Salta para o conteúdo

Referência para ultralytics/trackers/utils/gmc.py

Nota

Este ficheiro está disponível em https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/trackers/utils/gmc .py. Se detectares um problema, por favor ajuda a corrigi-lo contribuindo com um Pull Request 🛠️. Obrigado 🙏!



ultralytics.trackers.utils.gmc.GMC

Classe Generalized Motion Compensation (GMC) para rastreio e deteção de objectos em quadros de vídeo.

Esta classe fornece métodos para rastrear e detetar objectos com base em vários algoritmos de rastreio, incluindo ORB, SIFT, ECC e Sparse Optical Flow. Também suporta o downscaling de fotogramas para eficiência computacional.

Atributos:

Nome Tipo Descrição
method str

O método utilizado para o rastreio. As opções incluem 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.

downscale int

Fator pelo qual reduz a escala dos fotogramas para processamento.

prevFrame ndarray

Armazena o quadro anterior para rastreamento.

prevKeyPoints list

Armazena os pontos-chave do quadro anterior.

prevDescriptors ndarray

Armazena os descritores do quadro anterior.

initializedFirstFrame bool

Marca para indicar se o primeiro fotograma foi processado.

Métodos:

Nome Descrição
__init__

Inicializa um objeto GMC com o método especificado e fator de redução de escala.

apply

Aplica o método escolhido a um fotograma em bruto e, opcionalmente, utiliza detecções fornecidas.

applyEcc

Aplica o algoritmo ECC a um quadro bruto.

applyFeatures

Aplica métodos baseados em características, como ORB ou SIFT, a um quadro bruto.

applySparseOptFlow

Aplica o método Sparse Optical Flow a um quadro bruto.

Código fonte em ultralytics/trackers/utils/gmc.py
class GMC:
    """
    Generalized Motion Compensation (GMC) class for tracking and object detection in video frames.

    This class provides methods for tracking and detecting objects based on several tracking algorithms including ORB,
    SIFT, ECC, and Sparse Optical Flow. It also supports downscaling of frames for computational efficiency.

    Attributes:
        method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
        downscale (int): Factor by which to downscale the frames for processing.
        prevFrame (np.ndarray): Stores the previous frame for tracking.
        prevKeyPoints (list): Stores the keypoints from the previous frame.
        prevDescriptors (np.ndarray): Stores the descriptors from the previous frame.
        initializedFirstFrame (bool): Flag to indicate if the first frame has been processed.

    Methods:
        __init__(self, method='sparseOptFlow', downscale=2): Initializes a GMC object with the specified method
                                                              and downscale factor.
        apply(self, raw_frame, detections=None): Applies the chosen method to a raw frame and optionally uses
                                                 provided detections.
        applyEcc(self, raw_frame, detections=None): Applies the ECC algorithm to a raw frame.
        applyFeatures(self, raw_frame, detections=None): Applies feature-based methods like ORB or SIFT to a raw frame.
        applySparseOptFlow(self, raw_frame, detections=None): Applies the Sparse Optical Flow method to a raw frame.
    """

    def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None:
        """
        Initialize a video tracker with specified parameters.

        Args:
            method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
            downscale (int): Downscale factor for processing frames.
        """
        super().__init__()

        self.method = method
        self.downscale = max(1, int(downscale))

        if self.method == "orb":
            self.detector = cv2.FastFeatureDetector_create(20)
            self.extractor = cv2.ORB_create()
            self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)

        elif self.method == "sift":
            self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
            self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
            self.matcher = cv2.BFMatcher(cv2.NORM_L2)

        elif self.method == "ecc":
            number_of_iterations = 5000
            termination_eps = 1e-6
            self.warp_mode = cv2.MOTION_EUCLIDEAN
            self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)

        elif self.method == "sparseOptFlow":
            self.feature_params = dict(
                maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04
            )

        elif self.method in {"none", "None", None}:
            self.method = None
        else:
            raise ValueError(f"Error: Unknown GMC method:{method}")

        self.prevFrame = None
        self.prevKeyPoints = None
        self.prevDescriptors = None
        self.initializedFirstFrame = False

    def apply(self, raw_frame: np.array, detections: list = None) -> np.array:
        """
        Apply object detection on a raw frame using specified method.

        Args:
            raw_frame (np.ndarray): The raw frame to be processed.
            detections (list): List of detections to be used in the processing.

        Returns:
            (np.ndarray): Processed frame.

        Examples:
            >>> gmc = GMC()
            >>> gmc.apply(np.array([[1, 2, 3], [4, 5, 6]]))
            array([[1, 2, 3],
                   [4, 5, 6]])
        """
        if self.method in ["orb", "sift"]:
            return self.applyFeatures(raw_frame, detections)
        elif self.method == "ecc":
            return self.applyEcc(raw_frame)
        elif self.method == "sparseOptFlow":
            return self.applySparseOptFlow(raw_frame)
        else:
            return np.eye(2, 3)

    def applyEcc(self, raw_frame: np.array) -> np.array:
        """
        Apply ECC algorithm to a raw frame.

        Args:
            raw_frame (np.ndarray): The raw frame to be processed.

        Returns:
            (np.ndarray): Processed frame.

        Examples:
            >>> gmc = GMC()
            >>> gmc.applyEcc(np.array([[1, 2, 3], [4, 5, 6]]))
            array([[1, 2, 3],
                   [4, 5, 6]])
        """
        height, width, _ = raw_frame.shape
        frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
        H = np.eye(2, 3, dtype=np.float32)

        # Downscale image
        if self.downscale > 1.0:
            frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
            frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
            width = width // self.downscale
            height = height // self.downscale

        # Handle first frame
        if not self.initializedFirstFrame:
            # Initialize data
            self.prevFrame = frame.copy()

            # Initialization done
            self.initializedFirstFrame = True

            return H

        # Run the ECC algorithm. The results are stored in warp_matrix.
        # (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria)
        try:
            (_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
        except Exception as e:
            LOGGER.warning(f"WARNING: find transform failed. Set warp as identity {e}")

        return H

    def applyFeatures(self, raw_frame: np.array, detections: list = None) -> np.array:
        """
        Apply feature-based methods like ORB or SIFT to a raw frame.

        Args:
            raw_frame (np.ndarray): The raw frame to be processed.
            detections (list): List of detections to be used in the processing.

        Returns:
            (np.ndarray): Processed frame.

        Examples:
            >>> gmc = GMC()
            >>> gmc.applyFeatures(np.array([[1, 2, 3], [4, 5, 6]]))
            array([[1, 2, 3],
                   [4, 5, 6]])
        """
        height, width, _ = raw_frame.shape
        frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
        H = np.eye(2, 3)

        # Downscale image
        if self.downscale > 1.0:
            frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
            width = width // self.downscale
            height = height // self.downscale

        # Find the keypoints
        mask = np.zeros_like(frame)
        mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255
        if detections is not None:
            for det in detections:
                tlbr = (det[:4] / self.downscale).astype(np.int_)
                mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0

        keypoints = self.detector.detect(frame, mask)

        # Compute the descriptors
        keypoints, descriptors = self.extractor.compute(frame, keypoints)

        # Handle first frame
        if not self.initializedFirstFrame:
            # Initialize data
            self.prevFrame = frame.copy()
            self.prevKeyPoints = copy.copy(keypoints)
            self.prevDescriptors = copy.copy(descriptors)

            # Initialization done
            self.initializedFirstFrame = True

            return H

        # Match descriptors
        knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)

        # Filter matches based on smallest spatial distance
        matches = []
        spatialDistances = []

        maxSpatialDistance = 0.25 * np.array([width, height])

        # Handle empty matches case
        if len(knnMatches) == 0:
            # Store to next iteration
            self.prevFrame = frame.copy()
            self.prevKeyPoints = copy.copy(keypoints)
            self.prevDescriptors = copy.copy(descriptors)

            return H

        for m, n in knnMatches:
            if m.distance < 0.9 * n.distance:
                prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
                currKeyPointLocation = keypoints[m.trainIdx].pt

                spatialDistance = (
                    prevKeyPointLocation[0] - currKeyPointLocation[0],
                    prevKeyPointLocation[1] - currKeyPointLocation[1],
                )

                if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and (
                    np.abs(spatialDistance[1]) < maxSpatialDistance[1]
                ):
                    spatialDistances.append(spatialDistance)
                    matches.append(m)

        meanSpatialDistances = np.mean(spatialDistances, 0)
        stdSpatialDistances = np.std(spatialDistances, 0)

        inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances

        goodMatches = []
        prevPoints = []
        currPoints = []
        for i in range(len(matches)):
            if inliers[i, 0] and inliers[i, 1]:
                goodMatches.append(matches[i])
                prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)
                currPoints.append(keypoints[matches[i].trainIdx].pt)

        prevPoints = np.array(prevPoints)
        currPoints = np.array(currPoints)

        # Draw the keypoint matches on the output image
        # if False:
        #     import matplotlib.pyplot as plt
        #     matches_img = np.hstack((self.prevFrame, frame))
        #     matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR)
        #     W = self.prevFrame.shape[1]
        #     for m in goodMatches:
        #         prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_)
        #         curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_)
        #         curr_pt[0] += W
        #         color = np.random.randint(0, 255, 3)
        #         color = (int(color[0]), int(color[1]), int(color[2]))
        #
        #         matches_img = cv2.line(matches_img, prev_pt, curr_pt, tuple(color), 1, cv2.LINE_AA)
        #         matches_img = cv2.circle(matches_img, prev_pt, 2, tuple(color), -1)
        #         matches_img = cv2.circle(matches_img, curr_pt, 2, tuple(color), -1)
        #
        #     plt.figure()
        #     plt.imshow(matches_img)
        #     plt.show()

        # Find rigid matrix
        if prevPoints.shape[0] > 4:
            H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)

            # Handle downscale
            if self.downscale > 1.0:
                H[0, 2] *= self.downscale
                H[1, 2] *= self.downscale
        else:
            LOGGER.warning("WARNING: not enough matching points")

        # Store to next iteration
        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)
        self.prevDescriptors = copy.copy(descriptors)

        return H

    def applySparseOptFlow(self, raw_frame: np.array) -> np.array:
        """
        Apply Sparse Optical Flow method to a raw frame.

        Args:
            raw_frame (np.ndarray): The raw frame to be processed.

        Returns:
            (np.ndarray): Processed frame.

        Examples:
            >>> gmc = GMC()
            >>> gmc.applySparseOptFlow(np.array([[1, 2, 3], [4, 5, 6]]))
            array([[1, 2, 3],
                   [4, 5, 6]])
        """
        height, width, _ = raw_frame.shape
        frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
        H = np.eye(2, 3)

        # Downscale image
        if self.downscale > 1.0:
            frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))

        # Find the keypoints
        keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params)

        # Handle first frame
        if not self.initializedFirstFrame:
            self.prevFrame = frame.copy()
            self.prevKeyPoints = copy.copy(keypoints)
            self.initializedFirstFrame = True
            return H

        # Find correspondences
        matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)

        # Leave good correspondences only
        prevPoints = []
        currPoints = []

        for i in range(len(status)):
            if status[i]:
                prevPoints.append(self.prevKeyPoints[i])
                currPoints.append(matchedKeypoints[i])

        prevPoints = np.array(prevPoints)
        currPoints = np.array(currPoints)

        # Find rigid matrix
        if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == prevPoints.shape[0]):
            H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)

            if self.downscale > 1.0:
                H[0, 2] *= self.downscale
                H[1, 2] *= self.downscale
        else:
            LOGGER.warning("WARNING: not enough matching points")

        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)

        return H

    def reset_params(self) -> None:
        """Reset parameters."""
        self.prevFrame = None
        self.prevKeyPoints = None
        self.prevDescriptors = None
        self.initializedFirstFrame = False

__init__(method='sparseOptFlow', downscale=2)

Inicializa um rastreador de vídeo com os parâmetros especificados.

Parâmetros:

Nome Tipo Descrição Predefinição
method str

O método utilizado para o rastreio. As opções incluem 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.

'sparseOptFlow'
downscale int

Fator de redução de escala para o processamento de fotogramas.

2
Código fonte em ultralytics/trackers/utils/gmc.py
def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None:
    """
    Initialize a video tracker with specified parameters.

    Args:
        method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
        downscale (int): Downscale factor for processing frames.
    """
    super().__init__()

    self.method = method
    self.downscale = max(1, int(downscale))

    if self.method == "orb":
        self.detector = cv2.FastFeatureDetector_create(20)
        self.extractor = cv2.ORB_create()
        self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)

    elif self.method == "sift":
        self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
        self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
        self.matcher = cv2.BFMatcher(cv2.NORM_L2)

    elif self.method == "ecc":
        number_of_iterations = 5000
        termination_eps = 1e-6
        self.warp_mode = cv2.MOTION_EUCLIDEAN
        self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)

    elif self.method == "sparseOptFlow":
        self.feature_params = dict(
            maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04
        )

    elif self.method in {"none", "None", None}:
        self.method = None
    else:
        raise ValueError(f"Error: Unknown GMC method:{method}")

    self.prevFrame = None
    self.prevKeyPoints = None
    self.prevDescriptors = None
    self.initializedFirstFrame = False

apply(raw_frame, detections=None)

Aplica a deteção de objectos a um fotograma em bruto utilizando o método especificado.

Parâmetros:

Nome Tipo Descrição Predefinição
raw_frame ndarray

O fotograma em bruto a ser processado.

necessário
detections list

Lista de detecções a utilizar no processamento.

None

Devolve:

Tipo Descrição
ndarray

Moldura processada.

Exemplos:

>>> gmc = GMC()
>>> gmc.apply(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
       [4, 5, 6]])
Código fonte em ultralytics/trackers/utils/gmc.py
def apply(self, raw_frame: np.array, detections: list = None) -> np.array:
    """
    Apply object detection on a raw frame using specified method.

    Args:
        raw_frame (np.ndarray): The raw frame to be processed.
        detections (list): List of detections to be used in the processing.

    Returns:
        (np.ndarray): Processed frame.

    Examples:
        >>> gmc = GMC()
        >>> gmc.apply(np.array([[1, 2, 3], [4, 5, 6]]))
        array([[1, 2, 3],
               [4, 5, 6]])
    """
    if self.method in ["orb", "sift"]:
        return self.applyFeatures(raw_frame, detections)
    elif self.method == "ecc":
        return self.applyEcc(raw_frame)
    elif self.method == "sparseOptFlow":
        return self.applySparseOptFlow(raw_frame)
    else:
        return np.eye(2, 3)

applyEcc(raw_frame)

Aplica o algoritmo ECC a um fotograma em bruto.

Parâmetros:

Nome Tipo Descrição Predefinição
raw_frame ndarray

O fotograma em bruto a ser processado.

necessário

Devolve:

Tipo Descrição
ndarray

Moldura processada.

Exemplos:

>>> gmc = GMC()
>>> gmc.applyEcc(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
       [4, 5, 6]])
Código fonte em ultralytics/trackers/utils/gmc.py
def applyEcc(self, raw_frame: np.array) -> np.array:
    """
    Apply ECC algorithm to a raw frame.

    Args:
        raw_frame (np.ndarray): The raw frame to be processed.

    Returns:
        (np.ndarray): Processed frame.

    Examples:
        >>> gmc = GMC()
        >>> gmc.applyEcc(np.array([[1, 2, 3], [4, 5, 6]]))
        array([[1, 2, 3],
               [4, 5, 6]])
    """
    height, width, _ = raw_frame.shape
    frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
    H = np.eye(2, 3, dtype=np.float32)

    # Downscale image
    if self.downscale > 1.0:
        frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
        frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
        width = width // self.downscale
        height = height // self.downscale

    # Handle first frame
    if not self.initializedFirstFrame:
        # Initialize data
        self.prevFrame = frame.copy()

        # Initialization done
        self.initializedFirstFrame = True

        return H

    # Run the ECC algorithm. The results are stored in warp_matrix.
    # (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria)
    try:
        (_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
    except Exception as e:
        LOGGER.warning(f"WARNING: find transform failed. Set warp as identity {e}")

    return H

applyFeatures(raw_frame, detections=None)

Aplica métodos baseados em características, como ORB ou SIFT, a um fotograma em bruto.

Parâmetros:

Nome Tipo Descrição Predefinição
raw_frame ndarray

O fotograma em bruto a ser processado.

necessário
detections list

Lista de detecções a utilizar no processamento.

None

Devolve:

Tipo Descrição
ndarray

Moldura processada.

Exemplos:

>>> gmc = GMC()
>>> gmc.applyFeatures(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
       [4, 5, 6]])
Código fonte em ultralytics/trackers/utils/gmc.py
def applyFeatures(self, raw_frame: np.array, detections: list = None) -> np.array:
    """
    Apply feature-based methods like ORB or SIFT to a raw frame.

    Args:
        raw_frame (np.ndarray): The raw frame to be processed.
        detections (list): List of detections to be used in the processing.

    Returns:
        (np.ndarray): Processed frame.

    Examples:
        >>> gmc = GMC()
        >>> gmc.applyFeatures(np.array([[1, 2, 3], [4, 5, 6]]))
        array([[1, 2, 3],
               [4, 5, 6]])
    """
    height, width, _ = raw_frame.shape
    frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
    H = np.eye(2, 3)

    # Downscale image
    if self.downscale > 1.0:
        frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
        width = width // self.downscale
        height = height // self.downscale

    # Find the keypoints
    mask = np.zeros_like(frame)
    mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255
    if detections is not None:
        for det in detections:
            tlbr = (det[:4] / self.downscale).astype(np.int_)
            mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0

    keypoints = self.detector.detect(frame, mask)

    # Compute the descriptors
    keypoints, descriptors = self.extractor.compute(frame, keypoints)

    # Handle first frame
    if not self.initializedFirstFrame:
        # Initialize data
        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)
        self.prevDescriptors = copy.copy(descriptors)

        # Initialization done
        self.initializedFirstFrame = True

        return H

    # Match descriptors
    knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)

    # Filter matches based on smallest spatial distance
    matches = []
    spatialDistances = []

    maxSpatialDistance = 0.25 * np.array([width, height])

    # Handle empty matches case
    if len(knnMatches) == 0:
        # Store to next iteration
        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)
        self.prevDescriptors = copy.copy(descriptors)

        return H

    for m, n in knnMatches:
        if m.distance < 0.9 * n.distance:
            prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
            currKeyPointLocation = keypoints[m.trainIdx].pt

            spatialDistance = (
                prevKeyPointLocation[0] - currKeyPointLocation[0],
                prevKeyPointLocation[1] - currKeyPointLocation[1],
            )

            if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and (
                np.abs(spatialDistance[1]) < maxSpatialDistance[1]
            ):
                spatialDistances.append(spatialDistance)
                matches.append(m)

    meanSpatialDistances = np.mean(spatialDistances, 0)
    stdSpatialDistances = np.std(spatialDistances, 0)

    inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances

    goodMatches = []
    prevPoints = []
    currPoints = []
    for i in range(len(matches)):
        if inliers[i, 0] and inliers[i, 1]:
            goodMatches.append(matches[i])
            prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)
            currPoints.append(keypoints[matches[i].trainIdx].pt)

    prevPoints = np.array(prevPoints)
    currPoints = np.array(currPoints)

    # Draw the keypoint matches on the output image
    # if False:
    #     import matplotlib.pyplot as plt
    #     matches_img = np.hstack((self.prevFrame, frame))
    #     matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR)
    #     W = self.prevFrame.shape[1]
    #     for m in goodMatches:
    #         prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_)
    #         curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_)
    #         curr_pt[0] += W
    #         color = np.random.randint(0, 255, 3)
    #         color = (int(color[0]), int(color[1]), int(color[2]))
    #
    #         matches_img = cv2.line(matches_img, prev_pt, curr_pt, tuple(color), 1, cv2.LINE_AA)
    #         matches_img = cv2.circle(matches_img, prev_pt, 2, tuple(color), -1)
    #         matches_img = cv2.circle(matches_img, curr_pt, 2, tuple(color), -1)
    #
    #     plt.figure()
    #     plt.imshow(matches_img)
    #     plt.show()

    # Find rigid matrix
    if prevPoints.shape[0] > 4:
        H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)

        # Handle downscale
        if self.downscale > 1.0:
            H[0, 2] *= self.downscale
            H[1, 2] *= self.downscale
    else:
        LOGGER.warning("WARNING: not enough matching points")

    # Store to next iteration
    self.prevFrame = frame.copy()
    self.prevKeyPoints = copy.copy(keypoints)
    self.prevDescriptors = copy.copy(descriptors)

    return H

applySparseOptFlow(raw_frame)

Aplica o método Sparse Optical Flow a um fotograma em bruto.

Parâmetros:

Nome Tipo Descrição Predefinição
raw_frame ndarray

O fotograma em bruto a ser processado.

necessário

Devolve:

Tipo Descrição
ndarray

Moldura processada.

Exemplos:

>>> gmc = GMC()
>>> gmc.applySparseOptFlow(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
       [4, 5, 6]])
Código fonte em ultralytics/trackers/utils/gmc.py
def applySparseOptFlow(self, raw_frame: np.array) -> np.array:
    """
    Apply Sparse Optical Flow method to a raw frame.

    Args:
        raw_frame (np.ndarray): The raw frame to be processed.

    Returns:
        (np.ndarray): Processed frame.

    Examples:
        >>> gmc = GMC()
        >>> gmc.applySparseOptFlow(np.array([[1, 2, 3], [4, 5, 6]]))
        array([[1, 2, 3],
               [4, 5, 6]])
    """
    height, width, _ = raw_frame.shape
    frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
    H = np.eye(2, 3)

    # Downscale image
    if self.downscale > 1.0:
        frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))

    # Find the keypoints
    keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params)

    # Handle first frame
    if not self.initializedFirstFrame:
        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)
        self.initializedFirstFrame = True
        return H

    # Find correspondences
    matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)

    # Leave good correspondences only
    prevPoints = []
    currPoints = []

    for i in range(len(status)):
        if status[i]:
            prevPoints.append(self.prevKeyPoints[i])
            currPoints.append(matchedKeypoints[i])

    prevPoints = np.array(prevPoints)
    currPoints = np.array(currPoints)

    # Find rigid matrix
    if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == prevPoints.shape[0]):
        H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)

        if self.downscale > 1.0:
            H[0, 2] *= self.downscale
            H[1, 2] *= self.downscale
    else:
        LOGGER.warning("WARNING: not enough matching points")

    self.prevFrame = frame.copy()
    self.prevKeyPoints = copy.copy(keypoints)

    return H

reset_params()

Repõe os parâmetros.

Código fonte em ultralytics/trackers/utils/gmc.py
def reset_params(self) -> None:
    """Reset parameters."""
    self.prevFrame = None
    self.prevKeyPoints = None
    self.prevDescriptors = None
    self.initializedFirstFrame = False





Criado em 2023-11-12, Atualizado em 2023-11-25
Autores: glenn-jocher (3)