Salta para o conteúdo

Referência para ultralytics/nn/tasks.py

Nota

Este ficheiro está disponível em https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/nn/tasks .py. Se encontrares um problema, por favor ajuda a corrigi-lo contribuindo com um Pull Request 🛠️. Obrigado 🙏!



ultralytics.nn.tasks.BaseModel

Bases: Module

A classe BaseModel serve como classe base para todos os modelos da família Ultralytics YOLO .

Código fonte em ultralytics/nn/tasks.py
class BaseModel(nn.Module):
    """The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family."""

    def forward(self, x, *args, **kwargs):
        """
        Forward pass of the model on a single scale. Wrapper for `_forward_once` method.

        Args:
            x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels.

        Returns:
            (torch.Tensor): The output of the network.
        """
        if isinstance(x, dict):  # for cases of training and validating while training.
            return self.loss(x, *args, **kwargs)
        return self.predict(x, *args, **kwargs)

    def predict(self, x, profile=False, visualize=False, augment=False, embed=None):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.
            augment (bool): Augment image during prediction, defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        if augment:
            return self._predict_augment(x)
        return self._predict_once(x, profile, visualize, embed)

    def _predict_once(self, x, profile=False, visualize=False, embed=None):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        return x

    def _predict_augment(self, x):
        """Perform augmentations on input image x and return augmented inference."""
        LOGGER.warning(
            f"WARNING ⚠️ {self.__class__.__name__} does not support augmented inference yet. "
            f"Reverting to single-scale inference instead."
        )
        return self._predict_once(x)

    def _profile_one_layer(self, m, x, dt):
        """
        Profile the computation time and FLOPs of a single layer of the model on a given input. Appends the results to
        the provided list.

        Args:
            m (nn.Module): The layer to be profiled.
            x (torch.Tensor): The input data to the layer.
            dt (list): A list to store the computation time of the layer.

        Returns:
            None
        """
        c = m == self.model[-1] and isinstance(x, list)  # is final layer list, copy input as inplace fix
        flops = thop.profile(m, inputs=[x.copy() if c else x], verbose=False)[0] / 1e9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")
        LOGGER.info(f"{dt[-1]:10.2f} {flops:10.2f} {m.np:10.0f}  {m.type}")
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    def fuse(self, verbose=True):
        """
        Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the
        computation efficiency.

        Returns:
            (nn.Module): The fused model is returned.
        """
        if not self.is_fused():
            for m in self.model.modules():
                if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, "bn"):
                    if isinstance(m, Conv2):
                        m.fuse_convs()
                    m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                    delattr(m, "bn")  # remove batchnorm
                    m.forward = m.forward_fuse  # update forward
                if isinstance(m, ConvTranspose) and hasattr(m, "bn"):
                    m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn)
                    delattr(m, "bn")  # remove batchnorm
                    m.forward = m.forward_fuse  # update forward
                if isinstance(m, RepConv):
                    m.fuse_convs()
                    m.forward = m.forward_fuse  # update forward
            self.info(verbose=verbose)

        return self

    def is_fused(self, thresh=10):
        """
        Check if the model has less than a certain threshold of BatchNorm layers.

        Args:
            thresh (int, optional): The threshold number of BatchNorm layers. Default is 10.

        Returns:
            (bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise.
        """
        bn = tuple(v for k, v in nn.__dict__.items() if "Norm" in k)  # normalization layers, i.e. BatchNorm2d()
        return sum(isinstance(v, bn) for v in self.modules()) < thresh  # True if < 'thresh' BatchNorm layers in model

    def info(self, detailed=False, verbose=True, imgsz=640):
        """
        Prints model information.

        Args:
            detailed (bool): if True, prints out detailed information about the model. Defaults to False
            verbose (bool): if True, prints out the model information. Defaults to False
            imgsz (int): the size of the image that the model will be trained on. Defaults to 640
        """
        return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz)

    def _apply(self, fn):
        """
        Applies a function to all the tensors in the model that are not parameters or registered buffers.

        Args:
            fn (function): the function to apply to the model

        Returns:
            (BaseModel): An updated BaseModel object.
        """
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):  # includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
            m.stride = fn(m.stride)
            m.anchors = fn(m.anchors)
            m.strides = fn(m.strides)
        return self

    def load(self, weights, verbose=True):
        """
        Load the weights into the model.

        Args:
            weights (dict | torch.nn.Module): The pre-trained weights to be loaded.
            verbose (bool, optional): Whether to log the transfer progress. Defaults to True.
        """
        model = weights["model"] if isinstance(weights, dict) else weights  # torchvision models are not dicts
        csd = model.float().state_dict()  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, self.state_dict())  # intersect
        self.load_state_dict(csd, strict=False)  # load
        if verbose:
            LOGGER.info(f"Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights")

    def loss(self, batch, preds=None):
        """
        Compute loss.

        Args:
            batch (dict): Batch to compute loss on
            preds (torch.Tensor | List[torch.Tensor]): Predictions.
        """
        if not hasattr(self, "criterion"):
            self.criterion = self.init_criterion()

        preds = self.forward(batch["img"]) if preds is None else preds
        return self.criterion(preds, batch)

    def init_criterion(self):
        """Initialize the loss criterion for the BaseModel."""
        raise NotImplementedError("compute_loss() needs to be implemented by task heads")

forward(x, *args, **kwargs)

Passa à frente do modelo numa única escala. Envolvente para _forward_once método.

Parâmetros:

Nome Tipo Descrição Predefinição
x Tensor | dict

A imagem de entrada tensor ou um ditado que inclui a imagem tensor e etiquetas gt.

necessário

Devolve:

Tipo Descrição
Tensor

A saída da rede.

Código fonte em ultralytics/nn/tasks.py
def forward(self, x, *args, **kwargs):
    """
    Forward pass of the model on a single scale. Wrapper for `_forward_once` method.

    Args:
        x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels.

    Returns:
        (torch.Tensor): The output of the network.
    """
    if isinstance(x, dict):  # for cases of training and validating while training.
        return self.loss(x, *args, **kwargs)
    return self.predict(x, *args, **kwargs)

fuse(verbose=True)

Funda o Conv2d() e BatchNorm2d() camadas do modelo numa única camada, de modo a melhorar a eficiência do cálculo.

Devolve:

Tipo Descrição
Module

Devolve o modelo fundido.

Código fonte em ultralytics/nn/tasks.py
def fuse(self, verbose=True):
    """
    Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the
    computation efficiency.

    Returns:
        (nn.Module): The fused model is returned.
    """
    if not self.is_fused():
        for m in self.model.modules():
            if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, "bn"):
                if isinstance(m, Conv2):
                    m.fuse_convs()
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, "bn")  # remove batchnorm
                m.forward = m.forward_fuse  # update forward
            if isinstance(m, ConvTranspose) and hasattr(m, "bn"):
                m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn)
                delattr(m, "bn")  # remove batchnorm
                m.forward = m.forward_fuse  # update forward
            if isinstance(m, RepConv):
                m.fuse_convs()
                m.forward = m.forward_fuse  # update forward
        self.info(verbose=verbose)

    return self

info(detailed=False, verbose=True, imgsz=640)

Imprime a informação do modelo.

Parâmetros:

Nome Tipo Descrição Predefinição
detailed bool

se Verdadeiro, imprime informações detalhadas sobre o modelo. A predefinição é Falso

False
verbose bool

se Verdadeiro, imprime a informação do modelo. A predefinição é Falso

True
imgsz int

o tamanho da imagem em que o modelo será treinado. Usa como predefinição 640

640
Código fonte em ultralytics/nn/tasks.py
def info(self, detailed=False, verbose=True, imgsz=640):
    """
    Prints model information.

    Args:
        detailed (bool): if True, prints out detailed information about the model. Defaults to False
        verbose (bool): if True, prints out the model information. Defaults to False
        imgsz (int): the size of the image that the model will be trained on. Defaults to 640
    """
    return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz)

init_criterion()

Inicializa o critério de perda para o BaseModel.

Código fonte em ultralytics/nn/tasks.py
def init_criterion(self):
    """Initialize the loss criterion for the BaseModel."""
    raise NotImplementedError("compute_loss() needs to be implemented by task heads")

is_fused(thresh=10)

Verifica se o modelo tem menos de um determinado limite de camadas BatchNorm.

Parâmetros:

Nome Tipo Descrição Predefinição
thresh int

O número limite de camadas BatchNorm. A predefinição é 10.

10

Devolve:

Tipo Descrição
bool

Verdadeiro se o número de camadas BatchNorm no modelo for inferior ao limiar, Falso caso contrário.

Código fonte em ultralytics/nn/tasks.py
def is_fused(self, thresh=10):
    """
    Check if the model has less than a certain threshold of BatchNorm layers.

    Args:
        thresh (int, optional): The threshold number of BatchNorm layers. Default is 10.

    Returns:
        (bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise.
    """
    bn = tuple(v for k, v in nn.__dict__.items() if "Norm" in k)  # normalization layers, i.e. BatchNorm2d()
    return sum(isinstance(v, bn) for v in self.modules()) < thresh  # True if < 'thresh' BatchNorm layers in model

load(weights, verbose=True)

Carrega os pesos no modelo.

Parâmetros:

Nome Tipo Descrição Predefinição
weights dict | Module

Os pesos pré-treinados a serem carregados.

necessário
verbose bool

Se deves registar o progresso da transferência. A predefinição é Verdadeiro.

True
Código fonte em ultralytics/nn/tasks.py
def load(self, weights, verbose=True):
    """
    Load the weights into the model.

    Args:
        weights (dict | torch.nn.Module): The pre-trained weights to be loaded.
        verbose (bool, optional): Whether to log the transfer progress. Defaults to True.
    """
    model = weights["model"] if isinstance(weights, dict) else weights  # torchvision models are not dicts
    csd = model.float().state_dict()  # checkpoint state_dict as FP32
    csd = intersect_dicts(csd, self.state_dict())  # intersect
    self.load_state_dict(csd, strict=False)  # load
    if verbose:
        LOGGER.info(f"Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights")

loss(batch, preds=None)

Calcula a perda.

Parâmetros:

Nome Tipo Descrição Predefinição
batch dict

Lote para calcular a perda em

necessário
preds Tensor | List[Tensor]

Prevê.

None
Código fonte em ultralytics/nn/tasks.py
def loss(self, batch, preds=None):
    """
    Compute loss.

    Args:
        batch (dict): Batch to compute loss on
        preds (torch.Tensor | List[torch.Tensor]): Predictions.
    """
    if not hasattr(self, "criterion"):
        self.criterion = self.init_criterion()

    preds = self.forward(batch["img"]) if preds is None else preds
    return self.criterion(preds, batch)

predict(x, profile=False, visualize=False, augment=False, embed=None)

Executa uma passagem para a frente na rede.

Parâmetros:

Nome Tipo Descrição Predefinição
x Tensor

A entrada tensor para o modelo.

necessário
profile bool

Imprime o tempo de computação de cada camada se for Verdadeiro, a predefinição é Falso.

False
visualize bool

Guarda os mapas de características do modelo se for Verdadeiro, a predefinição é Falso.

False
augment bool

Aumenta a imagem durante a previsão, a predefinição é Falso.

False
embed list

Uma lista de vectores de características/embeddings a devolver.

None

Devolve:

Tipo Descrição
Tensor

A última saída do modelo.

Código fonte em ultralytics/nn/tasks.py
def predict(self, x, profile=False, visualize=False, augment=False, embed=None):
    """
    Perform a forward pass through the network.

    Args:
        x (torch.Tensor): The input tensor to the model.
        profile (bool):  Print the computation time of each layer if True, defaults to False.
        visualize (bool): Save the feature maps of the model if True, defaults to False.
        augment (bool): Augment image during prediction, defaults to False.
        embed (list, optional): A list of feature vectors/embeddings to return.

    Returns:
        (torch.Tensor): The last output of the model.
    """
    if augment:
        return self._predict_augment(x)
    return self._predict_once(x, profile, visualize, embed)



ultralytics.nn.tasks.DetectionModel

Bases: BaseModel

YOLOv8 modelo de deteção.

Código fonte em ultralytics/nn/tasks.py
class DetectionModel(BaseModel):
    """YOLOv8 detection model."""

    def __init__(self, cfg="yolov8n.yaml", ch=3, nc=None, verbose=True):  # model, input channels, number of classes
        """Initialize the YOLOv8 detection model with the given config and parameters."""
        super().__init__()
        self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg)  # cfg dict

        # Define model
        ch = self.yaml["ch"] = self.yaml.get("ch", ch)  # input channels
        if nc and nc != self.yaml["nc"]:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml["nc"] = nc  # override YAML value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose)  # model, savelist
        self.names = {i: f"{i}" for i in range(self.yaml["nc"])}  # default names dict
        self.inplace = self.yaml.get("inplace", True)

        # Build strides
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):  # includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
            s = 256  # 2x min stride
            m.inplace = self.inplace
            forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose, OBB)) else self.forward(x)
            m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forward
            self.stride = m.stride
            m.bias_init()  # only run once
        else:
            self.stride = torch.Tensor([32])  # default stride for i.e. RTDETR

        # Init weights, biases
        initialize_weights(self)
        if verbose:
            self.info()
            LOGGER.info("")

    def _predict_augment(self, x):
        """Perform augmentations on input image x and return augmented inference and train outputs."""
        img_size = x.shape[-2:]  # height, width
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud, 3-lr)
        y = []  # outputs
        for si, fi in zip(s, f):
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = super().predict(xi)[0]  # forward
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, -1), None  # augmented inference, train

    @staticmethod
    def _descale_pred(p, flips, scale, img_size, dim=1):
        """De-scale predictions following augmented inference (inverse operation)."""
        p[:, :4] /= scale  # de-scale
        x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim)
        if flips == 2:
            y = img_size[0] - y  # de-flip ud
        elif flips == 3:
            x = img_size[1] - x  # de-flip lr
        return torch.cat((x, y, wh, cls), dim)

    def _clip_augmented(self, y):
        """Clip YOLO augmented inference tails."""
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4**x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[-1] // g) * sum(4**x for x in range(e))  # indices
        y[0] = y[0][..., :-i]  # large
        i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][..., i:]  # small
        return y

    def init_criterion(self):
        """Initialize the loss criterion for the DetectionModel."""
        return v8DetectionLoss(self)

__init__(cfg='yolov8n.yaml', ch=3, nc=None, verbose=True)

Inicializa o modelo de deteção YOLOv8 com a configuração e os parâmetros fornecidos.

Código fonte em ultralytics/nn/tasks.py
def __init__(self, cfg="yolov8n.yaml", ch=3, nc=None, verbose=True):  # model, input channels, number of classes
    """Initialize the YOLOv8 detection model with the given config and parameters."""
    super().__init__()
    self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg)  # cfg dict

    # Define model
    ch = self.yaml["ch"] = self.yaml.get("ch", ch)  # input channels
    if nc and nc != self.yaml["nc"]:
        LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
        self.yaml["nc"] = nc  # override YAML value
    self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose)  # model, savelist
    self.names = {i: f"{i}" for i in range(self.yaml["nc"])}  # default names dict
    self.inplace = self.yaml.get("inplace", True)

    # Build strides
    m = self.model[-1]  # Detect()
    if isinstance(m, Detect):  # includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
        s = 256  # 2x min stride
        m.inplace = self.inplace
        forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose, OBB)) else self.forward(x)
        m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forward
        self.stride = m.stride
        m.bias_init()  # only run once
    else:
        self.stride = torch.Tensor([32])  # default stride for i.e. RTDETR

    # Init weights, biases
    initialize_weights(self)
    if verbose:
        self.info()
        LOGGER.info("")

init_criterion()

Inicializa o critério de perda para o DetectionModel.

Código fonte em ultralytics/nn/tasks.py
def init_criterion(self):
    """Initialize the loss criterion for the DetectionModel."""
    return v8DetectionLoss(self)



ultralytics.nn.tasks.OBBModel

Bases: DetectionModel

YOLOv8 Modelo OBB (Oriented Bounding Box).

Código fonte em ultralytics/nn/tasks.py
class OBBModel(DetectionModel):
    """YOLOv8 Oriented Bounding Box (OBB) model."""

    def __init__(self, cfg="yolov8n-obb.yaml", ch=3, nc=None, verbose=True):
        """Initialize YOLOv8 OBB model with given config and parameters."""
        super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

    def init_criterion(self):
        """Initialize the loss criterion for the model."""
        return v8OBBLoss(self)

__init__(cfg='yolov8n-obb.yaml', ch=3, nc=None, verbose=True)

Inicializa o modelo YOLOv8 OBB com a configuração e os parâmetros fornecidos.

Código fonte em ultralytics/nn/tasks.py
def __init__(self, cfg="yolov8n-obb.yaml", ch=3, nc=None, verbose=True):
    """Initialize YOLOv8 OBB model with given config and parameters."""
    super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

init_criterion()

Inicializa o critério de perda para o modelo.

Código fonte em ultralytics/nn/tasks.py
def init_criterion(self):
    """Initialize the loss criterion for the model."""
    return v8OBBLoss(self)



ultralytics.nn.tasks.SegmentationModel

Bases: DetectionModel

YOLOv8 modelo de segmentação.

Código fonte em ultralytics/nn/tasks.py
class SegmentationModel(DetectionModel):
    """YOLOv8 segmentation model."""

    def __init__(self, cfg="yolov8n-seg.yaml", ch=3, nc=None, verbose=True):
        """Initialize YOLOv8 segmentation model with given config and parameters."""
        super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

    def init_criterion(self):
        """Initialize the loss criterion for the SegmentationModel."""
        return v8SegmentationLoss(self)

__init__(cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True)

Inicializa o modelo de segmentação YOLOv8 com a configuração e os parâmetros fornecidos.

Código fonte em ultralytics/nn/tasks.py
def __init__(self, cfg="yolov8n-seg.yaml", ch=3, nc=None, verbose=True):
    """Initialize YOLOv8 segmentation model with given config and parameters."""
    super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

init_criterion()

Inicializa o critério de perda para o SegmentationModel.

Código fonte em ultralytics/nn/tasks.py
def init_criterion(self):
    """Initialize the loss criterion for the SegmentationModel."""
    return v8SegmentationLoss(self)



ultralytics.nn.tasks.PoseModel

Bases: DetectionModel

YOLOv8 modelo de pose.

Código fonte em ultralytics/nn/tasks.py
class PoseModel(DetectionModel):
    """YOLOv8 pose model."""

    def __init__(self, cfg="yolov8n-pose.yaml", ch=3, nc=None, data_kpt_shape=(None, None), verbose=True):
        """Initialize YOLOv8 Pose model."""
        if not isinstance(cfg, dict):
            cfg = yaml_model_load(cfg)  # load model YAML
        if any(data_kpt_shape) and list(data_kpt_shape) != list(cfg["kpt_shape"]):
            LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}")
            cfg["kpt_shape"] = data_kpt_shape
        super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

    def init_criterion(self):
        """Initialize the loss criterion for the PoseModel."""
        return v8PoseLoss(self)

__init__(cfg='yolov8n-pose.yaml', ch=3, nc=None, data_kpt_shape=(None, None), verbose=True)

Inicializa o modelo YOLOv8 Pose.

Código fonte em ultralytics/nn/tasks.py
def __init__(self, cfg="yolov8n-pose.yaml", ch=3, nc=None, data_kpt_shape=(None, None), verbose=True):
    """Initialize YOLOv8 Pose model."""
    if not isinstance(cfg, dict):
        cfg = yaml_model_load(cfg)  # load model YAML
    if any(data_kpt_shape) and list(data_kpt_shape) != list(cfg["kpt_shape"]):
        LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}")
        cfg["kpt_shape"] = data_kpt_shape
    super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

init_criterion()

Inicializa o critério de perda para o PoseModel.

Código fonte em ultralytics/nn/tasks.py
def init_criterion(self):
    """Initialize the loss criterion for the PoseModel."""
    return v8PoseLoss(self)



ultralytics.nn.tasks.ClassificationModel

Bases: BaseModel

YOLOv8 modelo de classificação.

Código fonte em ultralytics/nn/tasks.py
class ClassificationModel(BaseModel):
    """YOLOv8 classification model."""

    def __init__(self, cfg="yolov8n-cls.yaml", ch=3, nc=None, verbose=True):
        """Init ClassificationModel with YAML, channels, number of classes, verbose flag."""
        super().__init__()
        self._from_yaml(cfg, ch, nc, verbose)

    def _from_yaml(self, cfg, ch, nc, verbose):
        """Set YOLOv8 model configurations and define the model architecture."""
        self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg)  # cfg dict

        # Define model
        ch = self.yaml["ch"] = self.yaml.get("ch", ch)  # input channels
        if nc and nc != self.yaml["nc"]:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml["nc"] = nc  # override YAML value
        elif not nc and not self.yaml.get("nc", None):
            raise ValueError("nc not specified. Must specify nc in model.yaml or function arguments.")
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose)  # model, savelist
        self.stride = torch.Tensor([1])  # no stride constraints
        self.names = {i: f"{i}" for i in range(self.yaml["nc"])}  # default names dict
        self.info()

    @staticmethod
    def reshape_outputs(model, nc):
        """Update a TorchVision classification model to class count 'n' if required."""
        name, m = list((model.model if hasattr(model, "model") else model).named_children())[-1]  # last module
        if isinstance(m, Classify):  # YOLO Classify() head
            if m.linear.out_features != nc:
                m.linear = nn.Linear(m.linear.in_features, nc)
        elif isinstance(m, nn.Linear):  # ResNet, EfficientNet
            if m.out_features != nc:
                setattr(model, name, nn.Linear(m.in_features, nc))
        elif isinstance(m, nn.Sequential):
            types = [type(x) for x in m]
            if nn.Linear in types:
                i = types.index(nn.Linear)  # nn.Linear index
                if m[i].out_features != nc:
                    m[i] = nn.Linear(m[i].in_features, nc)
            elif nn.Conv2d in types:
                i = types.index(nn.Conv2d)  # nn.Conv2d index
                if m[i].out_channels != nc:
                    m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)

    def init_criterion(self):
        """Initialize the loss criterion for the ClassificationModel."""
        return v8ClassificationLoss()

__init__(cfg='yolov8n-cls.yaml', ch=3, nc=None, verbose=True)

Inicia o ClassificationModel com YAML, canais, número de classes, sinalizador verboso.

Código fonte em ultralytics/nn/tasks.py
def __init__(self, cfg="yolov8n-cls.yaml", ch=3, nc=None, verbose=True):
    """Init ClassificationModel with YAML, channels, number of classes, verbose flag."""
    super().__init__()
    self._from_yaml(cfg, ch, nc, verbose)

init_criterion()

Inicializa o critério de perda para o ClassificationModel.

Código fonte em ultralytics/nn/tasks.py
def init_criterion(self):
    """Initialize the loss criterion for the ClassificationModel."""
    return v8ClassificationLoss()

reshape_outputs(model, nc) staticmethod

Actualiza um modelo de classificação TorchVision para a contagem de classes "n", se necessário.

Código fonte em ultralytics/nn/tasks.py
@staticmethod
def reshape_outputs(model, nc):
    """Update a TorchVision classification model to class count 'n' if required."""
    name, m = list((model.model if hasattr(model, "model") else model).named_children())[-1]  # last module
    if isinstance(m, Classify):  # YOLO Classify() head
        if m.linear.out_features != nc:
            m.linear = nn.Linear(m.linear.in_features, nc)
    elif isinstance(m, nn.Linear):  # ResNet, EfficientNet
        if m.out_features != nc:
            setattr(model, name, nn.Linear(m.in_features, nc))
    elif isinstance(m, nn.Sequential):
        types = [type(x) for x in m]
        if nn.Linear in types:
            i = types.index(nn.Linear)  # nn.Linear index
            if m[i].out_features != nc:
                m[i] = nn.Linear(m[i].in_features, nc)
        elif nn.Conv2d in types:
            i = types.index(nn.Conv2d)  # nn.Conv2d index
            if m[i].out_channels != nc:
                m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)



ultralytics.nn.tasks.RTDETRDetectionModel

Bases: DetectionModel

Classe de modelo de deteção RTDETR (Real-time DEtection and Tracking using Transformers).

Esta classe é responsável pela construção da arquitetura RTDETR, pela definição das funções de perda e pela facilitação dos processos de e facilita os processos de treino e de inferência. O RTDETR é um modelo de deteção e seguimento de objectos que se estende a partir da classe base DetectionModel.

Atributos:

Nome Tipo Descrição
cfg str

O caminho do ficheiro de configuração ou a cadeia de caracteres predefinida. A predefinição é 'rtdetr-l.yaml'.

ch int

Número de canais de entrada. A predefinição é 3 (RGB).

nc int

Número de classes para a deteção de objectos. A predefinição é Nenhum.

verbose bool

Especifica se as estatísticas resumidas são mostradas durante a inicialização. A predefinição é True.

Métodos:

Nome Descrição
init_criterion

Inicializa o critério utilizado para o cálculo da perda.

loss

Calcula e devolve a perda durante o treino.

predict

Executa uma passagem para a frente através da rede e devolve a saída.

Código fonte em ultralytics/nn/tasks.py
class RTDETRDetectionModel(DetectionModel):
    """
    RTDETR (Real-time DEtection and Tracking using Transformers) Detection Model class.

    This class is responsible for constructing the RTDETR architecture, defining loss functions, and facilitating both
    the training and inference processes. RTDETR is an object detection and tracking model that extends from the
    DetectionModel base class.

    Attributes:
        cfg (str): The configuration file path or preset string. Default is 'rtdetr-l.yaml'.
        ch (int): Number of input channels. Default is 3 (RGB).
        nc (int, optional): Number of classes for object detection. Default is None.
        verbose (bool): Specifies if summary statistics are shown during initialization. Default is True.

    Methods:
        init_criterion: Initializes the criterion used for loss calculation.
        loss: Computes and returns the loss during training.
        predict: Performs a forward pass through the network and returns the output.
    """

    def __init__(self, cfg="rtdetr-l.yaml", ch=3, nc=None, verbose=True):
        """
        Initialize the RTDETRDetectionModel.

        Args:
            cfg (str): Configuration file name or path.
            ch (int): Number of input channels.
            nc (int, optional): Number of classes. Defaults to None.
            verbose (bool, optional): Print additional information during initialization. Defaults to True.
        """
        super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

    def init_criterion(self):
        """Initialize the loss criterion for the RTDETRDetectionModel."""
        from ultralytics.models.utils.loss import RTDETRDetectionLoss

        return RTDETRDetectionLoss(nc=self.nc, use_vfl=True)

    def loss(self, batch, preds=None):
        """
        Compute the loss for the given batch of data.

        Args:
            batch (dict): Dictionary containing image and label data.
            preds (torch.Tensor, optional): Precomputed model predictions. Defaults to None.

        Returns:
            (tuple): A tuple containing the total loss and main three losses in a tensor.
        """
        if not hasattr(self, "criterion"):
            self.criterion = self.init_criterion()

        img = batch["img"]
        # NOTE: preprocess gt_bbox and gt_labels to list.
        bs = len(img)
        batch_idx = batch["batch_idx"]
        gt_groups = [(batch_idx == i).sum().item() for i in range(bs)]
        targets = {
            "cls": batch["cls"].to(img.device, dtype=torch.long).view(-1),
            "bboxes": batch["bboxes"].to(device=img.device),
            "batch_idx": batch_idx.to(img.device, dtype=torch.long).view(-1),
            "gt_groups": gt_groups,
        }

        preds = self.predict(img, batch=targets) if preds is None else preds
        dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta = preds if self.training else preds[1]
        if dn_meta is None:
            dn_bboxes, dn_scores = None, None
        else:
            dn_bboxes, dec_bboxes = torch.split(dec_bboxes, dn_meta["dn_num_split"], dim=2)
            dn_scores, dec_scores = torch.split(dec_scores, dn_meta["dn_num_split"], dim=2)

        dec_bboxes = torch.cat([enc_bboxes.unsqueeze(0), dec_bboxes])  # (7, bs, 300, 4)
        dec_scores = torch.cat([enc_scores.unsqueeze(0), dec_scores])

        loss = self.criterion(
            (dec_bboxes, dec_scores), targets, dn_bboxes=dn_bboxes, dn_scores=dn_scores, dn_meta=dn_meta
        )
        # NOTE: There are like 12 losses in RTDETR, backward with all losses but only show the main three losses.
        return sum(loss.values()), torch.as_tensor(
            [loss[k].detach() for k in ["loss_giou", "loss_class", "loss_bbox"]], device=img.device
        )

    def predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None):
        """
        Perform a forward pass through the model.

        Args:
            x (torch.Tensor): The input tensor.
            profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
            visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
            batch (dict, optional): Ground truth data for evaluation. Defaults to None.
            augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.

        Returns:
            (torch.Tensor): Model's output tensor.
        """
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model[:-1]:  # except the head part
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        head = self.model[-1]
        x = head([y[j] for j in head.f], batch)  # head inference
        return x

__init__(cfg='rtdetr-l.yaml', ch=3, nc=None, verbose=True)

Inicializa o RTDETRDetectionModel.

Parâmetros:

Nome Tipo Descrição Predefinição
cfg str

Nome ou caminho do ficheiro de configuração.

'rtdetr-l.yaml'
ch int

Número de canais de entrada.

3
nc int

Número de classes. A predefinição é Nenhum.

None
verbose bool

Imprime informações adicionais durante a inicialização. Usa o valor padrão True.

True
Código fonte em ultralytics/nn/tasks.py
def __init__(self, cfg="rtdetr-l.yaml", ch=3, nc=None, verbose=True):
    """
    Initialize the RTDETRDetectionModel.

    Args:
        cfg (str): Configuration file name or path.
        ch (int): Number of input channels.
        nc (int, optional): Number of classes. Defaults to None.
        verbose (bool, optional): Print additional information during initialization. Defaults to True.
    """
    super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

init_criterion()

Inicializa o critério de perda para o RTDETRDetectionModel.

Código fonte em ultralytics/nn/tasks.py
def init_criterion(self):
    """Initialize the loss criterion for the RTDETRDetectionModel."""
    from ultralytics.models.utils.loss import RTDETRDetectionLoss

    return RTDETRDetectionLoss(nc=self.nc, use_vfl=True)

loss(batch, preds=None)

Calcula a perda para um determinado lote de dados.

Parâmetros:

Nome Tipo Descrição Predefinição
batch dict

Dicionário que contém dados de imagens e etiquetas.

necessário
preds Tensor

Previsões de modelos pré-computados. Predefine-se como Nenhum.

None

Devolve:

Tipo Descrição
tuple

Uma tupla que contém a perda total e as três principais perdas num tensor.

Código fonte em ultralytics/nn/tasks.py
def loss(self, batch, preds=None):
    """
    Compute the loss for the given batch of data.

    Args:
        batch (dict): Dictionary containing image and label data.
        preds (torch.Tensor, optional): Precomputed model predictions. Defaults to None.

    Returns:
        (tuple): A tuple containing the total loss and main three losses in a tensor.
    """
    if not hasattr(self, "criterion"):
        self.criterion = self.init_criterion()

    img = batch["img"]
    # NOTE: preprocess gt_bbox and gt_labels to list.
    bs = len(img)
    batch_idx = batch["batch_idx"]
    gt_groups = [(batch_idx == i).sum().item() for i in range(bs)]
    targets = {
        "cls": batch["cls"].to(img.device, dtype=torch.long).view(-1),
        "bboxes": batch["bboxes"].to(device=img.device),
        "batch_idx": batch_idx.to(img.device, dtype=torch.long).view(-1),
        "gt_groups": gt_groups,
    }

    preds = self.predict(img, batch=targets) if preds is None else preds
    dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta = preds if self.training else preds[1]
    if dn_meta is None:
        dn_bboxes, dn_scores = None, None
    else:
        dn_bboxes, dec_bboxes = torch.split(dec_bboxes, dn_meta["dn_num_split"], dim=2)
        dn_scores, dec_scores = torch.split(dec_scores, dn_meta["dn_num_split"], dim=2)

    dec_bboxes = torch.cat([enc_bboxes.unsqueeze(0), dec_bboxes])  # (7, bs, 300, 4)
    dec_scores = torch.cat([enc_scores.unsqueeze(0), dec_scores])

    loss = self.criterion(
        (dec_bboxes, dec_scores), targets, dn_bboxes=dn_bboxes, dn_scores=dn_scores, dn_meta=dn_meta
    )
    # NOTE: There are like 12 losses in RTDETR, backward with all losses but only show the main three losses.
    return sum(loss.values()), torch.as_tensor(
        [loss[k].detach() for k in ["loss_giou", "loss_class", "loss_bbox"]], device=img.device
    )

predict(x, profile=False, visualize=False, batch=None, augment=False, embed=None)

Executa uma passagem para a frente através do modelo.

Parâmetros:

Nome Tipo Descrição Predefinição
x Tensor

A entrada tensor.

necessário
profile bool

Se for Verdadeiro, traça o perfil do tempo de cálculo para cada camada. A predefinição é Falso.

False
visualize bool

Se Verdadeiro, guarda mapas de características para visualização. A predefinição é Falso.

False
batch dict

Dados da verdade terrestre para avaliação. Predefine-se como Nenhum.

None
augment bool

Se for Verdadeiro, executa a ampliação de dados durante a inferência. A predefinição é Falso.

False
embed list

Uma lista de vectores de características/embeddings a devolver.

None

Devolve:

Tipo Descrição
Tensor

Saída do modelo tensor.

Código fonte em ultralytics/nn/tasks.py
def predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None):
    """
    Perform a forward pass through the model.

    Args:
        x (torch.Tensor): The input tensor.
        profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
        visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
        batch (dict, optional): Ground truth data for evaluation. Defaults to None.
        augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
        embed (list, optional): A list of feature vectors/embeddings to return.

    Returns:
        (torch.Tensor): Model's output tensor.
    """
    y, dt, embeddings = [], [], []  # outputs
    for m in self.model[:-1]:  # except the head part
        if m.f != -1:  # if not from previous layer
            x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
        if profile:
            self._profile_one_layer(m, x, dt)
        x = m(x)  # run
        y.append(x if m.i in self.save else None)  # save output
        if visualize:
            feature_visualization(x, m.type, m.i, save_dir=visualize)
        if embed and m.i in embed:
            embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
            if m.i == max(embed):
                return torch.unbind(torch.cat(embeddings, 1), dim=0)
    head = self.model[-1]
    x = head([y[j] for j in head.f], batch)  # head inference
    return x



ultralytics.nn.tasks.WorldModel

Bases: DetectionModel

YOLOv8 Modelo mundial.

Código fonte em ultralytics/nn/tasks.py
class WorldModel(DetectionModel):
    """YOLOv8 World Model."""

    def __init__(self, cfg="yolov8s-world.yaml", ch=3, nc=None, verbose=True):
        """Initialize YOLOv8 world model with given config and parameters."""
        self.txt_feats = torch.randn(1, nc or 80, 512)  # features placeholder
        self.clip_model = None  # CLIP model placeholder
        super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

    def set_classes(self, text, batch=80, cache_clip_model=True):
        """Set classes in advance so that model could do offline-inference without clip model."""
        try:
            import clip
        except ImportError:
            check_requirements("git+https://github.com/ultralytics/CLIP.git")
            import clip

        if (
            not getattr(self, "clip_model", None) and cache_clip_model
        ):  # for backwards compatibility of models lacking clip_model attribute
            self.clip_model = clip.load("ViT-B/32")[0]
        model = self.clip_model if cache_clip_model else clip.load("ViT-B/32")[0]
        device = next(model.parameters()).device
        text_token = clip.tokenize(text).to(device)
        txt_feats = [model.encode_text(token).detach() for token in text_token.split(batch)]
        txt_feats = txt_feats[0] if len(txt_feats) == 1 else torch.cat(txt_feats, dim=0)
        txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True)
        self.txt_feats = txt_feats.reshape(-1, len(text), txt_feats.shape[-1])
        self.model[-1].nc = len(text)

    def predict(self, x, profile=False, visualize=False, txt_feats=None, augment=False, embed=None):
        """
        Perform a forward pass through the model.

        Args:
            x (torch.Tensor): The input tensor.
            profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
            visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
            txt_feats (torch.Tensor): The text features, use it if it's given. Defaults to None.
            augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.

        Returns:
            (torch.Tensor): Model's output tensor.
        """
        txt_feats = (self.txt_feats if txt_feats is None else txt_feats).to(device=x.device, dtype=x.dtype)
        if len(txt_feats) != len(x):
            txt_feats = txt_feats.repeat(len(x), 1, 1)
        ori_txt_feats = txt_feats.clone()
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model:  # except the head part
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if isinstance(m, C2fAttn):
                x = m(x, txt_feats)
            elif isinstance(m, WorldDetect):
                x = m(x, ori_txt_feats)
            elif isinstance(m, ImagePoolingAttn):
                txt_feats = m(x, txt_feats)
            else:
                x = m(x)  # run

            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        return x

    def loss(self, batch, preds=None):
        """
        Compute loss.

        Args:
            batch (dict): Batch to compute loss on.
            preds (torch.Tensor | List[torch.Tensor]): Predictions.
        """
        if not hasattr(self, "criterion"):
            self.criterion = self.init_criterion()

        if preds is None:
            preds = self.forward(batch["img"], txt_feats=batch["txt_feats"])
        return self.criterion(preds, batch)

__init__(cfg='yolov8s-world.yaml', ch=3, nc=None, verbose=True)

Inicializa o modelo do mundo YOLOv8 com a configuração e os parâmetros fornecidos.

Código fonte em ultralytics/nn/tasks.py
def __init__(self, cfg="yolov8s-world.yaml", ch=3, nc=None, verbose=True):
    """Initialize YOLOv8 world model with given config and parameters."""
    self.txt_feats = torch.randn(1, nc or 80, 512)  # features placeholder
    self.clip_model = None  # CLIP model placeholder
    super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

loss(batch, preds=None)

Calcula a perda.

Parâmetros:

Nome Tipo Descrição Predefinição
batch dict

Lote para calcular a perda.

necessário
preds Tensor | List[Tensor]

Prevê.

None
Código fonte em ultralytics/nn/tasks.py
def loss(self, batch, preds=None):
    """
    Compute loss.

    Args:
        batch (dict): Batch to compute loss on.
        preds (torch.Tensor | List[torch.Tensor]): Predictions.
    """
    if not hasattr(self, "criterion"):
        self.criterion = self.init_criterion()

    if preds is None:
        preds = self.forward(batch["img"], txt_feats=batch["txt_feats"])
    return self.criterion(preds, batch)

predict(x, profile=False, visualize=False, txt_feats=None, augment=False, embed=None)

Executa uma passagem para a frente através do modelo.

Parâmetros:

Nome Tipo Descrição Predefinição
x Tensor

A entrada tensor.

necessário
profile bool

Se for Verdadeiro, traça o perfil do tempo de cálculo para cada camada. A predefinição é Falso.

False
visualize bool

Se Verdadeiro, guarda mapas de características para visualização. A predefinição é Falso.

False
txt_feats Tensor

As características do texto, utiliza-o se for dado. A predefinição é Nenhum.

None
augment bool

Se for Verdadeiro, executa a ampliação de dados durante a inferência. A predefinição é Falso.

False
embed list

Uma lista de vectores de características/embeddings a devolver.

None

Devolve:

Tipo Descrição
Tensor

Saída do modelo tensor.

Código fonte em ultralytics/nn/tasks.py
def predict(self, x, profile=False, visualize=False, txt_feats=None, augment=False, embed=None):
    """
    Perform a forward pass through the model.

    Args:
        x (torch.Tensor): The input tensor.
        profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
        visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
        txt_feats (torch.Tensor): The text features, use it if it's given. Defaults to None.
        augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
        embed (list, optional): A list of feature vectors/embeddings to return.

    Returns:
        (torch.Tensor): Model's output tensor.
    """
    txt_feats = (self.txt_feats if txt_feats is None else txt_feats).to(device=x.device, dtype=x.dtype)
    if len(txt_feats) != len(x):
        txt_feats = txt_feats.repeat(len(x), 1, 1)
    ori_txt_feats = txt_feats.clone()
    y, dt, embeddings = [], [], []  # outputs
    for m in self.model:  # except the head part
        if m.f != -1:  # if not from previous layer
            x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
        if profile:
            self._profile_one_layer(m, x, dt)
        if isinstance(m, C2fAttn):
            x = m(x, txt_feats)
        elif isinstance(m, WorldDetect):
            x = m(x, ori_txt_feats)
        elif isinstance(m, ImagePoolingAttn):
            txt_feats = m(x, txt_feats)
        else:
            x = m(x)  # run

        y.append(x if m.i in self.save else None)  # save output
        if visualize:
            feature_visualization(x, m.type, m.i, save_dir=visualize)
        if embed and m.i in embed:
            embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
            if m.i == max(embed):
                return torch.unbind(torch.cat(embeddings, 1), dim=0)
    return x

set_classes(text, batch=80, cache_clip_model=True)

Define as classes com antecedência para que o modelo possa fazer inferências offline sem o modelo de clipes.

Código fonte em ultralytics/nn/tasks.py
def set_classes(self, text, batch=80, cache_clip_model=True):
    """Set classes in advance so that model could do offline-inference without clip model."""
    try:
        import clip
    except ImportError:
        check_requirements("git+https://github.com/ultralytics/CLIP.git")
        import clip

    if (
        not getattr(self, "clip_model", None) and cache_clip_model
    ):  # for backwards compatibility of models lacking clip_model attribute
        self.clip_model = clip.load("ViT-B/32")[0]
    model = self.clip_model if cache_clip_model else clip.load("ViT-B/32")[0]
    device = next(model.parameters()).device
    text_token = clip.tokenize(text).to(device)
    txt_feats = [model.encode_text(token).detach() for token in text_token.split(batch)]
    txt_feats = txt_feats[0] if len(txt_feats) == 1 else torch.cat(txt_feats, dim=0)
    txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True)
    self.txt_feats = txt_feats.reshape(-1, len(text), txt_feats.shape[-1])
    self.model[-1].nc = len(text)



ultralytics.nn.tasks.Ensemble

Bases: ModuleList

Conjunto de modelos.

Código fonte em ultralytics/nn/tasks.py
class Ensemble(nn.ModuleList):
    """Ensemble of models."""

    def __init__(self):
        """Initialize an ensemble of models."""
        super().__init__()

    def forward(self, x, augment=False, profile=False, visualize=False):
        """Function generates the YOLO network's final layer."""
        y = [module(x, augment, profile, visualize)[0] for module in self]
        # y = torch.stack(y).max(0)[0]  # max ensemble
        # y = torch.stack(y).mean(0)  # mean ensemble
        y = torch.cat(y, 2)  # nms ensemble, y shape(B, HW, C)
        return y, None  # inference, train output

__init__()

Inicializa um conjunto de modelos.

Código fonte em ultralytics/nn/tasks.py
def __init__(self):
    """Initialize an ensemble of models."""
    super().__init__()

forward(x, augment=False, profile=False, visualize=False)

A função gera a camada final da rede YOLO .

Código fonte em ultralytics/nn/tasks.py
def forward(self, x, augment=False, profile=False, visualize=False):
    """Function generates the YOLO network's final layer."""
    y = [module(x, augment, profile, visualize)[0] for module in self]
    # y = torch.stack(y).max(0)[0]  # max ensemble
    # y = torch.stack(y).mean(0)  # mean ensemble
    y = torch.cat(y, 2)  # nms ensemble, y shape(B, HW, C)
    return y, None  # inference, train output



ultralytics.nn.tasks.temporary_modules(modules=None)

Gerenciador de contexto para adicionar ou modificar temporariamente módulos no cache de módulos do Python(sys.modules).

Esta função pode ser usada para alterar os caminhos do módulo durante o tempo de execução. É útil quando refatores de código, onde você moveu um módulo de um local para outro, mas ainda quer suportar os antigos caminhos de importação para compatibilidade com versões anteriores.

Parâmetros:

Nome Tipo Descrição Predefinição
modules dict

Um dicionário que mapeia caminhos de módulos antigos para caminhos de módulos novos.

None
Exemplo
with temporary_modules({'old.module.path': 'new.module.path'}):
    import old.module.path  # this will now import new.module.path
Nota

As alterações só têm efeito dentro do gestor de contexto e são anuladas quando o gestor de contexto sai. Tem em atenção que a manipulação direta do sys.modules pode levar a resultados imprevisíveis, especialmente em aplicações aplicações ou bibliotecas maiores. Utiliza esta função com cuidado.

Código fonte em ultralytics/nn/tasks.py
@contextlib.contextmanager
def temporary_modules(modules=None):
    """
    Context manager for temporarily adding or modifying modules in Python's module cache (`sys.modules`).

    This function can be used to change the module paths during runtime. It's useful when refactoring code,
    where you've moved a module from one location to another, but you still want to support the old import
    paths for backwards compatibility.

    Args:
        modules (dict, optional): A dictionary mapping old module paths to new module paths.

    Example:
        ```python
        with temporary_modules({'old.module.path': 'new.module.path'}):
            import old.module.path  # this will now import new.module.path
        ```

    Note:
        The changes are only in effect inside the context manager and are undone once the context manager exits.
        Be aware that directly manipulating `sys.modules` can lead to unpredictable results, especially in larger
        applications or libraries. Use this function with caution.
    """
    if not modules:
        modules = {}

    import importlib
    import sys

    try:
        # Set modules in sys.modules under their old name
        for old, new in modules.items():
            sys.modules[old] = importlib.import_module(new)

        yield
    finally:
        # Remove the temporary module paths
        for old in modules:
            if old in sys.modules:
                del sys.modules[old]



ultralytics.nn.tasks.torch_safe_load(weight)

Esta função tenta carregar um modelo PyTorch com a função torch.load(). Se um ModuleNotFoundError for levantado, captura o erro, regista uma mensagem de aviso e tenta instalar o módulo em falta através da função check_requirements(). Após a instalação, a função tenta novamente carregar o modelo usando torch.load().

Parâmetros:

Nome Tipo Descrição Predefinição
weight str

O caminho do ficheiro do modelo PyTorch .

necessário

Devolve:

Tipo Descrição
dict

O modelo PyTorch carregado.

Código fonte em ultralytics/nn/tasks.py
def torch_safe_load(weight):
    """
    This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised,
    it catches the error, logs a warning message, and attempts to install the missing module via the
    check_requirements() function. After installation, the function again attempts to load the model using torch.load().

    Args:
        weight (str): The file path of the PyTorch model.

    Returns:
        (dict): The loaded PyTorch model.
    """
    from ultralytics.utils.downloads import attempt_download_asset

    check_suffix(file=weight, suffix=".pt")
    file = attempt_download_asset(weight)  # search online if missing locally
    try:
        with temporary_modules(
            {
                "ultralytics.yolo.utils": "ultralytics.utils",
                "ultralytics.yolo.v8": "ultralytics.models.yolo",
                "ultralytics.yolo.data": "ultralytics.data",
            }
        ):  # for legacy 8.0 Classify and Pose models
            ckpt = torch.load(file, map_location="cpu")

    except ModuleNotFoundError as e:  # e.name is missing module name
        if e.name == "models":
            raise TypeError(
                emojis(
                    f"ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained "
                    f"with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with "
                    f"YOLOv8 at https://github.com/ultralytics/ultralytics."
                    f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
                    f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'"
                )
            ) from e
        LOGGER.warning(
            f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in ultralytics requirements."
            f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future."
            f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
            f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'"
        )
        check_requirements(e.name)  # install missing module
        ckpt = torch.load(file, map_location="cpu")

    if not isinstance(ckpt, dict):
        # File is likely a YOLO instance saved with i.e. torch.save(model, "saved_model.pt")
        LOGGER.warning(
            f"WARNING ⚠️ The file '{weight}' appears to be improperly saved or formatted. "
            f"For optimal results, use model.save('filename.pt') to correctly save YOLO models."
        )
        ckpt = {"model": ckpt.model}

    return ckpt, file  # load



ultralytics.nn.tasks.attempt_load_weights(weights, device=None, inplace=True, fuse=False)

Carrega um conjunto de modelos weights=[a,b,c] ou um único modelo weights=[a] ou weights=a.

Código fonte em ultralytics/nn/tasks.py
def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
    """Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a."""

    ensemble = Ensemble()
    for w in weights if isinstance(weights, list) else [weights]:
        ckpt, w = torch_safe_load(w)  # load ckpt
        args = {**DEFAULT_CFG_DICT, **ckpt["train_args"]} if "train_args" in ckpt else None  # combined args
        model = (ckpt.get("ema") or ckpt["model"]).to(device).float()  # FP32 model

        # Model compatibility updates
        model.args = args  # attach args to model
        model.pt_path = w  # attach *.pt file path to model
        model.task = guess_model_task(model)
        if not hasattr(model, "stride"):
            model.stride = torch.tensor([32.0])

        # Append
        ensemble.append(model.fuse().eval() if fuse and hasattr(model, "fuse") else model.eval())  # model in eval mode

    # Module updates
    for m in ensemble.modules():
        if hasattr(m, "inplace"):
            m.inplace = inplace
        elif isinstance(m, nn.Upsample) and not hasattr(m, "recompute_scale_factor"):
            m.recompute_scale_factor = None  # torch 1.11.0 compatibility

    # Return model
    if len(ensemble) == 1:
        return ensemble[-1]

    # Return ensemble
    LOGGER.info(f"Ensemble created with {weights}\n")
    for k in "names", "nc", "yaml":
        setattr(ensemble, k, getattr(ensemble[0], k))
    ensemble.stride = ensemble[int(torch.argmax(torch.tensor([m.stride.max() for m in ensemble])))].stride
    assert all(ensemble[0].nc == m.nc for m in ensemble), f"Models differ in class counts {[m.nc for m in ensemble]}"
    return ensemble



ultralytics.nn.tasks.attempt_load_one_weight(weight, device=None, inplace=True, fuse=False)

Carrega um único modelo de pesos.

Código fonte em ultralytics/nn/tasks.py
def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
    """Loads a single model weights."""
    ckpt, weight = torch_safe_load(weight)  # load ckpt
    args = {**DEFAULT_CFG_DICT, **(ckpt.get("train_args", {}))}  # combine model and default args, preferring model args
    model = (ckpt.get("ema") or ckpt["model"]).to(device).float()  # FP32 model

    # Model compatibility updates
    model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS}  # attach args to model
    model.pt_path = weight  # attach *.pt file path to model
    model.task = guess_model_task(model)
    if not hasattr(model, "stride"):
        model.stride = torch.tensor([32.0])

    model = model.fuse().eval() if fuse and hasattr(model, "fuse") else model.eval()  # model in eval mode

    # Module updates
    for m in model.modules():
        if hasattr(m, "inplace"):
            m.inplace = inplace
        elif isinstance(m, nn.Upsample) and not hasattr(m, "recompute_scale_factor"):
            m.recompute_scale_factor = None  # torch 1.11.0 compatibility

    # Return model and ckpt
    return model, ckpt



ultralytics.nn.tasks.parse_model(d, ch, verbose=True)

Analisa um dicionário YOLO model.yaml em um modelo PyTorch .

Código fonte em ultralytics/nn/tasks.py
def parse_model(d, ch, verbose=True):  # model_dict, input_channels(3)
    """Parse a YOLO model.yaml dictionary into a PyTorch model."""
    import ast

    # Args
    max_channels = float("inf")
    nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))
    depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))
    if scales:
        scale = d.get("scale")
        if not scale:
            scale = tuple(scales.keys())[0]
            LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
        depth, width, max_channels = scales[scale]

    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        if verbose:
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print

    if verbose:
        LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")
    ch = [ch]
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, args
        m = getattr(torch.nn, m[3:]) if "nn." in m else globals()[m]  # get module
        for j, a in enumerate(args):
            if isinstance(a, str):
                with contextlib.suppress(ValueError):
                    args[j] = locals()[a] if a in locals() else ast.literal_eval(a)

        n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gain
        if m in {
            Classify,
            Conv,
            ConvTranspose,
            GhostConv,
            Bottleneck,
            GhostBottleneck,
            SPP,
            SPPF,
            DWConv,
            Focus,
            BottleneckCSP,
            C1,
            C2,
            C2f,
            RepNCSPELAN4,
            ADown,
            SPPELAN,
            C2fAttn,
            C3,
            C3TR,
            C3Ghost,
            nn.ConvTranspose2d,
            DWConvTranspose2d,
            C3x,
            RepC3,
        }:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            if m is C2fAttn:
                args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)  # embed channels
                args[2] = int(
                    max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2]
                )  # num heads

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3}:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is AIFI:
            args = [ch[f], *args]
        elif m in {HGStem, HGBlock}:
            c1, cm, c2 = ch[f], args[0], args[1]
            args = [c1, cm, c2, *args[2:]]
            if m is HGBlock:
                args.insert(4, n)  # number of repeats
                n = 1
        elif m is ResNetLayer:
            c2 = args[1] if args[3] else args[1] * 4
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m in {Detect, WorldDetect, Segment, Pose, OBB, ImagePoolingAttn}:
            args.append([ch[x] for x in f])
            if m is Segment:
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
        elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1
            args.insert(1, [ch[x] for x in f])
        elif m is CBLinear:
            c2 = args[0]
            c1 = ch[f]
            args = [c1, c2, *args[1:]]
        elif m is CBFuse:
            c2 = ch[f[-1]]
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace("__main__.", "")  # module type
        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i, f, t  # attach index, 'from' index, type
        if verbose:
            LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}")  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)



ultralytics.nn.tasks.yaml_model_load(path)

Carrega um modelo YOLOv8 a partir de um ficheiro YAML.

Código fonte em ultralytics/nn/tasks.py
def yaml_model_load(path):
    """Load a YOLOv8 model from a YAML file."""
    import re

    path = Path(path)
    if path.stem in (f"yolov{d}{x}6" for x in "nsmlx" for d in (5, 8)):
        new_stem = re.sub(r"(\d+)([nslmx])6(.+)?$", r"\1\2-p6\3", path.stem)
        LOGGER.warning(f"WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.")
        path = path.with_name(new_stem + path.suffix)

    unified_path = re.sub(r"(\d+)([nslmx])(.+)?$", r"\1\3", str(path))  # i.e. yolov8x.yaml -> yolov8.yaml
    yaml_file = check_yaml(unified_path, hard=False) or check_yaml(path)
    d = yaml_load(yaml_file)  # model dict
    d["scale"] = guess_model_scale(path)
    d["yaml_file"] = str(path)
    return d



ultralytics.nn.tasks.guess_model_scale(model_path)

Toma um caminho para um ficheiro YAML do modelo YOLO como entrada e extrai o carácter de tamanho da escala do modelo. A função usa a correspondência de expressão regular para encontrar o padrão da escala do modelo no nome do arquivo YAML, que é denotado por n, s, m, l ou x. A função retorna o caractere de tamanho da escala do modelo como uma cadeia de caracteres.

Parâmetros:

Nome Tipo Descrição Predefinição
model_path str | Path

O caminho para o ficheiro YAML do modelo YOLO .

necessário

Devolve:

Tipo Descrição
str

O carácter de tamanho da escala do modelo, que pode ser n, s, m, l ou x.

Código fonte em ultralytics/nn/tasks.py
def guess_model_scale(model_path):
    """
    Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale. The function
    uses regular expression matching to find the pattern of the model scale in the YAML file name, which is denoted by
    n, s, m, l, or x. The function returns the size character of the model scale as a string.

    Args:
        model_path (str | Path): The path to the YOLO model's YAML file.

    Returns:
        (str): The size character of the model's scale, which can be n, s, m, l, or x.
    """
    with contextlib.suppress(AttributeError):
        import re

        return re.search(r"yolov\d+([nslmx])", Path(model_path).stem).group(1)  # n, s, m, l, or x
    return ""



ultralytics.nn.tasks.guess_model_task(model)

Adivinha a tarefa de um modelo PyTorch a partir da sua arquitetura ou configuração.

Parâmetros:

Nome Tipo Descrição Predefinição
model Module | dict

PyTorch modelo ou configuração de modelo no formato YAML.

necessário

Devolve:

Tipo Descrição
str

Tarefa do modelo ('detetar', 'segmentar', 'classificar', 'posar').

Aumenta:

Tipo Descrição
SyntaxError

Se não for possível determinar a tarefa do modelo.

Código fonte em ultralytics/nn/tasks.py
def guess_model_task(model):
    """
    Guess the task of a PyTorch model from its architecture or configuration.

    Args:
        model (nn.Module | dict): PyTorch model or model configuration in YAML format.

    Returns:
        (str): Task of the model ('detect', 'segment', 'classify', 'pose').

    Raises:
        SyntaxError: If the task of the model could not be determined.
    """

    def cfg2task(cfg):
        """Guess from YAML dictionary."""
        m = cfg["head"][-1][-2].lower()  # output module name
        if m in {"classify", "classifier", "cls", "fc"}:
            return "classify"
        if m == "detect":
            return "detect"
        if m == "segment":
            return "segment"
        if m == "pose":
            return "pose"
        if m == "obb":
            return "obb"

    # Guess from model cfg
    if isinstance(model, dict):
        with contextlib.suppress(Exception):
            return cfg2task(model)

    # Guess from PyTorch model
    if isinstance(model, nn.Module):  # PyTorch model
        for x in "model.args", "model.model.args", "model.model.model.args":
            with contextlib.suppress(Exception):
                return eval(x)["task"]
        for x in "model.yaml", "model.model.yaml", "model.model.model.yaml":
            with contextlib.suppress(Exception):
                return cfg2task(eval(x))

        for m in model.modules():
            if isinstance(m, Segment):
                return "segment"
            elif isinstance(m, Classify):
                return "classify"
            elif isinstance(m, Pose):
                return "pose"
            elif isinstance(m, OBB):
                return "obb"
            elif isinstance(m, (Detect, WorldDetect)):
                return "detect"

    # Guess from model filename
    if isinstance(model, (str, Path)):
        model = Path(model)
        if "-seg" in model.stem or "segment" in model.parts:
            return "segment"
        elif "-cls" in model.stem or "classify" in model.parts:
            return "classify"
        elif "-pose" in model.stem or "pose" in model.parts:
            return "pose"
        elif "-obb" in model.stem or "obb" in model.parts:
            return "obb"
        elif "detect" in model.parts:
            return "detect"

    # Unable to determine task from model
    LOGGER.warning(
        "WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. "
        "Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify','pose' or 'obb'."
    )
    return "detect"  # assume detect





Criado em 2023-11-12, Atualizado em 2024-03-03
Autores: glenn-jocher (6), Laughing-q (1)