a etiqueta associada lê a etiqueta associada a partir do diretório de etiquetas original e escreve novas etiquetas no formato YOLO OBB para um novo diretório.

Parâmetros:

Nome Tipo Descrição Predefinição
dota_root_path str

O caminho do diretório raiz do conjunto de dados DOTA.

necessário
Exemplo
from ultralytics.data.converter import convert_dota_to_yolo_obb

convert_dota_to_yolo_obb('path/to/DOTA')
Notas

A estrutura de directórios assumida para o conjunto de dados DOTA:

- DOTA
    ├─ images
    │   ├─ train
    │   └─ val
    └─ labels
        ├─ train_original
        └─ val_original

Após a execução, a função organizará as etiquetas em:

- DOTA
    └─ labels
        ├─ train
        └─ val
Código fonte em ultralytics/data/converter.py
def convert_dota_to_yolo_obb(dota_root_path: str):
    """
    Converts DOTA dataset annotations to YOLO OBB (Oriented Bounding Box) format.

    The function processes images in the 'train' and 'val' folders of the DOTA dataset. For each image, it reads the
    associated label from the original labels directory and writes new labels in YOLO OBB format to a new directory.

    Args:
        dota_root_path (str): The root directory path of the DOTA dataset.

    Example:
        ```python
        from ultralytics.data.converter import convert_dota_to_yolo_obb

        convert_dota_to_yolo_obb('path/to/DOTA')
        ```

    Notes:
        The directory structure assumed for the DOTA dataset:

            - DOTA
                ├─ images
                │   ├─ train
                │   └─ val
                └─ labels
                    ├─ train_original
                    └─ val_original

        After execution, the function will organize the labels into:

            - DOTA
                └─ labels
                    ├─ train
                    └─ val
    """
    dota_root_path = Path(dota_root_path)

    # Class names to indices mapping
    class_mapping = {
        "plane": 0,
        "ship": 1,
        "storage-tank": 2,
        "baseball-diamond": 3,
        "tennis-court": 4,
        "basketball-court": 5,
        "ground-track-field": 6,
        "harbor": 7,
        "bridge": 8,
        "large-vehicle": 9,
        "small-vehicle": 10,
        "helicopter": 11,
        "roundabout": 12,
        "soccer-ball-field": 13,
        "swimming-pool": 14,
        "container-crane": 15,
        "airport": 16,
        "helipad": 17,
    }

    def convert_label(image_name, image_width, image_height, orig_label_dir, save_dir):
        """Converts a single image's DOTA annotation to YOLO OBB format and saves it to a specified directory."""
        orig_label_path = orig_label_dir / f"{image_name}.txt"
        save_path = save_dir / f"{image_name}.txt"

        with orig_label_path.open("r") as f, save_path.open("w") as g:
            lines = f.readlines()
            for line in lines:
                parts = line.strip().split()
                if len(parts) < 9:
                    continue
                class_name = parts[8]
                class_idx = class_mapping[class_name]
                coords = [float(p) for p in parts[:8]]
                normalized_coords = [
                    coords[i] / image_width if i % 2 == 0 else coords[i] / image_height for i in range(8)
                ]
                formatted_coords = ["{:.6g}".format(coord) for coord in normalized_coords]
                g.write(f"{class_idx} {' '.join(formatted_coords)}\n")

    for phase in ["train", "val"]:
        image_dir = dota_root_path / "images" / phase
        orig_label_dir = dota_root_path / "labels" / f"{phase}_original"
        save_dir = dota_root_path / "labels" / phase

        save_dir.mkdir(parents=True, exist_ok=True)

        image_paths = list(image_dir.iterdir())
        for image_path in TQDM(image_paths, desc=f"Processing {phase} images"):
            if image_path.suffix != ".png":
                continue
            image_name_without_ext = image_path.stem
            img = cv2.imread(str(image_path))
            h, w = img.shape[:2]
            convert_label(image_name_without_ext, w, h, orig_label_dir, save_dir)



ultralytics.data.converter.min_index(arr1, arr2)

Encontra um par de índices com a distância mais curta entre duas matrizes de pontos 2D.

Parâmetros:

Nome Tipo Descrição Predefinição
arr1 ndarray

Uma matriz NumPy de forma (N, 2) que representa N pontos 2D.

necessário
arr2 ndarray

Uma matriz NumPy de forma (M, 2) que representa M pontos 2D.

necessário

Devolve:

Tipo Descrição
tuple

Uma tupla que contém os índices dos pontos com a distância mais curta em arr1 e arr2, respetivamente.

Código fonte em ultralytics/data/converter.py
def min_index(arr1, arr2):
    """
    Find a pair of indexes with the shortest distance between two arrays of 2D points.

    Args:
        arr1 (np.ndarray): A NumPy array of shape (N, 2) representing N 2D points.
        arr2 (np.ndarray): A NumPy array of shape (M, 2) representing M 2D points.

    Returns:
        (tuple): A tuple containing the indexes of the points with the shortest distance in arr1 and arr2 respectively.
    """
    dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1)
    return np.unravel_index(np.argmin(dis, axis=None), dis.shape)



ultralytics.data.converter.merge_multi_segment(segments)

Junta vários segmentos numa lista, ligando as coordenadas com a distância mínima entre cada segmento. Esta função liga estas coordenadas com uma linha fina para fundir todos os segmentos num só.

Parâmetros:

Nome Tipo Descrição Predefinição
segments List[List]

Segmentações originais no ficheiro JSON do COCO. Cada elemento é uma lista de coordenadas, como [segmentação1, segmentação2,...].

necessário

Devolve:

Nome Tipo Descrição
s List[ndarray]

Uma lista de segmentos ligados representados como matrizes NumPy.

Código fonte em ultralytics/data/converter.py
def merge_multi_segment(segments):
    """
    Merge multiple segments into one list by connecting the coordinates with the minimum distance between each segment.
    This function connects these coordinates with a thin line to merge all segments into one.

    Args:
        segments (List[List]): Original segmentations in COCO's JSON file.
                               Each element is a list of coordinates, like [segmentation1, segmentation2,...].

    Returns:
        s (List[np.ndarray]): A list of connected segments represented as NumPy arrays.
    """
    s = []
    segments = [np.array(i).reshape(-1, 2) for i in segments]
    idx_list = [[] for _ in range(len(segments))]

    # Record the indexes with min distance between each segment
    for i in range(1, len(segments)):
        idx1, idx2 = min_index(segments[i - 1], segments[i])
        idx_list[i - 1].append(idx1)
        idx_list[i].append(idx2)

    # Use two round to connect all the segments
    for k in range(2):
        # Forward connection
        if k == 0:
            for i, idx in enumerate(idx_list):
                # Middle segments have two indexes, reverse the index of middle segments
                if len(idx) == 2 and idx[0] > idx[1]:
                    idx = idx[::-1]
                    segments[i] = segments[i][::-1, :]

                segments[i] = np.roll(segments[i], -idx[0], axis=0)
                segments[i] = np.concatenate([segments[i], segments[i][:1]])
                # Deal with the first segment and the last one
                if i in [0, len(idx_list) - 1]:
                    s.append(segments[i])
                else:
                    idx = [0, idx[1] - idx[0]]
                    s.append(segments[i][idx[0] : idx[1] + 1])

        else:
            for i in range(len(idx_list) - 1, -1, -1):
                if i not in [0, len(idx_list) - 1]:
                    idx = idx_list[i]
                    nidx = abs(idx[1] - idx[0])
                    s.append(segments[i][nidx:])
    return s



ultralytics.data.converter.yolo_bbox2segment(im_dir, save_dir=None, sam_model='sam_b.pt')

Converte o conjunto de dados de deteção de objectos existente (caixas delimitadoras) em conjunto de dados de segmentação ou caixa delimitadora orientada (OBB) no formato YOLO . Gera dados de segmentação utilizando o auto-anotador SAM , conforme necessário.

Parâmetros:

Nome Tipo Descrição Predefinição
im_dir str | Path

Caminho para o diretório de imagens a converter.

necessário
save_dir str | Path

Caminho para guardar as etiquetas geradas, as etiquetas serão guardadas em labels-segment no mesmo nível de diretório de im_dir se save_dir for None. Predefinição: None.

None
sam_model str

Modelo de segmentação a utilizar para dados de segmentação intermédios; opcional.

'sam_b.pt'
Notas

A estrutura do diretório de entrada assumida para o conjunto de dados:

- im_dir
    ├─ 001.jpg
    ├─ ..
    └─ NNN.jpg
- labels
    ├─ 001.txt
    ├─ ..
    └─ NNN.txt
Código fonte em ultralytics/data/converter.py
def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"):
    """
    Converts existing object detection dataset (bounding boxes) to segmentation dataset or oriented bounding box (OBB)
    in YOLO format. Generates segmentation data using SAM auto-annotator as needed.

    Args:
        im_dir (str | Path): Path to image directory to convert.
        save_dir (str | Path): Path to save the generated labels, labels will be saved
            into `labels-segment` in the same directory level of `im_dir` if save_dir is None. Default: None.
        sam_model (str): Segmentation model to use for intermediate segmentation data; optional.

    Notes:
        The input directory structure assumed for dataset:

            - im_dir
                ├─ 001.jpg
                ├─ ..
                └─ NNN.jpg
            - labels
                ├─ 001.txt
                ├─ ..
                └─ NNN.txt
    """
    from ultralytics.data import YOLODataset
    from ultralytics.utils.ops import xywh2xyxy
    from ultralytics.utils import LOGGER
    from ultralytics import SAM
    from tqdm import tqdm

    # NOTE: add placeholder to pass class index check
    dataset = YOLODataset(im_dir, data=dict(names=list(range(1000))))
    if len(dataset.labels[0]["segments"]) > 0:  # if it's segment data
        LOGGER.info("Segmentation labels detected, no need to generate new ones!")
        return

    LOGGER.info("Detection labels detected, generating segment labels by SAM model!")
    sam_model = SAM(sam_model)
    for l in tqdm(dataset.labels, total=len(dataset.labels), desc="Generating segment labels"):
        h, w = l["shape"]
        boxes = l["bboxes"]
        if len(boxes) == 0:  # skip empty labels
            continue
        boxes[:, [0, 2]] *= w
        boxes[:, [1, 3]] *= h
        im = cv2.imread(l["im_file"])
        sam_results = sam_model(im, bboxes=xywh2xyxy(boxes), verbose=False, save=False)
        l["segments"] = sam_results[0].masks.xyn

    save_dir = Path(save_dir) if save_dir else Path(im_dir).parent / "labels-segment"
    save_dir.mkdir(parents=True, exist_ok=True)
    for l in dataset.labels:
        texts = []
        lb_name = Path(l["im_file"]).with_suffix(".txt").name
        txt_file = save_dir / lb_name
        cls = l["cls"]
        for i, s in enumerate(l["segments"]):
            line = (int(cls[i]), *s.reshape(-1))
            texts.append(("%g " * len(line)).rstrip() % line)
        if texts:
            with open(txt_file, "a") as f:
                f.writelines(text + "\n" for text in texts)
    LOGGER.info(f"Generated segment labels saved in {save_dir}")





Criado em 2023-11-12, Atualizado em 2024-01-23
Autores: glenn-jocher (4), Laughing-q (1)