Reference for ultralytics/nn/modules/head.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/modules/head.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
Detect.forwardDetect.forward_end2endDetect._inferenceDetect.bias_initDetect.decode_bboxesDetect.postprocessSegment.forwardOBB.forwardOBB.decode_bboxesPose.forwardPose.kpts_decodeClassify.forwardWorldDetect.forwardWorldDetect.bias_initLRPCHead.conv2linearLRPCHead.forwardYOLOEDetect.fuseYOLOEDetect.get_tpeYOLOEDetect.get_vpeYOLOEDetect.forward_lrpcYOLOEDetect.forwardYOLOEDetect.bias_initYOLOESegment.forwardRTDETRDecoder.forwardRTDETRDecoder._generate_anchorsRTDETRDecoder._get_encoder_inputRTDETRDecoder._get_decoder_inputRTDETRDecoder._reset_parametersv10Detect.fuse
class ultralytics.nn.modules.head.Detect
Detect(self, nc: int = 80, ch: tuple = ())
Bases: nn.Module
YOLO Detect head for object detection models.
This class implements the detection head used in YOLO models for predicting bounding boxes and class probabilities. It supports both training and inference modes, with optional end-to-end detection capabilities.
Args
| Name | Type | Description | Default |
|---|---|---|---|
nc | int | Number of classes. | 80 |
ch | tuple | Tuple of channel sizes from backbone feature maps. | () |
Attributes
| Name | Type | Description |
|---|---|---|
dynamic | bool | Force grid reconstruction. |
export | bool | Export mode flag. |
format | str | Export format. |
end2end | bool | End-to-end detection mode. |
max_det | int | Maximum detections per image. |
shape | tuple | Input shape. |
anchors | torch.Tensor | Anchor points. |
strides | torch.Tensor | Feature map strides. |
legacy | bool | Backward compatibility for v3/v5/v8/v9 models. |
xyxy | bool | Output format, xyxy or xywh. |
nc | int | Number of classes. |
nl | int | Number of detection layers. |
reg_max | int | DFL channels. |
no | int | Number of outputs per anchor. |
stride | torch.Tensor | Strides computed during build. |
cv2 | nn.ModuleList | Convolution layers for box regression. |
cv3 | nn.ModuleList | Convolution layers for classification. |
dfl | nn.Module | Distribution Focal Loss layer. |
one2one_cv2 | nn.ModuleList | One-to-one convolution layers for box regression. |
one2one_cv3 | nn.ModuleList | One-to-one convolution layers for classification. |
Methods
| Name | Description |
|---|---|
_inference | Decode predicted bounding boxes and class probabilities based on multiple-level feature maps. |
bias_init | Initialize Detect() biases, WARNING: requires stride availability. |
decode_bboxes | Decode bounding boxes from predictions. |
forward | Concatenate and return predicted bounding boxes and class probabilities. |
forward_end2end | Perform forward pass of the v10Detect module. |
postprocess | Post-process YOLO model predictions. |
Examples
Create a detection head for 80 classes
>>> detect = Detect(nc=80, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = detect(x)
Source code in ultralytics/nn/modules/head.py
View on GitHubclass Detect(nn.Module):
"""YOLO Detect head for object detection models.
This class implements the detection head used in YOLO models for predicting bounding boxes and class probabilities.
It supports both training and inference modes, with optional end-to-end detection capabilities.
Attributes:
dynamic (bool): Force grid reconstruction.
export (bool): Export mode flag.
format (str): Export format.
end2end (bool): End-to-end detection mode.
max_det (int): Maximum detections per image.
shape (tuple): Input shape.
anchors (torch.Tensor): Anchor points.
strides (torch.Tensor): Feature map strides.
legacy (bool): Backward compatibility for v3/v5/v8/v9 models.
xyxy (bool): Output format, xyxy or xywh.
nc (int): Number of classes.
nl (int): Number of detection layers.
reg_max (int): DFL channels.
no (int): Number of outputs per anchor.
stride (torch.Tensor): Strides computed during build.
cv2 (nn.ModuleList): Convolution layers for box regression.
cv3 (nn.ModuleList): Convolution layers for classification.
dfl (nn.Module): Distribution Focal Loss layer.
one2one_cv2 (nn.ModuleList): One-to-one convolution layers for box regression.
one2one_cv3 (nn.ModuleList): One-to-one convolution layers for classification.
Methods:
forward: Perform forward pass and return predictions.
forward_end2end: Perform forward pass for end-to-end detection.
bias_init: Initialize detection head biases.
decode_bboxes: Decode bounding boxes from predictions.
postprocess: Post-process model predictions.
Examples:
Create a detection head for 80 classes
>>> detect = Detect(nc=80, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = detect(x)
"""
dynamic = False # force grid reconstruction
export = False # export mode
format = None # export format
end2end = False # end2end
max_det = 300 # max_det
shape = None
anchors = torch.empty(0) # init
strides = torch.empty(0) # init
legacy = False # backward compatibility for v3/v5/v8/v9 models
xyxy = False # xyxy or xywh output
def __init__(self, nc: int = 80, ch: tuple = ()):
"""Initialize the YOLO detection layer with specified number of classes and channels.
Args:
nc (int): Number of classes.
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__()
self.nc = nc # number of classes
self.nl = len(ch) # number of detection layers
self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
self.no = nc + self.reg_max * 4 # number of outputs per anchor
self.stride = torch.zeros(self.nl) # strides computed during build
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100)) # channels
self.cv2 = nn.ModuleList(
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
)
self.cv3 = (
nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
if self.legacy
else nn.ModuleList(
nn.Sequential(
nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
nn.Conv2d(c3, self.nc, 1),
)
for x in ch
)
)
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
if self.end2end:
self.one2one_cv2 = copy.deepcopy(self.cv2)
self.one2one_cv3 = copy.deepcopy(self.cv3)
method ultralytics.nn.modules.head.Detect._inference
def _inference(self, x: list[torch.Tensor]) -> torch.Tensor
Decode predicted bounding boxes and class probabilities based on multiple-level feature maps.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | list[torch.Tensor] | List of feature maps from different detection layers. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | Concatenated tensor of decoded bounding boxes and class probabilities. |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef _inference(self, x: list[torch.Tensor]) -> torch.Tensor:
"""Decode predicted bounding boxes and class probabilities based on multiple-level feature maps.
Args:
x (list[torch.Tensor]): List of feature maps from different detection layers.
Returns:
(torch.Tensor): Concatenated tensor of decoded bounding boxes and class probabilities.
"""
# Inference path
shape = x[0].shape # BCHW
x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
if self.dynamic or self.shape != shape:
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
self.shape = shape
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
return torch.cat((dbox, cls.sigmoid()), 1)
method ultralytics.nn.modules.head.Detect.bias_init
def bias_init(self)
Initialize Detect() biases, WARNING: requires stride availability.
Source code in ultralytics/nn/modules/head.py
View on GitHubdef bias_init(self):
"""Initialize Detect() biases, WARNING: requires stride availability."""
m = self # self.model[-1] # Detect() module
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
a[-1].bias.data[:] = 1.0 # box
b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
if self.end2end:
for a, b, s in zip(m.one2one_cv2, m.one2one_cv3, m.stride): # from
a[-1].bias.data[:] = 1.0 # box
b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
method ultralytics.nn.modules.head.Detect.decode_bboxes
def decode_bboxes(self, bboxes: torch.Tensor, anchors: torch.Tensor, xywh: bool = True) -> torch.Tensor
Decode bounding boxes from predictions.
Args
| Name | Type | Description | Default |
|---|---|---|---|
bboxes | torch.Tensor | required | |
anchors | torch.Tensor | required | |
xywh | bool | True |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef decode_bboxes(self, bboxes: torch.Tensor, anchors: torch.Tensor, xywh: bool = True) -> torch.Tensor:
"""Decode bounding boxes from predictions."""
return dist2bbox(
bboxes,
anchors,
xywh=xywh and not self.end2end and not self.xyxy,
dim=1,
)
method ultralytics.nn.modules.head.Detect.forward
def forward(self, x: list[torch.Tensor]) -> list[torch.Tensor] | tuple
Concatenate and return predicted bounding boxes and class probabilities.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | list[torch.Tensor] | required |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef forward(self, x: list[torch.Tensor]) -> list[torch.Tensor] | tuple:
"""Concatenate and return predicted bounding boxes and class probabilities."""
if self.end2end:
return self.forward_end2end(x)
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
if self.training: # Training path
return x
y = self._inference(x)
return y if self.export else (y, x)
method ultralytics.nn.modules.head.Detect.forward_end2end
def forward_end2end(self, x: list[torch.Tensor]) -> dict | tuple
Perform forward pass of the v10Detect module.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | list[torch.Tensor] | Input feature maps from different levels. | required |
Returns
| Type | Description |
|---|---|
outputs (dict | tuple) | Training mode returns dict with one2many and one2one outputs. Inference mode returns |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef forward_end2end(self, x: list[torch.Tensor]) -> dict | tuple:
"""Perform forward pass of the v10Detect module.
Args:
x (list[torch.Tensor]): Input feature maps from different levels.
Returns:
outputs (dict | tuple): Training mode returns dict with one2many and one2one outputs. Inference mode returns
processed detections or tuple with detections and raw outputs.
"""
x_detach = [xi.detach() for xi in x]
one2one = [
torch.cat((self.one2one_cv2[i](x_detach[i]), self.one2one_cv3[i](x_detach[i])), 1) for i in range(self.nl)
]
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
if self.training: # Training path
return {"one2many": x, "one2one": one2one}
y = self._inference(one2one)
y = self.postprocess(y.permute(0, 2, 1), self.max_det, self.nc)
return y if self.export else (y, {"one2many": x, "one2one": one2one})
method ultralytics.nn.modules.head.Detect.postprocess
def postprocess(preds: torch.Tensor, max_det: int, nc: int = 80) -> torch.Tensor
Post-process YOLO model predictions.
Args
| Name | Type | Description | Default |
|---|---|---|---|
preds | torch.Tensor | Raw predictions with shape (batch_size, num_anchors, 4 + nc) with last dimension format [x, y, w, h, class_probs]. | required |
max_det | int | Maximum detections per image. | required |
nc | int, optional | Number of classes. | 80 |
Returns
| Type | Description |
|---|---|
torch.Tensor | Processed predictions with shape (batch_size, min(max_det, num_anchors), 6) and last |
Source code in ultralytics/nn/modules/head.py
View on GitHub@staticmethod
def postprocess(preds: torch.Tensor, max_det: int, nc: int = 80) -> torch.Tensor:
"""Post-process YOLO model predictions.
Args:
preds (torch.Tensor): Raw predictions with shape (batch_size, num_anchors, 4 + nc) with last dimension
format [x, y, w, h, class_probs].
max_det (int): Maximum detections per image.
nc (int, optional): Number of classes.
Returns:
(torch.Tensor): Processed predictions with shape (batch_size, min(max_det, num_anchors), 6) and last
dimension format [x, y, w, h, max_class_prob, class_index].
"""
batch_size, anchors, _ = preds.shape # i.e. shape(16,8400,84)
boxes, scores = preds.split([4, nc], dim=-1)
index = scores.amax(dim=-1).topk(min(max_det, anchors))[1].unsqueeze(-1)
boxes = boxes.gather(dim=1, index=index.repeat(1, 1, 4))
scores = scores.gather(dim=1, index=index.repeat(1, 1, nc))
scores, index = scores.flatten(1).topk(min(max_det, anchors))
i = torch.arange(batch_size)[..., None] # batch indices
return torch.cat([boxes[i, index // nc], scores[..., None], (index % nc)[..., None].float()], dim=-1)
class ultralytics.nn.modules.head.Segment
Segment(self, nc: int = 80, nm: int = 32, npr: int = 256, ch: tuple = ())
Bases: Detect
YOLO Segment head for segmentation models.
This class extends the Detect head to include mask prediction capabilities for instance segmentation tasks.
Args
| Name | Type | Description | Default |
|---|---|---|---|
nc | int | Number of classes. | 80 |
nm | int | Number of masks. | 32 |
npr | int | Number of protos. | 256 |
ch | tuple | Tuple of channel sizes from backbone feature maps. | () |
Attributes
| Name | Type | Description |
|---|---|---|
nm | int | Number of masks. |
npr | int | Number of protos. |
proto | Proto | Prototype generation module. |
cv4 | nn.ModuleList | Convolution layers for mask coefficients. |
Methods
| Name | Description |
|---|---|
forward | Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients. |
Examples
Create a segmentation head
>>> segment = Segment(nc=80, nm=32, npr=256, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = segment(x)
Source code in ultralytics/nn/modules/head.py
View on GitHubclass Segment(Detect):
"""YOLO Segment head for segmentation models.
This class extends the Detect head to include mask prediction capabilities for instance segmentation tasks.
Attributes:
nm (int): Number of masks.
npr (int): Number of protos.
proto (Proto): Prototype generation module.
cv4 (nn.ModuleList): Convolution layers for mask coefficients.
Methods:
forward: Return model outputs and mask coefficients.
Examples:
Create a segmentation head
>>> segment = Segment(nc=80, nm=32, npr=256, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = segment(x)
"""
def __init__(self, nc: int = 80, nm: int = 32, npr: int = 256, ch: tuple = ()):
"""Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers.
Args:
nc (int): Number of classes.
nm (int): Number of masks.
npr (int): Number of protos.
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__(nc, ch)
self.nm = nm # number of masks
self.npr = npr # number of protos
self.proto = Proto(ch[0], self.npr, self.nm) # protos
c4 = max(ch[0] // 4, self.nm)
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
method ultralytics.nn.modules.head.Segment.forward
def forward(self, x: list[torch.Tensor]) -> tuple | list[torch.Tensor]
Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | list[torch.Tensor] | required |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef forward(self, x: list[torch.Tensor]) -> tuple | list[torch.Tensor]:
"""Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
p = self.proto(x[0]) # mask protos
bs = p.shape[0] # batch size
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
x = Detect.forward(self, x)
if self.training:
return x, mc, p
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
class ultralytics.nn.modules.head.OBB
OBB(self, nc: int = 80, ne: int = 1, ch: tuple = ())
Bases: Detect
YOLO OBB detection head for detection with rotation models.
This class extends the Detect head to include oriented bounding box prediction with rotation angles.
Args
| Name | Type | Description | Default |
|---|---|---|---|
nc | int | Number of classes. | 80 |
ne | int | Number of extra parameters. | 1 |
ch | tuple | Tuple of channel sizes from backbone feature maps. | () |
Attributes
| Name | Type | Description |
|---|---|---|
ne | int | Number of extra parameters. |
cv4 | nn.ModuleList | Convolution layers for angle prediction. |
angle | torch.Tensor | Predicted rotation angles. |
Methods
| Name | Description |
|---|---|
decode_bboxes | Decode rotated bounding boxes. |
forward | Concatenate and return predicted bounding boxes and class probabilities. |
Examples
Create an OBB detection head
>>> obb = OBB(nc=80, ne=1, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = obb(x)
Source code in ultralytics/nn/modules/head.py
View on GitHubclass OBB(Detect):
"""YOLO OBB detection head for detection with rotation models.
This class extends the Detect head to include oriented bounding box prediction with rotation angles.
Attributes:
ne (int): Number of extra parameters.
cv4 (nn.ModuleList): Convolution layers for angle prediction.
angle (torch.Tensor): Predicted rotation angles.
Methods:
forward: Concatenate and return predicted bounding boxes and class probabilities.
decode_bboxes: Decode rotated bounding boxes.
Examples:
Create an OBB detection head
>>> obb = OBB(nc=80, ne=1, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = obb(x)
"""
def __init__(self, nc: int = 80, ne: int = 1, ch: tuple = ()):
"""Initialize OBB with number of classes `nc` and layer channels `ch`.
Args:
nc (int): Number of classes.
ne (int): Number of extra parameters.
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__(nc, ch)
self.ne = ne # number of extra parameters
c4 = max(ch[0] // 4, self.ne)
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.ne, 1)) for x in ch)
method ultralytics.nn.modules.head.OBB.decode_bboxes
def decode_bboxes(self, bboxes: torch.Tensor, anchors: torch.Tensor) -> torch.Tensor
Decode rotated bounding boxes.
Args
| Name | Type | Description | Default |
|---|---|---|---|
bboxes | torch.Tensor | required | |
anchors | torch.Tensor | required |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef decode_bboxes(self, bboxes: torch.Tensor, anchors: torch.Tensor) -> torch.Tensor:
"""Decode rotated bounding boxes."""
return dist2rbox(bboxes, self.angle, anchors, dim=1)
method ultralytics.nn.modules.head.OBB.forward
def forward(self, x: list[torch.Tensor]) -> torch.Tensor | tuple
Concatenate and return predicted bounding boxes and class probabilities.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | list[torch.Tensor] | required |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef forward(self, x: list[torch.Tensor]) -> torch.Tensor | tuple:
"""Concatenate and return predicted bounding boxes and class probabilities."""
bs = x[0].shape[0] # batch size
angle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2) # OBB theta logits
# NOTE: set `angle` as an attribute so that `decode_bboxes` could use it.
angle = (angle.sigmoid() - 0.25) * math.pi # [-pi/4, 3pi/4]
# angle = angle.sigmoid() * math.pi / 2 # [0, pi/2]
if not self.training:
self.angle = angle
x = Detect.forward(self, x)
if self.training:
return x, angle
return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))
class ultralytics.nn.modules.head.Pose
Pose(self, nc: int = 80, kpt_shape: tuple = (17, 3), ch: tuple = ())
Bases: Detect
YOLO Pose head for keypoints models.
This class extends the Detect head to include keypoint prediction capabilities for pose estimation tasks.
Args
| Name | Type | Description | Default |
|---|---|---|---|
nc | int | Number of classes. | 80 |
kpt_shape | tuple | Number of keypoints, number of dims (2 for x,y or 3 for x,y,visible). | (17, 3) |
ch | tuple | Tuple of channel sizes from backbone feature maps. | () |
Attributes
| Name | Type | Description |
|---|---|---|
kpt_shape | tuple | Number of keypoints and dimensions (2 for x,y or 3 for x,y,visible). |
nk | int | Total number of keypoint values. |
cv4 | nn.ModuleList | Convolution layers for keypoint prediction. |
Methods
| Name | Description |
|---|---|
forward | Perform forward pass through YOLO model and return predictions. |
kpts_decode | Decode keypoints from predictions. |
Examples
Create a pose detection head
>>> pose = Pose(nc=80, kpt_shape=(17, 3), ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = pose(x)
Source code in ultralytics/nn/modules/head.py
View on GitHubclass Pose(Detect):
"""YOLO Pose head for keypoints models.
This class extends the Detect head to include keypoint prediction capabilities for pose estimation tasks.
Attributes:
kpt_shape (tuple): Number of keypoints and dimensions (2 for x,y or 3 for x,y,visible).
nk (int): Total number of keypoint values.
cv4 (nn.ModuleList): Convolution layers for keypoint prediction.
Methods:
forward: Perform forward pass through YOLO model and return predictions.
kpts_decode: Decode keypoints from predictions.
Examples:
Create a pose detection head
>>> pose = Pose(nc=80, kpt_shape=(17, 3), ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = pose(x)
"""
def __init__(self, nc: int = 80, kpt_shape: tuple = (17, 3), ch: tuple = ()):
"""Initialize YOLO network with default parameters and Convolutional Layers.
Args:
nc (int): Number of classes.
kpt_shape (tuple): Number of keypoints, number of dims (2 for x,y or 3 for x,y,visible).
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__(nc, ch)
self.kpt_shape = kpt_shape # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
self.nk = kpt_shape[0] * kpt_shape[1] # number of keypoints total
c4 = max(ch[0] // 4, self.nk)
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)
method ultralytics.nn.modules.head.Pose.forward
def forward(self, x: list[torch.Tensor]) -> torch.Tensor | tuple
Perform forward pass through YOLO model and return predictions.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | list[torch.Tensor] | required |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef forward(self, x: list[torch.Tensor]) -> torch.Tensor | tuple:
"""Perform forward pass through YOLO model and return predictions."""
bs = x[0].shape[0] # batch size
kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1) # (bs, 17*3, h*w)
x = Detect.forward(self, x)
if self.training:
return x, kpt
pred_kpt = self.kpts_decode(bs, kpt)
return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))
method ultralytics.nn.modules.head.Pose.kpts_decode
def kpts_decode(self, bs: int, kpts: torch.Tensor) -> torch.Tensor
Decode keypoints from predictions.
Args
| Name | Type | Description | Default |
|---|---|---|---|
bs | int | required | |
kpts | torch.Tensor | required |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef kpts_decode(self, bs: int, kpts: torch.Tensor) -> torch.Tensor:
"""Decode keypoints from predictions."""
ndim = self.kpt_shape[1]
if self.export:
# NCNN fix
y = kpts.view(bs, *self.kpt_shape, -1)
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
if ndim == 3:
a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
return a.view(bs, self.nk, -1)
else:
y = kpts.clone()
if ndim == 3:
if NOT_MACOS14:
y[:, 2::ndim].sigmoid_()
else: # Apple macOS14 MPS bug https://github.com/ultralytics/ultralytics/pull/21878
y[:, 2::ndim] = y[:, 2::ndim].sigmoid()
y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
return y
class ultralytics.nn.modules.head.Classify
Classify(self, c1: int, c2: int, k: int = 1, s: int = 1, p: int | None = None, g: int = 1)
Bases: nn.Module
YOLO classification head, i.e. x(b,c1,20,20) to x(b,c2).
This class implements a classification head that transforms feature maps into class predictions.
Args
| Name | Type | Description | Default |
|---|---|---|---|
c1 | int | Number of input channels. | required |
c2 | int | Number of output classes. | required |
k | int, optional | Kernel size. | 1 |
s | int, optional | Stride. | 1 |
p | int, optional | Padding. | None |
g | int, optional | Groups. | 1 |
Attributes
| Name | Type | Description |
|---|---|---|
export | bool | Export mode flag. |
conv | Conv | Convolutional layer for feature transformation. |
pool | nn.AdaptiveAvgPool2d | Global average pooling layer. |
drop | nn.Dropout | Dropout layer for regularization. |
linear | nn.Linear | Linear layer for final classification. |
Methods
| Name | Description |
|---|---|
forward | Perform forward pass of the YOLO model on input image data. |
Examples
Create a classification head
>>> classify = Classify(c1=1024, c2=1000)
>>> x = torch.randn(1, 1024, 20, 20)
>>> output = classify(x)
Source code in ultralytics/nn/modules/head.py
View on GitHubclass Classify(nn.Module):
"""YOLO classification head, i.e. x(b,c1,20,20) to x(b,c2).
This class implements a classification head that transforms feature maps into class predictions.
Attributes:
export (bool): Export mode flag.
conv (Conv): Convolutional layer for feature transformation.
pool (nn.AdaptiveAvgPool2d): Global average pooling layer.
drop (nn.Dropout): Dropout layer for regularization.
linear (nn.Linear): Linear layer for final classification.
Methods:
forward: Perform forward pass of the YOLO model on input image data.
Examples:
Create a classification head
>>> classify = Classify(c1=1024, c2=1000)
>>> x = torch.randn(1, 1024, 20, 20)
>>> output = classify(x)
"""
export = False # export mode
def __init__(self, c1: int, c2: int, k: int = 1, s: int = 1, p: int | None = None, g: int = 1):
"""Initialize YOLO classification head to transform input tensor from (b,c1,20,20) to (b,c2) shape.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output classes.
k (int, optional): Kernel size.
s (int, optional): Stride.
p (int, optional): Padding.
g (int, optional): Groups.
"""
super().__init__()
c_ = 1280 # efficientnet_b0 size
self.conv = Conv(c1, c_, k, s, p, g)
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
self.drop = nn.Dropout(p=0.0, inplace=True)
self.linear = nn.Linear(c_, c2) # to x(b,c2)
method ultralytics.nn.modules.head.Classify.forward
def forward(self, x: list[torch.Tensor] | torch.Tensor) -> torch.Tensor | tuple
Perform forward pass of the YOLO model on input image data.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | list[torch.Tensor] | torch.Tensor | required |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef forward(self, x: list[torch.Tensor] | torch.Tensor) -> torch.Tensor | tuple:
"""Perform forward pass of the YOLO model on input image data."""
if isinstance(x, list):
x = torch.cat(x, 1)
x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
if self.training:
return x
y = x.softmax(1) # get final output
return y if self.export else (y, x)
class ultralytics.nn.modules.head.WorldDetect
WorldDetect(self, nc: int = 80, embed: int = 512, with_bn: bool = False, ch: tuple = ())
Bases: Detect
Head for integrating YOLO detection models with semantic understanding from text embeddings.
This class extends the standard Detect head to incorporate text embeddings for enhanced semantic understanding in object detection tasks.
Args
| Name | Type | Description | Default |
|---|---|---|---|
nc | int | Number of classes. | 80 |
embed | int | Embedding dimension. | 512 |
with_bn | bool | Whether to use batch normalization in contrastive head. | False |
ch | tuple | Tuple of channel sizes from backbone feature maps. | () |
Attributes
| Name | Type | Description |
|---|---|---|
cv3 | nn.ModuleList | Convolution layers for embedding features. |
cv4 | nn.ModuleList | Contrastive head layers for text-vision alignment. |
Methods
| Name | Description |
|---|---|
bias_init | Initialize Detect() biases, WARNING: requires stride availability. |
forward | Concatenate and return predicted bounding boxes and class probabilities. |
Examples
Create a WorldDetect head
>>> world_detect = WorldDetect(nc=80, embed=512, with_bn=False, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> text = torch.randn(1, 80, 512)
>>> outputs = world_detect(x, text)
Source code in ultralytics/nn/modules/head.py
View on GitHubclass WorldDetect(Detect):
"""Head for integrating YOLO detection models with semantic understanding from text embeddings.
This class extends the standard Detect head to incorporate text embeddings for enhanced semantic understanding in
object detection tasks.
Attributes:
cv3 (nn.ModuleList): Convolution layers for embedding features.
cv4 (nn.ModuleList): Contrastive head layers for text-vision alignment.
Methods:
forward: Concatenate and return predicted bounding boxes and class probabilities.
bias_init: Initialize detection head biases.
Examples:
Create a WorldDetect head
>>> world_detect = WorldDetect(nc=80, embed=512, with_bn=False, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> text = torch.randn(1, 80, 512)
>>> outputs = world_detect(x, text)
"""
def __init__(self, nc: int = 80, embed: int = 512, with_bn: bool = False, ch: tuple = ()):
"""Initialize YOLO detection layer with nc classes and layer channels ch.
Args:
nc (int): Number of classes.
embed (int): Embedding dimension.
with_bn (bool): Whether to use batch normalization in contrastive head.
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__(nc, ch)
c3 = max(ch[0], min(self.nc, 100))
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)
method ultralytics.nn.modules.head.WorldDetect.bias_init
def bias_init(self)
Initialize Detect() biases, WARNING: requires stride availability.
Source code in ultralytics/nn/modules/head.py
View on GitHubdef bias_init(self):
"""Initialize Detect() biases, WARNING: requires stride availability."""
m = self # self.model[-1] # Detect() module
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
a[-1].bias.data[:] = 1.0 # box
method ultralytics.nn.modules.head.WorldDetect.forward
def forward(self, x: list[torch.Tensor], text: torch.Tensor) -> list[torch.Tensor] | tuple
Concatenate and return predicted bounding boxes and class probabilities.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | list[torch.Tensor] | required | |
text | torch.Tensor | required |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef forward(self, x: list[torch.Tensor], text: torch.Tensor) -> list[torch.Tensor] | tuple:
"""Concatenate and return predicted bounding boxes and class probabilities."""
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), text)), 1)
if self.training:
return x
self.no = self.nc + self.reg_max * 4 # self.nc could be changed when inference with different texts
y = self._inference(x)
return y if self.export else (y, x)
class ultralytics.nn.modules.head.LRPCHead
LRPCHead(self, vocab: nn.Module, pf: nn.Module, loc: nn.Module, enabled: bool = True)
Bases: nn.Module
Lightweight Region Proposal and Classification Head for efficient object detection.
This head combines region proposal filtering with classification to enable efficient detection with dynamic vocabulary support.
Args
| Name | Type | Description | Default |
|---|---|---|---|
vocab | nn.Module | Vocabulary/classification module. | required |
pf | nn.Module | Proposal filter module. | required |
loc | nn.Module | Localization module. | required |
enabled | bool | Whether to enable the head functionality. | True |
Attributes
| Name | Type | Description |
|---|---|---|
vocab | nn.Module | Vocabulary/classification layer. |
pf | nn.Module | Proposal filter module. |
loc | nn.Module | Localization module. |
enabled | bool | Whether the head is enabled. |
Methods
| Name | Description |
|---|---|
conv2linear | Convert a 1x1 convolutional layer to a linear layer. |
forward | Process classification and localization features to generate detection proposals. |
Examples
Create an LRPC head
>>> vocab = nn.Conv2d(256, 80, 1)
>>> pf = nn.Conv2d(256, 1, 1)
>>> loc = nn.Conv2d(256, 4, 1)
>>> head = LRPCHead(vocab, pf, loc, enabled=True)
Source code in ultralytics/nn/modules/head.py
View on GitHubclass LRPCHead(nn.Module):
"""Lightweight Region Proposal and Classification Head for efficient object detection.
This head combines region proposal filtering with classification to enable efficient detection with dynamic
vocabulary support.
Attributes:
vocab (nn.Module): Vocabulary/classification layer.
pf (nn.Module): Proposal filter module.
loc (nn.Module): Localization module.
enabled (bool): Whether the head is enabled.
Methods:
conv2linear: Convert a 1x1 convolutional layer to a linear layer.
forward: Process classification and localization features to generate detection proposals.
Examples:
Create an LRPC head
>>> vocab = nn.Conv2d(256, 80, 1)
>>> pf = nn.Conv2d(256, 1, 1)
>>> loc = nn.Conv2d(256, 4, 1)
>>> head = LRPCHead(vocab, pf, loc, enabled=True)
"""
def __init__(self, vocab: nn.Module, pf: nn.Module, loc: nn.Module, enabled: bool = True):
"""Initialize LRPCHead with vocabulary, proposal filter, and localization components.
Args:
vocab (nn.Module): Vocabulary/classification module.
pf (nn.Module): Proposal filter module.
loc (nn.Module): Localization module.
enabled (bool): Whether to enable the head functionality.
"""
super().__init__()
self.vocab = self.conv2linear(vocab) if enabled else vocab
self.pf = pf
self.loc = loc
self.enabled = enabled
method ultralytics.nn.modules.head.LRPCHead.conv2linear
def conv2linear(self, conv: nn.Conv2d) -> nn.Linear
Convert a 1x1 convolutional layer to a linear layer.
Args
| Name | Type | Description | Default |
|---|---|---|---|
conv | nn.Conv2d | required |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef conv2linear(self, conv: nn.Conv2d) -> nn.Linear:
"""Convert a 1x1 convolutional layer to a linear layer."""
assert isinstance(conv, nn.Conv2d) and conv.kernel_size == (1, 1)
linear = nn.Linear(conv.in_channels, conv.out_channels)
linear.weight.data = conv.weight.view(conv.out_channels, -1).data
linear.bias.data = conv.bias.data
return linear
method ultralytics.nn.modules.head.LRPCHead.forward
def forward(self, cls_feat: torch.Tensor, loc_feat: torch.Tensor, conf: float) -> tuple[tuple, torch.Tensor]
Process classification and localization features to generate detection proposals.
Args
| Name | Type | Description | Default |
|---|---|---|---|
cls_feat | torch.Tensor | required | |
loc_feat | torch.Tensor | required | |
conf | float | required |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef forward(self, cls_feat: torch.Tensor, loc_feat: torch.Tensor, conf: float) -> tuple[tuple, torch.Tensor]:
"""Process classification and localization features to generate detection proposals."""
if self.enabled:
pf_score = self.pf(cls_feat)[0, 0].flatten(0)
mask = pf_score.sigmoid() > conf
cls_feat = cls_feat.flatten(2).transpose(-1, -2)
cls_feat = self.vocab(cls_feat[:, mask] if conf else cls_feat * mask.unsqueeze(-1).int())
return (self.loc(loc_feat), cls_feat.transpose(-1, -2)), mask
else:
cls_feat = self.vocab(cls_feat)
loc_feat = self.loc(loc_feat)
return (loc_feat, cls_feat.flatten(2)), torch.ones(
cls_feat.shape[2] * cls_feat.shape[3], device=cls_feat.device, dtype=torch.bool
)
class ultralytics.nn.modules.head.YOLOEDetect
YOLOEDetect(self, nc: int = 80, embed: int = 512, with_bn: bool = False, ch: tuple = ())
Bases: Detect
Head for integrating YOLO detection models with semantic understanding from text embeddings.
This class extends the standard Detect head to support text-guided detection with enhanced semantic understanding through text embeddings and visual prompt embeddings.
Args
| Name | Type | Description | Default |
|---|---|---|---|
nc | int | Number of classes. | 80 |
embed | int | Embedding dimension. | 512 |
with_bn | bool | Whether to use batch normalization in contrastive head. | False |
ch | tuple | Tuple of channel sizes from backbone feature maps. | () |
Attributes
| Name | Type | Description |
|---|---|---|
is_fused | bool | Whether the model is fused for inference. |
cv3 | nn.ModuleList | Convolution layers for embedding features. |
cv4 | nn.ModuleList | Contrastive head layers for text-vision alignment. |
reprta | Residual | Residual block for text prompt embeddings. |
savpe | SAVPE | Spatial-aware visual prompt embeddings module. |
embed | int | Embedding dimension. |
Methods
| Name | Description |
|---|---|
bias_init | Initialize biases for detection heads. |
forward | Process features with class prompt embeddings to generate detections. |
forward_lrpc | Process features with fused text embeddings to generate detections for prompt-free model. |
fuse | Fuse text features with model weights for efficient inference. |
get_tpe | Get text prompt embeddings with normalization. |
get_vpe | Get visual prompt embeddings with spatial awareness. |
Examples
Create a YOLOEDetect head
>>> yoloe_detect = YOLOEDetect(nc=80, embed=512, with_bn=True, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> cls_pe = torch.randn(1, 80, 512)
>>> outputs = yoloe_detect(x, cls_pe)
Source code in ultralytics/nn/modules/head.py
View on GitHubclass YOLOEDetect(Detect):
"""Head for integrating YOLO detection models with semantic understanding from text embeddings.
This class extends the standard Detect head to support text-guided detection with enhanced semantic understanding
through text embeddings and visual prompt embeddings.
Attributes:
is_fused (bool): Whether the model is fused for inference.
cv3 (nn.ModuleList): Convolution layers for embedding features.
cv4 (nn.ModuleList): Contrastive head layers for text-vision alignment.
reprta (Residual): Residual block for text prompt embeddings.
savpe (SAVPE): Spatial-aware visual prompt embeddings module.
embed (int): Embedding dimension.
Methods:
fuse: Fuse text features with model weights for efficient inference.
get_tpe: Get text prompt embeddings with normalization.
get_vpe: Get visual prompt embeddings with spatial awareness.
forward_lrpc: Process features with fused text embeddings for prompt-free model.
forward: Process features with class prompt embeddings to generate detections.
bias_init: Initialize biases for detection heads.
Examples:
Create a YOLOEDetect head
>>> yoloe_detect = YOLOEDetect(nc=80, embed=512, with_bn=True, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> cls_pe = torch.randn(1, 80, 512)
>>> outputs = yoloe_detect(x, cls_pe)
"""
is_fused = False
def __init__(self, nc: int = 80, embed: int = 512, with_bn: bool = False, ch: tuple = ()):
"""Initialize YOLO detection layer with nc classes and layer channels ch.
Args:
nc (int): Number of classes.
embed (int): Embedding dimension.
with_bn (bool): Whether to use batch normalization in contrastive head.
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__(nc, ch)
c3 = max(ch[0], min(self.nc, 100))
assert c3 <= embed
assert with_bn
self.cv3 = (
nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
if self.legacy
else nn.ModuleList(
nn.Sequential(
nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
nn.Conv2d(c3, embed, 1),
)
for x in ch
)
)
self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)
self.reprta = Residual(SwiGLUFFN(embed, embed))
self.savpe = SAVPE(ch, c3, embed)
self.embed = embed
method ultralytics.nn.modules.head.YOLOEDetect.bias_init
def bias_init(self)
Initialize biases for detection heads.
Source code in ultralytics/nn/modules/head.py
View on GitHubdef bias_init(self):
"""Initialize biases for detection heads."""
m = self # self.model[-1] # Detect() module
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
for a, b, c, s in zip(m.cv2, m.cv3, m.cv4, m.stride): # from
a[-1].bias.data[:] = 1.0 # box
# b[-1].bias.data[:] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
b[-1].bias.data[:] = 0.0
c.bias.data[:] = math.log(5 / m.nc / (640 / s) ** 2)
method ultralytics.nn.modules.head.YOLOEDetect.forward
def forward(self, x: list[torch.Tensor], cls_pe: torch.Tensor, return_mask: bool = False) -> torch.Tensor | tuple
Process features with class prompt embeddings to generate detections.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | list[torch.Tensor] | required | |
cls_pe | torch.Tensor | required | |
return_mask | bool | False |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef forward(self, x: list[torch.Tensor], cls_pe: torch.Tensor, return_mask: bool = False) -> torch.Tensor | tuple:
"""Process features with class prompt embeddings to generate detections."""
if hasattr(self, "lrpc"): # for prompt-free inference
return self.forward_lrpc(x, return_mask)
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), cls_pe)), 1)
if self.training:
return x
self.no = self.nc + self.reg_max * 4 # self.nc could be changed when inference with different texts
y = self._inference(x)
return y if self.export else (y, x)
method ultralytics.nn.modules.head.YOLOEDetect.forward_lrpc
def forward_lrpc(self, x: list[torch.Tensor], return_mask: bool = False) -> torch.Tensor | tuple
Process features with fused text embeddings to generate detections for prompt-free model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | list[torch.Tensor] | required | |
return_mask | bool | False |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef forward_lrpc(self, x: list[torch.Tensor], return_mask: bool = False) -> torch.Tensor | tuple:
"""Process features with fused text embeddings to generate detections for prompt-free model."""
masks = []
assert self.is_fused, "Prompt-free inference requires model to be fused!"
for i in range(self.nl):
cls_feat = self.cv3[i](x[i])
loc_feat = self.cv2[i](x[i])
assert isinstance(self.lrpc[i], LRPCHead)
x[i], mask = self.lrpc[i](
cls_feat, loc_feat, 0 if self.export and not self.dynamic else getattr(self, "conf", 0.001)
)
masks.append(mask)
shape = x[0][0].shape
if self.dynamic or self.shape != shape:
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors([b[0] for b in x], self.stride, 0.5))
self.shape = shape
box = torch.cat([xi[0].view(shape[0], self.reg_max * 4, -1) for xi in x], 2)
cls = torch.cat([xi[1] for xi in x], 2)
if self.export and self.format in {"tflite", "edgetpu"}:
# Precompute normalization factor to increase numerical stability
# See https://github.com/ultralytics/ultralytics/issues/7371
grid_h = shape[2]
grid_w = shape[3]
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
norm = self.strides / (self.stride[0] * grid_size)
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
else:
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
mask = torch.cat(masks)
y = torch.cat((dbox if self.export and not self.dynamic else dbox[..., mask], cls.sigmoid()), 1)
if return_mask:
return (y, mask) if self.export else ((y, x), mask)
else:
return y if self.export else (y, x)
method ultralytics.nn.modules.head.YOLOEDetect.fuse
def fuse(self, txt_feats: torch.Tensor)
Fuse text features with model weights for efficient inference.
Args
| Name | Type | Description | Default |
|---|---|---|---|
txt_feats | torch.Tensor | required |
Source code in ultralytics/nn/modules/head.py
View on GitHub@smart_inference_mode()
def fuse(self, txt_feats: torch.Tensor):
"""Fuse text features with model weights for efficient inference."""
if self.is_fused:
return
assert not self.training
txt_feats = txt_feats.to(torch.float32).squeeze(0)
for cls_head, bn_head in zip(self.cv3, self.cv4):
assert isinstance(cls_head, nn.Sequential)
assert isinstance(bn_head, BNContrastiveHead)
conv = cls_head[-1]
assert isinstance(conv, nn.Conv2d)
logit_scale = bn_head.logit_scale
bias = bn_head.bias
norm = bn_head.norm
t = txt_feats * logit_scale.exp()
conv: nn.Conv2d = fuse_conv_and_bn(conv, norm)
w = conv.weight.data.squeeze(-1).squeeze(-1)
b = conv.bias.data
w = t @ w
b1 = (t @ b.reshape(-1).unsqueeze(-1)).squeeze(-1)
b2 = torch.ones_like(b1) * bias
conv = (
nn.Conv2d(
conv.in_channels,
w.shape[0],
kernel_size=1,
)
.requires_grad_(False)
.to(conv.weight.device)
)
conv.weight.data.copy_(w.unsqueeze(-1).unsqueeze(-1))
conv.bias.data.copy_(b1 + b2)
cls_head[-1] = conv
bn_head.fuse()
del self.reprta
self.reprta = nn.Identity()
self.is_fused = True
method ultralytics.nn.modules.head.YOLOEDetect.get_tpe
def get_tpe(self, tpe: torch.Tensor | None) -> torch.Tensor | None
Get text prompt embeddings with normalization.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tpe | torch.Tensor | None | required |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef get_tpe(self, tpe: torch.Tensor | None) -> torch.Tensor | None:
"""Get text prompt embeddings with normalization."""
return None if tpe is None else F.normalize(self.reprta(tpe), dim=-1, p=2)
method ultralytics.nn.modules.head.YOLOEDetect.get_vpe
def get_vpe(self, x: list[torch.Tensor], vpe: torch.Tensor) -> torch.Tensor
Get visual prompt embeddings with spatial awareness.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | list[torch.Tensor] | required | |
vpe | torch.Tensor | required |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef get_vpe(self, x: list[torch.Tensor], vpe: torch.Tensor) -> torch.Tensor:
"""Get visual prompt embeddings with spatial awareness."""
if vpe.shape[1] == 0: # no visual prompt embeddings
return torch.zeros(x[0].shape[0], 0, self.embed, device=x[0].device)
if vpe.ndim == 4: # (B, N, H, W)
vpe = self.savpe(x, vpe)
assert vpe.ndim == 3 # (B, N, D)
return vpe
class ultralytics.nn.modules.head.YOLOESegment
YOLOESegment(self, nc: int = 80, nm: int = 32, npr: int = 256, embed: int = 512, with_bn: bool = False, ch: tuple = ())
Bases: YOLOEDetect
YOLO segmentation head with text embedding capabilities.
This class extends YOLOEDetect to include mask prediction capabilities for instance segmentation tasks with text-guided semantic understanding.
Args
| Name | Type | Description | Default |
|---|---|---|---|
nc | int | Number of classes. | 80 |
nm | int | Number of masks. | 32 |
npr | int | Number of protos. | 256 |
embed | int | Embedding dimension. | 512 |
with_bn | bool | Whether to use batch normalization in contrastive head. | False |
ch | tuple | Tuple of channel sizes from backbone feature maps. | () |
Attributes
| Name | Type | Description |
|---|---|---|
nm | int | Number of masks. |
npr | int | Number of protos. |
proto | Proto | Prototype generation module. |
cv5 | nn.ModuleList | Convolution layers for mask coefficients. |
Methods
| Name | Description |
|---|---|
forward | Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients. |
Examples
Create a YOLOESegment head
>>> yoloe_segment = YOLOESegment(nc=80, nm=32, npr=256, embed=512, with_bn=True, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> text = torch.randn(1, 80, 512)
>>> outputs = yoloe_segment(x, text)
Source code in ultralytics/nn/modules/head.py
View on GitHubclass YOLOESegment(YOLOEDetect):
"""YOLO segmentation head with text embedding capabilities.
This class extends YOLOEDetect to include mask prediction capabilities for instance segmentation tasks with
text-guided semantic understanding.
Attributes:
nm (int): Number of masks.
npr (int): Number of protos.
proto (Proto): Prototype generation module.
cv5 (nn.ModuleList): Convolution layers for mask coefficients.
Methods:
forward: Return model outputs and mask coefficients.
Examples:
Create a YOLOESegment head
>>> yoloe_segment = YOLOESegment(nc=80, nm=32, npr=256, embed=512, with_bn=True, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> text = torch.randn(1, 80, 512)
>>> outputs = yoloe_segment(x, text)
"""
def __init__(
self, nc: int = 80, nm: int = 32, npr: int = 256, embed: int = 512, with_bn: bool = False, ch: tuple = ()
):
"""Initialize YOLOESegment with class count, mask parameters, and embedding dimensions.
Args:
nc (int): Number of classes.
nm (int): Number of masks.
npr (int): Number of protos.
embed (int): Embedding dimension.
with_bn (bool): Whether to use batch normalization in contrastive head.
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__(nc, embed, with_bn, ch)
self.nm = nm
self.npr = npr
self.proto = Proto(ch[0], self.npr, self.nm)
c5 = max(ch[0] // 4, self.nm)
self.cv5 = nn.ModuleList(nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nm, 1)) for x in ch)
method ultralytics.nn.modules.head.YOLOESegment.forward
def forward(self, x: list[torch.Tensor], text: torch.Tensor) -> tuple | torch.Tensor
Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | list[torch.Tensor] | required | |
text | torch.Tensor | required |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef forward(self, x: list[torch.Tensor], text: torch.Tensor) -> tuple | torch.Tensor:
"""Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
p = self.proto(x[0]) # mask protos
bs = p.shape[0] # batch size
mc = torch.cat([self.cv5[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
has_lrpc = hasattr(self, "lrpc")
if not has_lrpc:
x = YOLOEDetect.forward(self, x, text)
else:
x, mask = YOLOEDetect.forward(self, x, text, return_mask=True)
if self.training:
return x, mc, p
if has_lrpc:
mc = (mc * mask.int()) if self.export and not self.dynamic else mc[..., mask]
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
class ultralytics.nn.modules.head.RTDETRDecoder
def __init__(
self,
nc: int = 80,
ch: tuple = (512, 1024, 2048),
hd: int = 256, # hidden dim
nq: int = 300, # num queries
ndp: int = 4, # num decoder points
nh: int = 8, # num head
ndl: int = 6, # num decoder layers
d_ffn: int = 1024, # dim of feedforward
dropout: float = 0.0,
act: nn.Module = nn.ReLU(),
eval_idx: int = -1,
# Training args
nd: int = 100, # num denoising
label_noise_ratio: float = 0.5,
box_noise_scale: float = 1.0,
learnt_init_query: bool = False,
)
Bases: nn.Module
Real-Time Deformable Transformer Decoder (RTDETRDecoder) module for object detection.
This decoder module utilizes Transformer architecture along with deformable convolutions to predict bounding boxes and class labels for objects in an image. It integrates features from multiple layers and runs through a series of Transformer decoder layers to output the final predictions.
Args
| Name | Type | Description | Default |
|---|---|---|---|
nc | int | Number of classes. | 80 |
ch | tuple | Channels in the backbone feature maps. | (512, 1024, 2048) |
hd | int | Dimension of hidden layers. | 256 |
nq | int | Number of query points. | 300 |
ndp | int | Number of decoder points. | 4 |
nh | int | Number of heads in multi-head attention. | 8 |
ndl | int | Number of decoder layers. | 6 |
d_ffn | int | Dimension of the feed-forward networks. | 1024 |
dropout | float | Dropout rate. | 0.0 |
act | nn.Module | Activation function. | nn.ReLU() |
eval_idx | int | Evaluation index. | -1 |
nd | int | Number of denoising. | 100 |
label_noise_ratio | float | Label noise ratio. | 0.5 |
box_noise_scale | float | Box noise scale. | 1.0 |
learnt_init_query | bool | Whether to learn initial query embeddings. | False |
Attributes
| Name | Type | Description |
|---|---|---|
export | bool | Export mode flag. |
hidden_dim | int | Dimension of hidden layers. |
nhead | int | Number of heads in multi-head attention. |
nl | int | Number of feature levels. |
nc | int | Number of classes. |
num_queries | int | Number of query points. |
num_decoder_layers | int | Number of decoder layers. |
input_proj | nn.ModuleList | Input projection layers for backbone features. |
decoder | DeformableTransformerDecoder | Transformer decoder module. |
denoising_class_embed | nn.Embedding | Class embeddings for denoising. |
num_denoising | int | Number of denoising queries. |
label_noise_ratio | float | Label noise ratio for training. |
box_noise_scale | float | Box noise scale for training. |
learnt_init_query | bool | Whether to learn initial query embeddings. |
tgt_embed | nn.Embedding | Target embeddings for queries. |
query_pos_head | MLP | Query position head. |
enc_output | nn.Sequential | Encoder output layers. |
enc_score_head | nn.Linear | Encoder score prediction head. |
enc_bbox_head | MLP | Encoder bbox prediction head. |
dec_score_head | nn.ModuleList | Decoder score prediction heads. |
dec_bbox_head | nn.ModuleList | Decoder bbox prediction heads. |
Methods
| Name | Description |
|---|---|
_generate_anchors | Generate anchor bounding boxes for given shapes with specific grid size and validate them. |
_get_decoder_input | Generate and prepare the input required for the decoder from the provided features and shapes. |
_get_encoder_input | Process and return encoder inputs by getting projection features from input and concatenating them. |
_reset_parameters | Initialize or reset the parameters of the model's various components with predefined weights and biases. |
forward | Run the forward pass of the module, returning bounding box and classification scores for the input. |
Examples
Create an RTDETRDecoder
>>> decoder = RTDETRDecoder(nc=80, ch=(512, 1024, 2048), hd=256, nq=300)
>>> x = [torch.randn(1, 512, 64, 64), torch.randn(1, 1024, 32, 32), torch.randn(1, 2048, 16, 16)]
>>> outputs = decoder(x)
Source code in ultralytics/nn/modules/head.py
View on GitHubclass RTDETRDecoder(nn.Module):
"""Real-Time Deformable Transformer Decoder (RTDETRDecoder) module for object detection.
This decoder module utilizes Transformer architecture along with deformable convolutions to predict bounding boxes
and class labels for objects in an image. It integrates features from multiple layers and runs through a series of
Transformer decoder layers to output the final predictions.
Attributes:
export (bool): Export mode flag.
hidden_dim (int): Dimension of hidden layers.
nhead (int): Number of heads in multi-head attention.
nl (int): Number of feature levels.
nc (int): Number of classes.
num_queries (int): Number of query points.
num_decoder_layers (int): Number of decoder layers.
input_proj (nn.ModuleList): Input projection layers for backbone features.
decoder (DeformableTransformerDecoder): Transformer decoder module.
denoising_class_embed (nn.Embedding): Class embeddings for denoising.
num_denoising (int): Number of denoising queries.
label_noise_ratio (float): Label noise ratio for training.
box_noise_scale (float): Box noise scale for training.
learnt_init_query (bool): Whether to learn initial query embeddings.
tgt_embed (nn.Embedding): Target embeddings for queries.
query_pos_head (MLP): Query position head.
enc_output (nn.Sequential): Encoder output layers.
enc_score_head (nn.Linear): Encoder score prediction head.
enc_bbox_head (MLP): Encoder bbox prediction head.
dec_score_head (nn.ModuleList): Decoder score prediction heads.
dec_bbox_head (nn.ModuleList): Decoder bbox prediction heads.
Methods:
forward: Run forward pass and return bounding box and classification scores.
Examples:
Create an RTDETRDecoder
>>> decoder = RTDETRDecoder(nc=80, ch=(512, 1024, 2048), hd=256, nq=300)
>>> x = [torch.randn(1, 512, 64, 64), torch.randn(1, 1024, 32, 32), torch.randn(1, 2048, 16, 16)]
>>> outputs = decoder(x)
"""
export = False # export mode
shapes = []
anchors = torch.empty(0)
valid_mask = torch.empty(0)
dynamic = False
def __init__(
self,
nc: int = 80,
ch: tuple = (512, 1024, 2048),
hd: int = 256, # hidden dim
nq: int = 300, # num queries
ndp: int = 4, # num decoder points
nh: int = 8, # num head
ndl: int = 6, # num decoder layers
d_ffn: int = 1024, # dim of feedforward
dropout: float = 0.0,
act: nn.Module = nn.ReLU(),
eval_idx: int = -1,
# Training args
nd: int = 100, # num denoising
label_noise_ratio: float = 0.5,
box_noise_scale: float = 1.0,
learnt_init_query: bool = False,
):
"""Initialize the RTDETRDecoder module with the given parameters.
Args:
nc (int): Number of classes.
ch (tuple): Channels in the backbone feature maps.
hd (int): Dimension of hidden layers.
nq (int): Number of query points.
ndp (int): Number of decoder points.
nh (int): Number of heads in multi-head attention.
ndl (int): Number of decoder layers.
d_ffn (int): Dimension of the feed-forward networks.
dropout (float): Dropout rate.
act (nn.Module): Activation function.
eval_idx (int): Evaluation index.
nd (int): Number of denoising.
label_noise_ratio (float): Label noise ratio.
box_noise_scale (float): Box noise scale.
learnt_init_query (bool): Whether to learn initial query embeddings.
"""
super().__init__()
self.hidden_dim = hd
self.nhead = nh
self.nl = len(ch) # num level
self.nc = nc
self.num_queries = nq
self.num_decoder_layers = ndl
# Backbone feature projection
self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch)
# NOTE: simplified version but it's not consistent with .pt weights.
# self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch)
# Transformer module
decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp)
self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx)
# Denoising part
self.denoising_class_embed = nn.Embedding(nc, hd)
self.num_denoising = nd
self.label_noise_ratio = label_noise_ratio
self.box_noise_scale = box_noise_scale
# Decoder embedding
self.learnt_init_query = learnt_init_query
if learnt_init_query:
self.tgt_embed = nn.Embedding(nq, hd)
self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2)
# Encoder head
self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd))
self.enc_score_head = nn.Linear(hd, nc)
self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3)
# Decoder head
self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)])
self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)])
self._reset_parameters()
method ultralytics.nn.modules.head.RTDETRDecoder._generate_anchors
def _generate_anchors(
self,
shapes: list[list[int]],
grid_size: float = 0.05,
dtype: torch.dtype = torch.float32,
device: str = "cpu",
eps: float = 1e-2,
) -> tuple[torch.Tensor, torch.Tensor]
Generate anchor bounding boxes for given shapes with specific grid size and validate them.
Args
| Name | Type | Description | Default |
|---|---|---|---|
shapes | list | List of feature map shapes. | required |
grid_size | float, optional | Base size of grid cells. | 0.05 |
dtype | torch.dtype, optional | Data type for tensors. | torch.float32 |
device | str, optional | Device to create tensors on. | "cpu" |
eps | float, optional | Small value for numerical stability. | 1e-2 |
Returns
| Type | Description |
|---|---|
anchors (torch.Tensor) | Generated anchor boxes. |
valid_mask (torch.Tensor) | Valid mask for anchors. |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef _generate_anchors(
self,
shapes: list[list[int]],
grid_size: float = 0.05,
dtype: torch.dtype = torch.float32,
device: str = "cpu",
eps: float = 1e-2,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Generate anchor bounding boxes for given shapes with specific grid size and validate them.
Args:
shapes (list): List of feature map shapes.
grid_size (float, optional): Base size of grid cells.
dtype (torch.dtype, optional): Data type for tensors.
device (str, optional): Device to create tensors on.
eps (float, optional): Small value for numerical stability.
Returns:
anchors (torch.Tensor): Generated anchor boxes.
valid_mask (torch.Tensor): Valid mask for anchors.
"""
anchors = []
for i, (h, w) in enumerate(shapes):
sy = torch.arange(end=h, dtype=dtype, device=device)
sx = torch.arange(end=w, dtype=dtype, device=device)
grid_y, grid_x = torch.meshgrid(sy, sx, indexing="ij") if TORCH_1_11 else torch.meshgrid(sy, sx)
grid_xy = torch.stack([grid_x, grid_y], -1) # (h, w, 2)
valid_WH = torch.tensor([w, h], dtype=dtype, device=device)
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH # (1, h, w, 2)
wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0**i)
anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4)) # (1, h*w, 4)
anchors = torch.cat(anchors, 1) # (1, h*w*nl, 4)
valid_mask = ((anchors > eps) & (anchors < 1 - eps)).all(-1, keepdim=True) # 1, h*w*nl, 1
anchors = torch.log(anchors / (1 - anchors))
anchors = anchors.masked_fill(~valid_mask, float("inf"))
return anchors, valid_mask
method ultralytics.nn.modules.head.RTDETRDecoder._get_decoder_input
def _get_decoder_input(
self,
feats: torch.Tensor,
shapes: list[list[int]],
dn_embed: torch.Tensor | None = None,
dn_bbox: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
Generate and prepare the input required for the decoder from the provided features and shapes.
Args
| Name | Type | Description | Default |
|---|---|---|---|
feats | torch.Tensor | Processed features from encoder. | required |
shapes | list | List of feature map shapes. | required |
dn_embed | torch.Tensor, optional | Denoising embeddings. | None |
dn_bbox | torch.Tensor, optional | Denoising bounding boxes. | None |
Returns
| Type | Description |
|---|---|
embeddings (torch.Tensor) | Query embeddings for decoder. |
refer_bbox (torch.Tensor) | Reference bounding boxes. |
enc_bboxes (torch.Tensor) | Encoded bounding boxes. |
enc_scores (torch.Tensor) | Encoded scores. |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef _get_decoder_input(
self,
feats: torch.Tensor,
shapes: list[list[int]],
dn_embed: torch.Tensor | None = None,
dn_bbox: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Generate and prepare the input required for the decoder from the provided features and shapes.
Args:
feats (torch.Tensor): Processed features from encoder.
shapes (list): List of feature map shapes.
dn_embed (torch.Tensor, optional): Denoising embeddings.
dn_bbox (torch.Tensor, optional): Denoising bounding boxes.
Returns:
embeddings (torch.Tensor): Query embeddings for decoder.
refer_bbox (torch.Tensor): Reference bounding boxes.
enc_bboxes (torch.Tensor): Encoded bounding boxes.
enc_scores (torch.Tensor): Encoded scores.
"""
bs = feats.shape[0]
if self.dynamic or self.shapes != shapes:
self.anchors, self.valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device)
self.shapes = shapes
# Prepare input for decoder
features = self.enc_output(self.valid_mask * feats) # bs, h*w, 256
enc_outputs_scores = self.enc_score_head(features) # (bs, h*w, nc)
# Query selection
# (bs, num_queries)
topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1)
# (bs, num_queries)
batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1)
# (bs, num_queries, 256)
top_k_features = features[batch_ind, topk_ind].view(bs, self.num_queries, -1)
# (bs, num_queries, 4)
top_k_anchors = self.anchors[:, topk_ind].view(bs, self.num_queries, -1)
# Dynamic anchors + static content
refer_bbox = self.enc_bbox_head(top_k_features) + top_k_anchors
enc_bboxes = refer_bbox.sigmoid()
if dn_bbox is not None:
refer_bbox = torch.cat([dn_bbox, refer_bbox], 1)
enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1)
embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1) if self.learnt_init_query else top_k_features
if self.training:
refer_bbox = refer_bbox.detach()
if not self.learnt_init_query:
embeddings = embeddings.detach()
if dn_embed is not None:
embeddings = torch.cat([dn_embed, embeddings], 1)
return embeddings, refer_bbox, enc_bboxes, enc_scores
method ultralytics.nn.modules.head.RTDETRDecoder._get_encoder_input
def _get_encoder_input(self, x: list[torch.Tensor]) -> tuple[torch.Tensor, list[list[int]]]
Process and return encoder inputs by getting projection features from input and concatenating them.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | list[torch.Tensor] | List of feature maps from the backbone. | required |
Returns
| Type | Description |
|---|---|
feats (torch.Tensor) | Processed features. |
shapes (list) | List of feature map shapes. |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef _get_encoder_input(self, x: list[torch.Tensor]) -> tuple[torch.Tensor, list[list[int]]]:
"""Process and return encoder inputs by getting projection features from input and concatenating them.
Args:
x (list[torch.Tensor]): List of feature maps from the backbone.
Returns:
feats (torch.Tensor): Processed features.
shapes (list): List of feature map shapes.
"""
# Get projection features
x = [self.input_proj[i](feat) for i, feat in enumerate(x)]
# Get encoder inputs
feats = []
shapes = []
for feat in x:
h, w = feat.shape[2:]
# [b, c, h, w] -> [b, h*w, c]
feats.append(feat.flatten(2).permute(0, 2, 1))
# [nl, 2]
shapes.append([h, w])
# [b, h*w, c]
feats = torch.cat(feats, 1)
return feats, shapes
method ultralytics.nn.modules.head.RTDETRDecoder._reset_parameters
def _reset_parameters(self)
Initialize or reset the parameters of the model's various components with predefined weights and biases.
Source code in ultralytics/nn/modules/head.py
View on GitHubdef _reset_parameters(self):
"""Initialize or reset the parameters of the model's various components with predefined weights and biases."""
# Class and bbox head init
bias_cls = bias_init_with_prob(0.01) / 80 * self.nc
# NOTE: the weight initialization in `linear_init` would cause NaN when training with custom datasets.
# linear_init(self.enc_score_head)
constant_(self.enc_score_head.bias, bias_cls)
constant_(self.enc_bbox_head.layers[-1].weight, 0.0)
constant_(self.enc_bbox_head.layers[-1].bias, 0.0)
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
# linear_init(cls_)
constant_(cls_.bias, bias_cls)
constant_(reg_.layers[-1].weight, 0.0)
constant_(reg_.layers[-1].bias, 0.0)
linear_init(self.enc_output[0])
xavier_uniform_(self.enc_output[0].weight)
if self.learnt_init_query:
xavier_uniform_(self.tgt_embed.weight)
xavier_uniform_(self.query_pos_head.layers[0].weight)
xavier_uniform_(self.query_pos_head.layers[1].weight)
for layer in self.input_proj:
xavier_uniform_(layer[0].weight)
method ultralytics.nn.modules.head.RTDETRDecoder.forward
def forward(self, x: list[torch.Tensor], batch: dict | None = None) -> tuple | torch.Tensor
Run the forward pass of the module, returning bounding box and classification scores for the input.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | list[torch.Tensor] | List of feature maps from the backbone. | required |
batch | dict, optional | Batch information for training. | None |
Returns
| Type | Description |
|---|---|
outputs (tuple | torch.Tensor) | During training, returns a tuple of bounding boxes, scores, and other |
Source code in ultralytics/nn/modules/head.py
View on GitHubdef forward(self, x: list[torch.Tensor], batch: dict | None = None) -> tuple | torch.Tensor:
"""Run the forward pass of the module, returning bounding box and classification scores for the input.
Args:
x (list[torch.Tensor]): List of feature maps from the backbone.
batch (dict, optional): Batch information for training.
Returns:
outputs (tuple | torch.Tensor): During training, returns a tuple of bounding boxes, scores, and other
metadata. During inference, returns a tensor of shape (bs, 300, 4+nc) containing bounding boxes and
class scores.
"""
from ultralytics.models.utils.ops import get_cdn_group
# Input projection and embedding
feats, shapes = self._get_encoder_input(x)
# Prepare denoising training
dn_embed, dn_bbox, attn_mask, dn_meta = get_cdn_group(
batch,
self.nc,
self.num_queries,
self.denoising_class_embed.weight,
self.num_denoising,
self.label_noise_ratio,
self.box_noise_scale,
self.training,
)
embed, refer_bbox, enc_bboxes, enc_scores = self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)
# Decoder
dec_bboxes, dec_scores = self.decoder(
embed,
refer_bbox,
feats,
shapes,
self.dec_bbox_head,
self.dec_score_head,
self.query_pos_head,
attn_mask=attn_mask,
)
x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta
if self.training:
return x
# (bs, 300, 4+nc)
y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
return y if self.export else (y, x)
class ultralytics.nn.modules.head.v10Detect
v10Detect(self, nc: int = 80, ch: tuple = ())
Bases: Detect
v10 Detection head from https://arxiv.org/pdf/2405.14458.
This class implements the YOLOv10 detection head with dual-assignment training and consistent dual predictions for improved efficiency and performance.
Args
| Name | Type | Description | Default |
|---|---|---|---|
nc | int | Number of classes. | 80 |
ch | tuple | Tuple of channel sizes from backbone feature maps. | () |
Attributes
| Name | Type | Description |
|---|---|---|
end2end | bool | End-to-end detection mode. |
max_det | int | Maximum number of detections. |
cv3 | nn.ModuleList | Light classification head layers. |
one2one_cv3 | nn.ModuleList | One-to-one classification head layers. |
Methods
| Name | Description |
|---|---|
fuse | Remove the one2many head for inference optimization. |
Examples
Create a v10Detect head
>>> v10_detect = v10Detect(nc=80, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = v10_detect(x)
Source code in ultralytics/nn/modules/head.py
View on GitHubclass v10Detect(Detect):
"""v10 Detection head from https://arxiv.org/pdf/2405.14458.
This class implements the YOLOv10 detection head with dual-assignment training and consistent dual predictions for
improved efficiency and performance.
Attributes:
end2end (bool): End-to-end detection mode.
max_det (int): Maximum number of detections.
cv3 (nn.ModuleList): Light classification head layers.
one2one_cv3 (nn.ModuleList): One-to-one classification head layers.
Methods:
__init__: Initialize the v10Detect object with specified number of classes and input channels.
forward: Perform forward pass of the v10Detect module.
bias_init: Initialize biases of the Detect module.
fuse: Remove the one2many head for inference optimization.
Examples:
Create a v10Detect head
>>> v10_detect = v10Detect(nc=80, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = v10_detect(x)
"""
end2end = True
def __init__(self, nc: int = 80, ch: tuple = ()):
"""Initialize the v10Detect object with the specified number of classes and input channels.
Args:
nc (int): Number of classes.
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__(nc, ch)
c3 = max(ch[0], min(self.nc, 100)) # channels
# Light cls head
self.cv3 = nn.ModuleList(
nn.Sequential(
nn.Sequential(Conv(x, x, 3, g=x), Conv(x, c3, 1)),
nn.Sequential(Conv(c3, c3, 3, g=c3), Conv(c3, c3, 1)),
nn.Conv2d(c3, self.nc, 1),
)
for x in ch
)
self.one2one_cv3 = copy.deepcopy(self.cv3)
method ultralytics.nn.modules.head.v10Detect.fuse
def fuse(self)
Remove the one2many head for inference optimization.
Source code in ultralytics/nn/modules/head.py
View on GitHubdef fuse(self):
"""Remove the one2many head for inference optimization."""
self.cv2 = self.cv3 = nn.ModuleList([nn.Identity()] * self.nl)