Skip to content

Reference for ultralytics/nn/modules/head.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/modules/head.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


class ultralytics.nn.modules.head.Detect

Detect(self, nc: int = 80, ch: tuple = ())

Bases: nn.Module

YOLO Detect head for object detection models.

This class implements the detection head used in YOLO models for predicting bounding boxes and class probabilities. It supports both training and inference modes, with optional end-to-end detection capabilities.

Args

NameTypeDescriptionDefault
ncintNumber of classes.80
chtupleTuple of channel sizes from backbone feature maps.()

Attributes

NameTypeDescription
dynamicboolForce grid reconstruction.
exportboolExport mode flag.
formatstrExport format.
end2endboolEnd-to-end detection mode.
max_detintMaximum detections per image.
shapetupleInput shape.
anchorstorch.TensorAnchor points.
stridestorch.TensorFeature map strides.
legacyboolBackward compatibility for v3/v5/v8/v9 models.
xyxyboolOutput format, xyxy or xywh.
ncintNumber of classes.
nlintNumber of detection layers.
reg_maxintDFL channels.
nointNumber of outputs per anchor.
stridetorch.TensorStrides computed during build.
cv2nn.ModuleListConvolution layers for box regression.
cv3nn.ModuleListConvolution layers for classification.
dflnn.ModuleDistribution Focal Loss layer.
one2one_cv2nn.ModuleListOne-to-one convolution layers for box regression.
one2one_cv3nn.ModuleListOne-to-one convolution layers for classification.

Methods

NameDescription
_inferenceDecode predicted bounding boxes and class probabilities based on multiple-level feature maps.
bias_initInitialize Detect() biases, WARNING: requires stride availability.
decode_bboxesDecode bounding boxes from predictions.
forwardConcatenate and return predicted bounding boxes and class probabilities.
forward_end2endPerform forward pass of the v10Detect module.
postprocessPost-process YOLO model predictions.

Examples

Create a detection head for 80 classes
>>> detect = Detect(nc=80, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = detect(x)
Source code in ultralytics/nn/modules/head.pyView on GitHub
class Detect(nn.Module):
    """YOLO Detect head for object detection models.

    This class implements the detection head used in YOLO models for predicting bounding boxes and class probabilities.
    It supports both training and inference modes, with optional end-to-end detection capabilities.

    Attributes:
        dynamic (bool): Force grid reconstruction.
        export (bool): Export mode flag.
        format (str): Export format.
        end2end (bool): End-to-end detection mode.
        max_det (int): Maximum detections per image.
        shape (tuple): Input shape.
        anchors (torch.Tensor): Anchor points.
        strides (torch.Tensor): Feature map strides.
        legacy (bool): Backward compatibility for v3/v5/v8/v9 models.
        xyxy (bool): Output format, xyxy or xywh.
        nc (int): Number of classes.
        nl (int): Number of detection layers.
        reg_max (int): DFL channels.
        no (int): Number of outputs per anchor.
        stride (torch.Tensor): Strides computed during build.
        cv2 (nn.ModuleList): Convolution layers for box regression.
        cv3 (nn.ModuleList): Convolution layers for classification.
        dfl (nn.Module): Distribution Focal Loss layer.
        one2one_cv2 (nn.ModuleList): One-to-one convolution layers for box regression.
        one2one_cv3 (nn.ModuleList): One-to-one convolution layers for classification.

    Methods:
        forward: Perform forward pass and return predictions.
        forward_end2end: Perform forward pass for end-to-end detection.
        bias_init: Initialize detection head biases.
        decode_bboxes: Decode bounding boxes from predictions.
        postprocess: Post-process model predictions.

    Examples:
        Create a detection head for 80 classes
        >>> detect = Detect(nc=80, ch=(256, 512, 1024))
        >>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
        >>> outputs = detect(x)
    """

    dynamic = False  # force grid reconstruction
    export = False  # export mode
    format = None  # export format
    end2end = False  # end2end
    max_det = 300  # max_det
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init
    legacy = False  # backward compatibility for v3/v5/v8/v9 models
    xyxy = False  # xyxy or xywh output

    def __init__(self, nc: int = 80, ch: tuple = ()):
        """Initialize the YOLO detection layer with specified number of classes and channels.

        Args:
            nc (int): Number of classes.
            ch (tuple): Tuple of channel sizes from backbone feature maps.
        """
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch)  # number of detection layers
        self.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.stride = torch.zeros(self.nl)  # strides computed during build
        c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
        )
        self.cv3 = (
            nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
            if self.legacy
            else nn.ModuleList(
                nn.Sequential(
                    nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
                    nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
                    nn.Conv2d(c3, self.nc, 1),
                )
                for x in ch
            )
        )
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()

        if self.end2end:
            self.one2one_cv2 = copy.deepcopy(self.cv2)
            self.one2one_cv3 = copy.deepcopy(self.cv3)


method ultralytics.nn.modules.head.Detect._inference

def _inference(self, x: list[torch.Tensor]) -> torch.Tensor

Decode predicted bounding boxes and class probabilities based on multiple-level feature maps.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]List of feature maps from different detection layers.required

Returns

TypeDescription
torch.TensorConcatenated tensor of decoded bounding boxes and class probabilities.
Source code in ultralytics/nn/modules/head.pyView on GitHub
def _inference(self, x: list[torch.Tensor]) -> torch.Tensor:
    """Decode predicted bounding boxes and class probabilities based on multiple-level feature maps.

    Args:
        x (list[torch.Tensor]): List of feature maps from different detection layers.

    Returns:
        (torch.Tensor): Concatenated tensor of decoded bounding boxes and class probabilities.
    """
    # Inference path
    shape = x[0].shape  # BCHW
    x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
    if self.dynamic or self.shape != shape:
        self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
        self.shape = shape

    box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
    dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
    return torch.cat((dbox, cls.sigmoid()), 1)


method ultralytics.nn.modules.head.Detect.bias_init

def bias_init(self)

Initialize Detect() biases, WARNING: requires stride availability.

Source code in ultralytics/nn/modules/head.pyView on GitHub
def bias_init(self):
    """Initialize Detect() biases, WARNING: requires stride availability."""
    m = self  # self.model[-1]  # Detect() module
    # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
    # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
    for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
        a[-1].bias.data[:] = 1.0  # box
        b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)
    if self.end2end:
        for a, b, s in zip(m.one2one_cv2, m.one2one_cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)


method ultralytics.nn.modules.head.Detect.decode_bboxes

def decode_bboxes(self, bboxes: torch.Tensor, anchors: torch.Tensor, xywh: bool = True) -> torch.Tensor

Decode bounding boxes from predictions.

Args

NameTypeDescriptionDefault
bboxestorch.Tensorrequired
anchorstorch.Tensorrequired
xywhboolTrue
Source code in ultralytics/nn/modules/head.pyView on GitHub
def decode_bboxes(self, bboxes: torch.Tensor, anchors: torch.Tensor, xywh: bool = True) -> torch.Tensor:
    """Decode bounding boxes from predictions."""
    return dist2bbox(
        bboxes,
        anchors,
        xywh=xywh and not self.end2end and not self.xyxy,
        dim=1,
    )


method ultralytics.nn.modules.head.Detect.forward

def forward(self, x: list[torch.Tensor]) -> list[torch.Tensor] | tuple

Concatenate and return predicted bounding boxes and class probabilities.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]required
Source code in ultralytics/nn/modules/head.pyView on GitHub
def forward(self, x: list[torch.Tensor]) -> list[torch.Tensor] | tuple:
    """Concatenate and return predicted bounding boxes and class probabilities."""
    if self.end2end:
        return self.forward_end2end(x)

    for i in range(self.nl):
        x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
    if self.training:  # Training path
        return x
    y = self._inference(x)
    return y if self.export else (y, x)


method ultralytics.nn.modules.head.Detect.forward_end2end

def forward_end2end(self, x: list[torch.Tensor]) -> dict | tuple

Perform forward pass of the v10Detect module.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]Input feature maps from different levels.required

Returns

TypeDescription
outputs (dict | tuple)Training mode returns dict with one2many and one2one outputs. Inference mode returns
Source code in ultralytics/nn/modules/head.pyView on GitHub
def forward_end2end(self, x: list[torch.Tensor]) -> dict | tuple:
    """Perform forward pass of the v10Detect module.

    Args:
        x (list[torch.Tensor]): Input feature maps from different levels.

    Returns:
        outputs (dict | tuple): Training mode returns dict with one2many and one2one outputs. Inference mode returns
            processed detections or tuple with detections and raw outputs.
    """
    x_detach = [xi.detach() for xi in x]
    one2one = [
        torch.cat((self.one2one_cv2[i](x_detach[i]), self.one2one_cv3[i](x_detach[i])), 1) for i in range(self.nl)
    ]
    for i in range(self.nl):
        x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
    if self.training:  # Training path
        return {"one2many": x, "one2one": one2one}

    y = self._inference(one2one)
    y = self.postprocess(y.permute(0, 2, 1), self.max_det, self.nc)
    return y if self.export else (y, {"one2many": x, "one2one": one2one})


method ultralytics.nn.modules.head.Detect.postprocess

def postprocess(preds: torch.Tensor, max_det: int, nc: int = 80) -> torch.Tensor

Post-process YOLO model predictions.

Args

NameTypeDescriptionDefault
predstorch.TensorRaw predictions with shape (batch_size, num_anchors, 4 + nc) with last dimension format [x, y, w, h, class_probs].required
max_detintMaximum detections per image.required
ncint, optionalNumber of classes.80

Returns

TypeDescription
torch.TensorProcessed predictions with shape (batch_size, min(max_det, num_anchors), 6) and last
Source code in ultralytics/nn/modules/head.pyView on GitHub
@staticmethod
def postprocess(preds: torch.Tensor, max_det: int, nc: int = 80) -> torch.Tensor:
    """Post-process YOLO model predictions.

    Args:
        preds (torch.Tensor): Raw predictions with shape (batch_size, num_anchors, 4 + nc) with last dimension
            format [x, y, w, h, class_probs].
        max_det (int): Maximum detections per image.
        nc (int, optional): Number of classes.

    Returns:
        (torch.Tensor): Processed predictions with shape (batch_size, min(max_det, num_anchors), 6) and last
            dimension format [x, y, w, h, max_class_prob, class_index].
    """
    batch_size, anchors, _ = preds.shape  # i.e. shape(16,8400,84)
    boxes, scores = preds.split([4, nc], dim=-1)
    index = scores.amax(dim=-1).topk(min(max_det, anchors))[1].unsqueeze(-1)
    boxes = boxes.gather(dim=1, index=index.repeat(1, 1, 4))
    scores = scores.gather(dim=1, index=index.repeat(1, 1, nc))
    scores, index = scores.flatten(1).topk(min(max_det, anchors))
    i = torch.arange(batch_size)[..., None]  # batch indices
    return torch.cat([boxes[i, index // nc], scores[..., None], (index % nc)[..., None].float()], dim=-1)





class ultralytics.nn.modules.head.Segment

Segment(self, nc: int = 80, nm: int = 32, npr: int = 256, ch: tuple = ())

Bases: Detect

YOLO Segment head for segmentation models.

This class extends the Detect head to include mask prediction capabilities for instance segmentation tasks.

Args

NameTypeDescriptionDefault
ncintNumber of classes.80
nmintNumber of masks.32
nprintNumber of protos.256
chtupleTuple of channel sizes from backbone feature maps.()

Attributes

NameTypeDescription
nmintNumber of masks.
nprintNumber of protos.
protoProtoPrototype generation module.
cv4nn.ModuleListConvolution layers for mask coefficients.

Methods

NameDescription
forwardReturn model outputs and mask coefficients if training, otherwise return outputs and mask coefficients.

Examples

Create a segmentation head
>>> segment = Segment(nc=80, nm=32, npr=256, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = segment(x)
Source code in ultralytics/nn/modules/head.pyView on GitHub
class Segment(Detect):
    """YOLO Segment head for segmentation models.

    This class extends the Detect head to include mask prediction capabilities for instance segmentation tasks.

    Attributes:
        nm (int): Number of masks.
        npr (int): Number of protos.
        proto (Proto): Prototype generation module.
        cv4 (nn.ModuleList): Convolution layers for mask coefficients.

    Methods:
        forward: Return model outputs and mask coefficients.

    Examples:
        Create a segmentation head
        >>> segment = Segment(nc=80, nm=32, npr=256, ch=(256, 512, 1024))
        >>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
        >>> outputs = segment(x)
    """

    def __init__(self, nc: int = 80, nm: int = 32, npr: int = 256, ch: tuple = ()):
        """Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers.

        Args:
            nc (int): Number of classes.
            nm (int): Number of masks.
            npr (int): Number of protos.
            ch (tuple): Tuple of channel sizes from backbone feature maps.
        """
        super().__init__(nc, ch)
        self.nm = nm  # number of masks
        self.npr = npr  # number of protos
        self.proto = Proto(ch[0], self.npr, self.nm)  # protos

        c4 = max(ch[0] // 4, self.nm)
        self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)


method ultralytics.nn.modules.head.Segment.forward

def forward(self, x: list[torch.Tensor]) -> tuple | list[torch.Tensor]

Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]required
Source code in ultralytics/nn/modules/head.pyView on GitHub
def forward(self, x: list[torch.Tensor]) -> tuple | list[torch.Tensor]:
    """Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
    p = self.proto(x[0])  # mask protos
    bs = p.shape[0]  # batch size

    mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
    x = Detect.forward(self, x)
    if self.training:
        return x, mc, p
    return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))





class ultralytics.nn.modules.head.OBB

OBB(self, nc: int = 80, ne: int = 1, ch: tuple = ())

Bases: Detect

YOLO OBB detection head for detection with rotation models.

This class extends the Detect head to include oriented bounding box prediction with rotation angles.

Args

NameTypeDescriptionDefault
ncintNumber of classes.80
neintNumber of extra parameters.1
chtupleTuple of channel sizes from backbone feature maps.()

Attributes

NameTypeDescription
neintNumber of extra parameters.
cv4nn.ModuleListConvolution layers for angle prediction.
angletorch.TensorPredicted rotation angles.

Methods

NameDescription
decode_bboxesDecode rotated bounding boxes.
forwardConcatenate and return predicted bounding boxes and class probabilities.

Examples

Create an OBB detection head
>>> obb = OBB(nc=80, ne=1, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = obb(x)
Source code in ultralytics/nn/modules/head.pyView on GitHub
class OBB(Detect):
    """YOLO OBB detection head for detection with rotation models.

    This class extends the Detect head to include oriented bounding box prediction with rotation angles.

    Attributes:
        ne (int): Number of extra parameters.
        cv4 (nn.ModuleList): Convolution layers for angle prediction.
        angle (torch.Tensor): Predicted rotation angles.

    Methods:
        forward: Concatenate and return predicted bounding boxes and class probabilities.
        decode_bboxes: Decode rotated bounding boxes.

    Examples:
        Create an OBB detection head
        >>> obb = OBB(nc=80, ne=1, ch=(256, 512, 1024))
        >>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
        >>> outputs = obb(x)
    """

    def __init__(self, nc: int = 80, ne: int = 1, ch: tuple = ()):
        """Initialize OBB with number of classes `nc` and layer channels `ch`.

        Args:
            nc (int): Number of classes.
            ne (int): Number of extra parameters.
            ch (tuple): Tuple of channel sizes from backbone feature maps.
        """
        super().__init__(nc, ch)
        self.ne = ne  # number of extra parameters

        c4 = max(ch[0] // 4, self.ne)
        self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.ne, 1)) for x in ch)


method ultralytics.nn.modules.head.OBB.decode_bboxes

def decode_bboxes(self, bboxes: torch.Tensor, anchors: torch.Tensor) -> torch.Tensor

Decode rotated bounding boxes.

Args

NameTypeDescriptionDefault
bboxestorch.Tensorrequired
anchorstorch.Tensorrequired
Source code in ultralytics/nn/modules/head.pyView on GitHub
def decode_bboxes(self, bboxes: torch.Tensor, anchors: torch.Tensor) -> torch.Tensor:
    """Decode rotated bounding boxes."""
    return dist2rbox(bboxes, self.angle, anchors, dim=1)


method ultralytics.nn.modules.head.OBB.forward

def forward(self, x: list[torch.Tensor]) -> torch.Tensor | tuple

Concatenate and return predicted bounding boxes and class probabilities.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]required
Source code in ultralytics/nn/modules/head.pyView on GitHub
def forward(self, x: list[torch.Tensor]) -> torch.Tensor | tuple:
    """Concatenate and return predicted bounding boxes and class probabilities."""
    bs = x[0].shape[0]  # batch size
    angle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2)  # OBB theta logits
    # NOTE: set `angle` as an attribute so that `decode_bboxes` could use it.
    angle = (angle.sigmoid() - 0.25) * math.pi  # [-pi/4, 3pi/4]
    # angle = angle.sigmoid() * math.pi / 2  # [0, pi/2]
    if not self.training:
        self.angle = angle
    x = Detect.forward(self, x)
    if self.training:
        return x, angle
    return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))





class ultralytics.nn.modules.head.Pose

Pose(self, nc: int = 80, kpt_shape: tuple = (17, 3), ch: tuple = ())

Bases: Detect

YOLO Pose head for keypoints models.

This class extends the Detect head to include keypoint prediction capabilities for pose estimation tasks.

Args

NameTypeDescriptionDefault
ncintNumber of classes.80
kpt_shapetupleNumber of keypoints, number of dims (2 for x,y or 3 for x,y,visible).(17, 3)
chtupleTuple of channel sizes from backbone feature maps.()

Attributes

NameTypeDescription
kpt_shapetupleNumber of keypoints and dimensions (2 for x,y or 3 for x,y,visible).
nkintTotal number of keypoint values.
cv4nn.ModuleListConvolution layers for keypoint prediction.

Methods

NameDescription
forwardPerform forward pass through YOLO model and return predictions.
kpts_decodeDecode keypoints from predictions.

Examples

Create a pose detection head
>>> pose = Pose(nc=80, kpt_shape=(17, 3), ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = pose(x)
Source code in ultralytics/nn/modules/head.pyView on GitHub
class Pose(Detect):
    """YOLO Pose head for keypoints models.

    This class extends the Detect head to include keypoint prediction capabilities for pose estimation tasks.

    Attributes:
        kpt_shape (tuple): Number of keypoints and dimensions (2 for x,y or 3 for x,y,visible).
        nk (int): Total number of keypoint values.
        cv4 (nn.ModuleList): Convolution layers for keypoint prediction.

    Methods:
        forward: Perform forward pass through YOLO model and return predictions.
        kpts_decode: Decode keypoints from predictions.

    Examples:
        Create a pose detection head
        >>> pose = Pose(nc=80, kpt_shape=(17, 3), ch=(256, 512, 1024))
        >>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
        >>> outputs = pose(x)
    """

    def __init__(self, nc: int = 80, kpt_shape: tuple = (17, 3), ch: tuple = ()):
        """Initialize YOLO network with default parameters and Convolutional Layers.

        Args:
            nc (int): Number of classes.
            kpt_shape (tuple): Number of keypoints, number of dims (2 for x,y or 3 for x,y,visible).
            ch (tuple): Tuple of channel sizes from backbone feature maps.
        """
        super().__init__(nc, ch)
        self.kpt_shape = kpt_shape  # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
        self.nk = kpt_shape[0] * kpt_shape[1]  # number of keypoints total

        c4 = max(ch[0] // 4, self.nk)
        self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)


method ultralytics.nn.modules.head.Pose.forward

def forward(self, x: list[torch.Tensor]) -> torch.Tensor | tuple

Perform forward pass through YOLO model and return predictions.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]required
Source code in ultralytics/nn/modules/head.pyView on GitHub
def forward(self, x: list[torch.Tensor]) -> torch.Tensor | tuple:
    """Perform forward pass through YOLO model and return predictions."""
    bs = x[0].shape[0]  # batch size
    kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1)  # (bs, 17*3, h*w)
    x = Detect.forward(self, x)
    if self.training:
        return x, kpt
    pred_kpt = self.kpts_decode(bs, kpt)
    return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))


method ultralytics.nn.modules.head.Pose.kpts_decode

def kpts_decode(self, bs: int, kpts: torch.Tensor) -> torch.Tensor

Decode keypoints from predictions.

Args

NameTypeDescriptionDefault
bsintrequired
kptstorch.Tensorrequired
Source code in ultralytics/nn/modules/head.pyView on GitHub
def kpts_decode(self, bs: int, kpts: torch.Tensor) -> torch.Tensor:
    """Decode keypoints from predictions."""
    ndim = self.kpt_shape[1]
    if self.export:
        # NCNN fix
        y = kpts.view(bs, *self.kpt_shape, -1)
        a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
        if ndim == 3:
            a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
        return a.view(bs, self.nk, -1)
    else:
        y = kpts.clone()
        if ndim == 3:
            if NOT_MACOS14:
                y[:, 2::ndim].sigmoid_()
            else:  # Apple macOS14 MPS bug https://github.com/ultralytics/ultralytics/pull/21878
                y[:, 2::ndim] = y[:, 2::ndim].sigmoid()
        y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
        y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
        return y





class ultralytics.nn.modules.head.Classify

Classify(self, c1: int, c2: int, k: int = 1, s: int = 1, p: int | None = None, g: int = 1)

Bases: nn.Module

YOLO classification head, i.e. x(b,c1,20,20) to x(b,c2).

This class implements a classification head that transforms feature maps into class predictions.

Args

NameTypeDescriptionDefault
c1intNumber of input channels.required
c2intNumber of output classes.required
kint, optionalKernel size.1
sint, optionalStride.1
pint, optionalPadding.None
gint, optionalGroups.1

Attributes

NameTypeDescription
exportboolExport mode flag.
convConvConvolutional layer for feature transformation.
poolnn.AdaptiveAvgPool2dGlobal average pooling layer.
dropnn.DropoutDropout layer for regularization.
linearnn.LinearLinear layer for final classification.

Methods

NameDescription
forwardPerform forward pass of the YOLO model on input image data.

Examples

Create a classification head
>>> classify = Classify(c1=1024, c2=1000)
>>> x = torch.randn(1, 1024, 20, 20)
>>> output = classify(x)
Source code in ultralytics/nn/modules/head.pyView on GitHub
class Classify(nn.Module):
    """YOLO classification head, i.e. x(b,c1,20,20) to x(b,c2).

    This class implements a classification head that transforms feature maps into class predictions.

    Attributes:
        export (bool): Export mode flag.
        conv (Conv): Convolutional layer for feature transformation.
        pool (nn.AdaptiveAvgPool2d): Global average pooling layer.
        drop (nn.Dropout): Dropout layer for regularization.
        linear (nn.Linear): Linear layer for final classification.

    Methods:
        forward: Perform forward pass of the YOLO model on input image data.

    Examples:
        Create a classification head
        >>> classify = Classify(c1=1024, c2=1000)
        >>> x = torch.randn(1, 1024, 20, 20)
        >>> output = classify(x)
    """

    export = False  # export mode

    def __init__(self, c1: int, c2: int, k: int = 1, s: int = 1, p: int | None = None, g: int = 1):
        """Initialize YOLO classification head to transform input tensor from (b,c1,20,20) to (b,c2) shape.

        Args:
            c1 (int): Number of input channels.
            c2 (int): Number of output classes.
            k (int, optional): Kernel size.
            s (int, optional): Stride.
            p (int, optional): Padding.
            g (int, optional): Groups.
        """
        super().__init__()
        c_ = 1280  # efficientnet_b0 size
        self.conv = Conv(c1, c_, k, s, p, g)
        self.pool = nn.AdaptiveAvgPool2d(1)  # to x(b,c_,1,1)
        self.drop = nn.Dropout(p=0.0, inplace=True)
        self.linear = nn.Linear(c_, c2)  # to x(b,c2)


method ultralytics.nn.modules.head.Classify.forward

def forward(self, x: list[torch.Tensor] | torch.Tensor) -> torch.Tensor | tuple

Perform forward pass of the YOLO model on input image data.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor] | torch.Tensorrequired
Source code in ultralytics/nn/modules/head.pyView on GitHub
def forward(self, x: list[torch.Tensor] | torch.Tensor) -> torch.Tensor | tuple:
    """Perform forward pass of the YOLO model on input image data."""
    if isinstance(x, list):
        x = torch.cat(x, 1)
    x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
    if self.training:
        return x
    y = x.softmax(1)  # get final output
    return y if self.export else (y, x)





class ultralytics.nn.modules.head.WorldDetect

WorldDetect(self, nc: int = 80, embed: int = 512, with_bn: bool = False, ch: tuple = ())

Bases: Detect

Head for integrating YOLO detection models with semantic understanding from text embeddings.

This class extends the standard Detect head to incorporate text embeddings for enhanced semantic understanding in object detection tasks.

Args

NameTypeDescriptionDefault
ncintNumber of classes.80
embedintEmbedding dimension.512
with_bnboolWhether to use batch normalization in contrastive head.False
chtupleTuple of channel sizes from backbone feature maps.()

Attributes

NameTypeDescription
cv3nn.ModuleListConvolution layers for embedding features.
cv4nn.ModuleListContrastive head layers for text-vision alignment.

Methods

NameDescription
bias_initInitialize Detect() biases, WARNING: requires stride availability.
forwardConcatenate and return predicted bounding boxes and class probabilities.

Examples

Create a WorldDetect head
>>> world_detect = WorldDetect(nc=80, embed=512, with_bn=False, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> text = torch.randn(1, 80, 512)
>>> outputs = world_detect(x, text)
Source code in ultralytics/nn/modules/head.pyView on GitHub
class WorldDetect(Detect):
    """Head for integrating YOLO detection models with semantic understanding from text embeddings.

    This class extends the standard Detect head to incorporate text embeddings for enhanced semantic understanding in
    object detection tasks.

    Attributes:
        cv3 (nn.ModuleList): Convolution layers for embedding features.
        cv4 (nn.ModuleList): Contrastive head layers for text-vision alignment.

    Methods:
        forward: Concatenate and return predicted bounding boxes and class probabilities.
        bias_init: Initialize detection head biases.

    Examples:
        Create a WorldDetect head
        >>> world_detect = WorldDetect(nc=80, embed=512, with_bn=False, ch=(256, 512, 1024))
        >>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
        >>> text = torch.randn(1, 80, 512)
        >>> outputs = world_detect(x, text)
    """

    def __init__(self, nc: int = 80, embed: int = 512, with_bn: bool = False, ch: tuple = ()):
        """Initialize YOLO detection layer with nc classes and layer channels ch.

        Args:
            nc (int): Number of classes.
            embed (int): Embedding dimension.
            with_bn (bool): Whether to use batch normalization in contrastive head.
            ch (tuple): Tuple of channel sizes from backbone feature maps.
        """
        super().__init__(nc, ch)
        c3 = max(ch[0], min(self.nc, 100))
        self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
        self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)


method ultralytics.nn.modules.head.WorldDetect.bias_init

def bias_init(self)

Initialize Detect() biases, WARNING: requires stride availability.

Source code in ultralytics/nn/modules/head.pyView on GitHub
def bias_init(self):
    """Initialize Detect() biases, WARNING: requires stride availability."""
    m = self  # self.model[-1]  # Detect() module
    # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
    # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
    for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
        a[-1].bias.data[:] = 1.0  # box


method ultralytics.nn.modules.head.WorldDetect.forward

def forward(self, x: list[torch.Tensor], text: torch.Tensor) -> list[torch.Tensor] | tuple

Concatenate and return predicted bounding boxes and class probabilities.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]required
texttorch.Tensorrequired
Source code in ultralytics/nn/modules/head.pyView on GitHub
def forward(self, x: list[torch.Tensor], text: torch.Tensor) -> list[torch.Tensor] | tuple:
    """Concatenate and return predicted bounding boxes and class probabilities."""
    for i in range(self.nl):
        x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), text)), 1)
    if self.training:
        return x
    self.no = self.nc + self.reg_max * 4  # self.nc could be changed when inference with different texts
    y = self._inference(x)
    return y if self.export else (y, x)





class ultralytics.nn.modules.head.LRPCHead

LRPCHead(self, vocab: nn.Module, pf: nn.Module, loc: nn.Module, enabled: bool = True)

Bases: nn.Module

Lightweight Region Proposal and Classification Head for efficient object detection.

This head combines region proposal filtering with classification to enable efficient detection with dynamic vocabulary support.

Args

NameTypeDescriptionDefault
vocabnn.ModuleVocabulary/classification module.required
pfnn.ModuleProposal filter module.required
locnn.ModuleLocalization module.required
enabledboolWhether to enable the head functionality.True

Attributes

NameTypeDescription
vocabnn.ModuleVocabulary/classification layer.
pfnn.ModuleProposal filter module.
locnn.ModuleLocalization module.
enabledboolWhether the head is enabled.

Methods

NameDescription
conv2linearConvert a 1x1 convolutional layer to a linear layer.
forwardProcess classification and localization features to generate detection proposals.

Examples

Create an LRPC head
>>> vocab = nn.Conv2d(256, 80, 1)
>>> pf = nn.Conv2d(256, 1, 1)
>>> loc = nn.Conv2d(256, 4, 1)
>>> head = LRPCHead(vocab, pf, loc, enabled=True)
Source code in ultralytics/nn/modules/head.pyView on GitHub
class LRPCHead(nn.Module):
    """Lightweight Region Proposal and Classification Head for efficient object detection.

    This head combines region proposal filtering with classification to enable efficient detection with dynamic
    vocabulary support.

    Attributes:
        vocab (nn.Module): Vocabulary/classification layer.
        pf (nn.Module): Proposal filter module.
        loc (nn.Module): Localization module.
        enabled (bool): Whether the head is enabled.

    Methods:
        conv2linear: Convert a 1x1 convolutional layer to a linear layer.
        forward: Process classification and localization features to generate detection proposals.

    Examples:
        Create an LRPC head
        >>> vocab = nn.Conv2d(256, 80, 1)
        >>> pf = nn.Conv2d(256, 1, 1)
        >>> loc = nn.Conv2d(256, 4, 1)
        >>> head = LRPCHead(vocab, pf, loc, enabled=True)
    """

    def __init__(self, vocab: nn.Module, pf: nn.Module, loc: nn.Module, enabled: bool = True):
        """Initialize LRPCHead with vocabulary, proposal filter, and localization components.

        Args:
            vocab (nn.Module): Vocabulary/classification module.
            pf (nn.Module): Proposal filter module.
            loc (nn.Module): Localization module.
            enabled (bool): Whether to enable the head functionality.
        """
        super().__init__()
        self.vocab = self.conv2linear(vocab) if enabled else vocab
        self.pf = pf
        self.loc = loc
        self.enabled = enabled


method ultralytics.nn.modules.head.LRPCHead.conv2linear

def conv2linear(self, conv: nn.Conv2d) -> nn.Linear

Convert a 1x1 convolutional layer to a linear layer.

Args

NameTypeDescriptionDefault
convnn.Conv2drequired
Source code in ultralytics/nn/modules/head.pyView on GitHub
def conv2linear(self, conv: nn.Conv2d) -> nn.Linear:
    """Convert a 1x1 convolutional layer to a linear layer."""
    assert isinstance(conv, nn.Conv2d) and conv.kernel_size == (1, 1)
    linear = nn.Linear(conv.in_channels, conv.out_channels)
    linear.weight.data = conv.weight.view(conv.out_channels, -1).data
    linear.bias.data = conv.bias.data
    return linear


method ultralytics.nn.modules.head.LRPCHead.forward

def forward(self, cls_feat: torch.Tensor, loc_feat: torch.Tensor, conf: float) -> tuple[tuple, torch.Tensor]

Process classification and localization features to generate detection proposals.

Args

NameTypeDescriptionDefault
cls_feattorch.Tensorrequired
loc_feattorch.Tensorrequired
conffloatrequired
Source code in ultralytics/nn/modules/head.pyView on GitHub
def forward(self, cls_feat: torch.Tensor, loc_feat: torch.Tensor, conf: float) -> tuple[tuple, torch.Tensor]:
    """Process classification and localization features to generate detection proposals."""
    if self.enabled:
        pf_score = self.pf(cls_feat)[0, 0].flatten(0)
        mask = pf_score.sigmoid() > conf
        cls_feat = cls_feat.flatten(2).transpose(-1, -2)
        cls_feat = self.vocab(cls_feat[:, mask] if conf else cls_feat * mask.unsqueeze(-1).int())
        return (self.loc(loc_feat), cls_feat.transpose(-1, -2)), mask
    else:
        cls_feat = self.vocab(cls_feat)
        loc_feat = self.loc(loc_feat)
        return (loc_feat, cls_feat.flatten(2)), torch.ones(
            cls_feat.shape[2] * cls_feat.shape[3], device=cls_feat.device, dtype=torch.bool
        )





class ultralytics.nn.modules.head.YOLOEDetect

YOLOEDetect(self, nc: int = 80, embed: int = 512, with_bn: bool = False, ch: tuple = ())

Bases: Detect

Head for integrating YOLO detection models with semantic understanding from text embeddings.

This class extends the standard Detect head to support text-guided detection with enhanced semantic understanding through text embeddings and visual prompt embeddings.

Args

NameTypeDescriptionDefault
ncintNumber of classes.80
embedintEmbedding dimension.512
with_bnboolWhether to use batch normalization in contrastive head.False
chtupleTuple of channel sizes from backbone feature maps.()

Attributes

NameTypeDescription
is_fusedboolWhether the model is fused for inference.
cv3nn.ModuleListConvolution layers for embedding features.
cv4nn.ModuleListContrastive head layers for text-vision alignment.
reprtaResidualResidual block for text prompt embeddings.
savpeSAVPESpatial-aware visual prompt embeddings module.
embedintEmbedding dimension.

Methods

NameDescription
bias_initInitialize biases for detection heads.
forwardProcess features with class prompt embeddings to generate detections.
forward_lrpcProcess features with fused text embeddings to generate detections for prompt-free model.
fuseFuse text features with model weights for efficient inference.
get_tpeGet text prompt embeddings with normalization.
get_vpeGet visual prompt embeddings with spatial awareness.

Examples

Create a YOLOEDetect head
>>> yoloe_detect = YOLOEDetect(nc=80, embed=512, with_bn=True, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> cls_pe = torch.randn(1, 80, 512)
>>> outputs = yoloe_detect(x, cls_pe)
Source code in ultralytics/nn/modules/head.pyView on GitHub
class YOLOEDetect(Detect):
    """Head for integrating YOLO detection models with semantic understanding from text embeddings.

    This class extends the standard Detect head to support text-guided detection with enhanced semantic understanding
    through text embeddings and visual prompt embeddings.

    Attributes:
        is_fused (bool): Whether the model is fused for inference.
        cv3 (nn.ModuleList): Convolution layers for embedding features.
        cv4 (nn.ModuleList): Contrastive head layers for text-vision alignment.
        reprta (Residual): Residual block for text prompt embeddings.
        savpe (SAVPE): Spatial-aware visual prompt embeddings module.
        embed (int): Embedding dimension.

    Methods:
        fuse: Fuse text features with model weights for efficient inference.
        get_tpe: Get text prompt embeddings with normalization.
        get_vpe: Get visual prompt embeddings with spatial awareness.
        forward_lrpc: Process features with fused text embeddings for prompt-free model.
        forward: Process features with class prompt embeddings to generate detections.
        bias_init: Initialize biases for detection heads.

    Examples:
        Create a YOLOEDetect head
        >>> yoloe_detect = YOLOEDetect(nc=80, embed=512, with_bn=True, ch=(256, 512, 1024))
        >>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
        >>> cls_pe = torch.randn(1, 80, 512)
        >>> outputs = yoloe_detect(x, cls_pe)
    """

    is_fused = False

    def __init__(self, nc: int = 80, embed: int = 512, with_bn: bool = False, ch: tuple = ()):
        """Initialize YOLO detection layer with nc classes and layer channels ch.

        Args:
            nc (int): Number of classes.
            embed (int): Embedding dimension.
            with_bn (bool): Whether to use batch normalization in contrastive head.
            ch (tuple): Tuple of channel sizes from backbone feature maps.
        """
        super().__init__(nc, ch)
        c3 = max(ch[0], min(self.nc, 100))
        assert c3 <= embed
        assert with_bn
        self.cv3 = (
            nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
            if self.legacy
            else nn.ModuleList(
                nn.Sequential(
                    nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
                    nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
                    nn.Conv2d(c3, embed, 1),
                )
                for x in ch
            )
        )

        self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)

        self.reprta = Residual(SwiGLUFFN(embed, embed))
        self.savpe = SAVPE(ch, c3, embed)
        self.embed = embed


method ultralytics.nn.modules.head.YOLOEDetect.bias_init

def bias_init(self)

Initialize biases for detection heads.

Source code in ultralytics/nn/modules/head.pyView on GitHub
def bias_init(self):
    """Initialize biases for detection heads."""
    m = self  # self.model[-1]  # Detect() module
    # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
    # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
    for a, b, c, s in zip(m.cv2, m.cv3, m.cv4, m.stride):  # from
        a[-1].bias.data[:] = 1.0  # box
        # b[-1].bias.data[:] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)
        b[-1].bias.data[:] = 0.0
        c.bias.data[:] = math.log(5 / m.nc / (640 / s) ** 2)


method ultralytics.nn.modules.head.YOLOEDetect.forward

def forward(self, x: list[torch.Tensor], cls_pe: torch.Tensor, return_mask: bool = False) -> torch.Tensor | tuple

Process features with class prompt embeddings to generate detections.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]required
cls_petorch.Tensorrequired
return_maskboolFalse
Source code in ultralytics/nn/modules/head.pyView on GitHub
def forward(self, x: list[torch.Tensor], cls_pe: torch.Tensor, return_mask: bool = False) -> torch.Tensor | tuple:
    """Process features with class prompt embeddings to generate detections."""
    if hasattr(self, "lrpc"):  # for prompt-free inference
        return self.forward_lrpc(x, return_mask)
    for i in range(self.nl):
        x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), cls_pe)), 1)
    if self.training:
        return x
    self.no = self.nc + self.reg_max * 4  # self.nc could be changed when inference with different texts
    y = self._inference(x)
    return y if self.export else (y, x)


method ultralytics.nn.modules.head.YOLOEDetect.forward_lrpc

def forward_lrpc(self, x: list[torch.Tensor], return_mask: bool = False) -> torch.Tensor | tuple

Process features with fused text embeddings to generate detections for prompt-free model.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]required
return_maskboolFalse
Source code in ultralytics/nn/modules/head.pyView on GitHub
def forward_lrpc(self, x: list[torch.Tensor], return_mask: bool = False) -> torch.Tensor | tuple:
    """Process features with fused text embeddings to generate detections for prompt-free model."""
    masks = []
    assert self.is_fused, "Prompt-free inference requires model to be fused!"
    for i in range(self.nl):
        cls_feat = self.cv3[i](x[i])
        loc_feat = self.cv2[i](x[i])
        assert isinstance(self.lrpc[i], LRPCHead)
        x[i], mask = self.lrpc[i](
            cls_feat, loc_feat, 0 if self.export and not self.dynamic else getattr(self, "conf", 0.001)
        )
        masks.append(mask)
    shape = x[0][0].shape
    if self.dynamic or self.shape != shape:
        self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors([b[0] for b in x], self.stride, 0.5))
        self.shape = shape
    box = torch.cat([xi[0].view(shape[0], self.reg_max * 4, -1) for xi in x], 2)
    cls = torch.cat([xi[1] for xi in x], 2)

    if self.export and self.format in {"tflite", "edgetpu"}:
        # Precompute normalization factor to increase numerical stability
        # See https://github.com/ultralytics/ultralytics/issues/7371
        grid_h = shape[2]
        grid_w = shape[3]
        grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
        norm = self.strides / (self.stride[0] * grid_size)
        dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
    else:
        dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides

    mask = torch.cat(masks)
    y = torch.cat((dbox if self.export and not self.dynamic else dbox[..., mask], cls.sigmoid()), 1)

    if return_mask:
        return (y, mask) if self.export else ((y, x), mask)
    else:
        return y if self.export else (y, x)


method ultralytics.nn.modules.head.YOLOEDetect.fuse

def fuse(self, txt_feats: torch.Tensor)

Fuse text features with model weights for efficient inference.

Args

NameTypeDescriptionDefault
txt_featstorch.Tensorrequired
Source code in ultralytics/nn/modules/head.pyView on GitHub
@smart_inference_mode()
def fuse(self, txt_feats: torch.Tensor):
    """Fuse text features with model weights for efficient inference."""
    if self.is_fused:
        return

    assert not self.training
    txt_feats = txt_feats.to(torch.float32).squeeze(0)
    for cls_head, bn_head in zip(self.cv3, self.cv4):
        assert isinstance(cls_head, nn.Sequential)
        assert isinstance(bn_head, BNContrastiveHead)
        conv = cls_head[-1]
        assert isinstance(conv, nn.Conv2d)
        logit_scale = bn_head.logit_scale
        bias = bn_head.bias
        norm = bn_head.norm

        t = txt_feats * logit_scale.exp()
        conv: nn.Conv2d = fuse_conv_and_bn(conv, norm)

        w = conv.weight.data.squeeze(-1).squeeze(-1)
        b = conv.bias.data

        w = t @ w
        b1 = (t @ b.reshape(-1).unsqueeze(-1)).squeeze(-1)
        b2 = torch.ones_like(b1) * bias

        conv = (
            nn.Conv2d(
                conv.in_channels,
                w.shape[0],
                kernel_size=1,
            )
            .requires_grad_(False)
            .to(conv.weight.device)
        )

        conv.weight.data.copy_(w.unsqueeze(-1).unsqueeze(-1))
        conv.bias.data.copy_(b1 + b2)
        cls_head[-1] = conv

        bn_head.fuse()

    del self.reprta
    self.reprta = nn.Identity()
    self.is_fused = True


method ultralytics.nn.modules.head.YOLOEDetect.get_tpe

def get_tpe(self, tpe: torch.Tensor | None) -> torch.Tensor | None

Get text prompt embeddings with normalization.

Args

NameTypeDescriptionDefault
tpetorch.Tensor | Nonerequired
Source code in ultralytics/nn/modules/head.pyView on GitHub
def get_tpe(self, tpe: torch.Tensor | None) -> torch.Tensor | None:
    """Get text prompt embeddings with normalization."""
    return None if tpe is None else F.normalize(self.reprta(tpe), dim=-1, p=2)


method ultralytics.nn.modules.head.YOLOEDetect.get_vpe

def get_vpe(self, x: list[torch.Tensor], vpe: torch.Tensor) -> torch.Tensor

Get visual prompt embeddings with spatial awareness.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]required
vpetorch.Tensorrequired
Source code in ultralytics/nn/modules/head.pyView on GitHub
def get_vpe(self, x: list[torch.Tensor], vpe: torch.Tensor) -> torch.Tensor:
    """Get visual prompt embeddings with spatial awareness."""
    if vpe.shape[1] == 0:  # no visual prompt embeddings
        return torch.zeros(x[0].shape[0], 0, self.embed, device=x[0].device)
    if vpe.ndim == 4:  # (B, N, H, W)
        vpe = self.savpe(x, vpe)
    assert vpe.ndim == 3  # (B, N, D)
    return vpe





class ultralytics.nn.modules.head.YOLOESegment

YOLOESegment(self, nc: int = 80, nm: int = 32, npr: int = 256, embed: int = 512, with_bn: bool = False, ch: tuple = ())

Bases: YOLOEDetect

YOLO segmentation head with text embedding capabilities.

This class extends YOLOEDetect to include mask prediction capabilities for instance segmentation tasks with text-guided semantic understanding.

Args

NameTypeDescriptionDefault
ncintNumber of classes.80
nmintNumber of masks.32
nprintNumber of protos.256
embedintEmbedding dimension.512
with_bnboolWhether to use batch normalization in contrastive head.False
chtupleTuple of channel sizes from backbone feature maps.()

Attributes

NameTypeDescription
nmintNumber of masks.
nprintNumber of protos.
protoProtoPrototype generation module.
cv5nn.ModuleListConvolution layers for mask coefficients.

Methods

NameDescription
forwardReturn model outputs and mask coefficients if training, otherwise return outputs and mask coefficients.

Examples

Create a YOLOESegment head
>>> yoloe_segment = YOLOESegment(nc=80, nm=32, npr=256, embed=512, with_bn=True, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> text = torch.randn(1, 80, 512)
>>> outputs = yoloe_segment(x, text)
Source code in ultralytics/nn/modules/head.pyView on GitHub
class YOLOESegment(YOLOEDetect):
    """YOLO segmentation head with text embedding capabilities.

    This class extends YOLOEDetect to include mask prediction capabilities for instance segmentation tasks with
    text-guided semantic understanding.

    Attributes:
        nm (int): Number of masks.
        npr (int): Number of protos.
        proto (Proto): Prototype generation module.
        cv5 (nn.ModuleList): Convolution layers for mask coefficients.

    Methods:
        forward: Return model outputs and mask coefficients.

    Examples:
        Create a YOLOESegment head
        >>> yoloe_segment = YOLOESegment(nc=80, nm=32, npr=256, embed=512, with_bn=True, ch=(256, 512, 1024))
        >>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
        >>> text = torch.randn(1, 80, 512)
        >>> outputs = yoloe_segment(x, text)
    """

    def __init__(
        self, nc: int = 80, nm: int = 32, npr: int = 256, embed: int = 512, with_bn: bool = False, ch: tuple = ()
    ):
        """Initialize YOLOESegment with class count, mask parameters, and embedding dimensions.

        Args:
            nc (int): Number of classes.
            nm (int): Number of masks.
            npr (int): Number of protos.
            embed (int): Embedding dimension.
            with_bn (bool): Whether to use batch normalization in contrastive head.
            ch (tuple): Tuple of channel sizes from backbone feature maps.
        """
        super().__init__(nc, embed, with_bn, ch)
        self.nm = nm
        self.npr = npr
        self.proto = Proto(ch[0], self.npr, self.nm)

        c5 = max(ch[0] // 4, self.nm)
        self.cv5 = nn.ModuleList(nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nm, 1)) for x in ch)


method ultralytics.nn.modules.head.YOLOESegment.forward

def forward(self, x: list[torch.Tensor], text: torch.Tensor) -> tuple | torch.Tensor

Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]required
texttorch.Tensorrequired
Source code in ultralytics/nn/modules/head.pyView on GitHub
def forward(self, x: list[torch.Tensor], text: torch.Tensor) -> tuple | torch.Tensor:
    """Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
    p = self.proto(x[0])  # mask protos
    bs = p.shape[0]  # batch size

    mc = torch.cat([self.cv5[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
    has_lrpc = hasattr(self, "lrpc")

    if not has_lrpc:
        x = YOLOEDetect.forward(self, x, text)
    else:
        x, mask = YOLOEDetect.forward(self, x, text, return_mask=True)

    if self.training:
        return x, mc, p

    if has_lrpc:
        mc = (mc * mask.int()) if self.export and not self.dynamic else mc[..., mask]

    return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))





class ultralytics.nn.modules.head.RTDETRDecoder

def __init__(
    self,
    nc: int = 80,
    ch: tuple = (512, 1024, 2048),
    hd: int = 256,  # hidden dim
    nq: int = 300,  # num queries
    ndp: int = 4,  # num decoder points
    nh: int = 8,  # num head
    ndl: int = 6,  # num decoder layers
    d_ffn: int = 1024,  # dim of feedforward
    dropout: float = 0.0,
    act: nn.Module = nn.ReLU(),
    eval_idx: int = -1,
    # Training args
    nd: int = 100,  # num denoising
    label_noise_ratio: float = 0.5,
    box_noise_scale: float = 1.0,
    learnt_init_query: bool = False,
)

Bases: nn.Module

Real-Time Deformable Transformer Decoder (RTDETRDecoder) module for object detection.

This decoder module utilizes Transformer architecture along with deformable convolutions to predict bounding boxes and class labels for objects in an image. It integrates features from multiple layers and runs through a series of Transformer decoder layers to output the final predictions.

Args

NameTypeDescriptionDefault
ncintNumber of classes.80
chtupleChannels in the backbone feature maps.(512, 1024, 2048)
hdintDimension of hidden layers.256
nqintNumber of query points.300
ndpintNumber of decoder points.4
nhintNumber of heads in multi-head attention.8
ndlintNumber of decoder layers.6
d_ffnintDimension of the feed-forward networks.1024
dropoutfloatDropout rate.0.0
actnn.ModuleActivation function.nn.ReLU()
eval_idxintEvaluation index.-1
ndintNumber of denoising.100
label_noise_ratiofloatLabel noise ratio.0.5
box_noise_scalefloatBox noise scale.1.0
learnt_init_queryboolWhether to learn initial query embeddings.False

Attributes

NameTypeDescription
exportboolExport mode flag.
hidden_dimintDimension of hidden layers.
nheadintNumber of heads in multi-head attention.
nlintNumber of feature levels.
ncintNumber of classes.
num_queriesintNumber of query points.
num_decoder_layersintNumber of decoder layers.
input_projnn.ModuleListInput projection layers for backbone features.
decoderDeformableTransformerDecoderTransformer decoder module.
denoising_class_embednn.EmbeddingClass embeddings for denoising.
num_denoisingintNumber of denoising queries.
label_noise_ratiofloatLabel noise ratio for training.
box_noise_scalefloatBox noise scale for training.
learnt_init_queryboolWhether to learn initial query embeddings.
tgt_embednn.EmbeddingTarget embeddings for queries.
query_pos_headMLPQuery position head.
enc_outputnn.SequentialEncoder output layers.
enc_score_headnn.LinearEncoder score prediction head.
enc_bbox_headMLPEncoder bbox prediction head.
dec_score_headnn.ModuleListDecoder score prediction heads.
dec_bbox_headnn.ModuleListDecoder bbox prediction heads.

Methods

NameDescription
_generate_anchorsGenerate anchor bounding boxes for given shapes with specific grid size and validate them.
_get_decoder_inputGenerate and prepare the input required for the decoder from the provided features and shapes.
_get_encoder_inputProcess and return encoder inputs by getting projection features from input and concatenating them.
_reset_parametersInitialize or reset the parameters of the model's various components with predefined weights and biases.
forwardRun the forward pass of the module, returning bounding box and classification scores for the input.

Examples

Create an RTDETRDecoder
>>> decoder = RTDETRDecoder(nc=80, ch=(512, 1024, 2048), hd=256, nq=300)
>>> x = [torch.randn(1, 512, 64, 64), torch.randn(1, 1024, 32, 32), torch.randn(1, 2048, 16, 16)]
>>> outputs = decoder(x)
Source code in ultralytics/nn/modules/head.pyView on GitHub
class RTDETRDecoder(nn.Module):
    """Real-Time Deformable Transformer Decoder (RTDETRDecoder) module for object detection.

    This decoder module utilizes Transformer architecture along with deformable convolutions to predict bounding boxes
    and class labels for objects in an image. It integrates features from multiple layers and runs through a series of
    Transformer decoder layers to output the final predictions.

    Attributes:
        export (bool): Export mode flag.
        hidden_dim (int): Dimension of hidden layers.
        nhead (int): Number of heads in multi-head attention.
        nl (int): Number of feature levels.
        nc (int): Number of classes.
        num_queries (int): Number of query points.
        num_decoder_layers (int): Number of decoder layers.
        input_proj (nn.ModuleList): Input projection layers for backbone features.
        decoder (DeformableTransformerDecoder): Transformer decoder module.
        denoising_class_embed (nn.Embedding): Class embeddings for denoising.
        num_denoising (int): Number of denoising queries.
        label_noise_ratio (float): Label noise ratio for training.
        box_noise_scale (float): Box noise scale for training.
        learnt_init_query (bool): Whether to learn initial query embeddings.
        tgt_embed (nn.Embedding): Target embeddings for queries.
        query_pos_head (MLP): Query position head.
        enc_output (nn.Sequential): Encoder output layers.
        enc_score_head (nn.Linear): Encoder score prediction head.
        enc_bbox_head (MLP): Encoder bbox prediction head.
        dec_score_head (nn.ModuleList): Decoder score prediction heads.
        dec_bbox_head (nn.ModuleList): Decoder bbox prediction heads.

    Methods:
        forward: Run forward pass and return bounding box and classification scores.

    Examples:
        Create an RTDETRDecoder
        >>> decoder = RTDETRDecoder(nc=80, ch=(512, 1024, 2048), hd=256, nq=300)
        >>> x = [torch.randn(1, 512, 64, 64), torch.randn(1, 1024, 32, 32), torch.randn(1, 2048, 16, 16)]
        >>> outputs = decoder(x)
    """

    export = False  # export mode
    shapes = []
    anchors = torch.empty(0)
    valid_mask = torch.empty(0)
    dynamic = False

    def __init__(
        self,
        nc: int = 80,
        ch: tuple = (512, 1024, 2048),
        hd: int = 256,  # hidden dim
        nq: int = 300,  # num queries
        ndp: int = 4,  # num decoder points
        nh: int = 8,  # num head
        ndl: int = 6,  # num decoder layers
        d_ffn: int = 1024,  # dim of feedforward
        dropout: float = 0.0,
        act: nn.Module = nn.ReLU(),
        eval_idx: int = -1,
        # Training args
        nd: int = 100,  # num denoising
        label_noise_ratio: float = 0.5,
        box_noise_scale: float = 1.0,
        learnt_init_query: bool = False,
    ):
        """Initialize the RTDETRDecoder module with the given parameters.

        Args:
            nc (int): Number of classes.
            ch (tuple): Channels in the backbone feature maps.
            hd (int): Dimension of hidden layers.
            nq (int): Number of query points.
            ndp (int): Number of decoder points.
            nh (int): Number of heads in multi-head attention.
            ndl (int): Number of decoder layers.
            d_ffn (int): Dimension of the feed-forward networks.
            dropout (float): Dropout rate.
            act (nn.Module): Activation function.
            eval_idx (int): Evaluation index.
            nd (int): Number of denoising.
            label_noise_ratio (float): Label noise ratio.
            box_noise_scale (float): Box noise scale.
            learnt_init_query (bool): Whether to learn initial query embeddings.
        """
        super().__init__()
        self.hidden_dim = hd
        self.nhead = nh
        self.nl = len(ch)  # num level
        self.nc = nc
        self.num_queries = nq
        self.num_decoder_layers = ndl

        # Backbone feature projection
        self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch)
        # NOTE: simplified version but it's not consistent with .pt weights.
        # self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch)

        # Transformer module
        decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp)
        self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx)

        # Denoising part
        self.denoising_class_embed = nn.Embedding(nc, hd)
        self.num_denoising = nd
        self.label_noise_ratio = label_noise_ratio
        self.box_noise_scale = box_noise_scale

        # Decoder embedding
        self.learnt_init_query = learnt_init_query
        if learnt_init_query:
            self.tgt_embed = nn.Embedding(nq, hd)
        self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2)

        # Encoder head
        self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd))
        self.enc_score_head = nn.Linear(hd, nc)
        self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3)

        # Decoder head
        self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)])
        self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)])

        self._reset_parameters()


method ultralytics.nn.modules.head.RTDETRDecoder._generate_anchors

def _generate_anchors(
    self,
    shapes: list[list[int]],
    grid_size: float = 0.05,
    dtype: torch.dtype = torch.float32,
    device: str = "cpu",
    eps: float = 1e-2,
) -> tuple[torch.Tensor, torch.Tensor]

Generate anchor bounding boxes for given shapes with specific grid size and validate them.

Args

NameTypeDescriptionDefault
shapeslistList of feature map shapes.required
grid_sizefloat, optionalBase size of grid cells.0.05
dtypetorch.dtype, optionalData type for tensors.torch.float32
devicestr, optionalDevice to create tensors on."cpu"
epsfloat, optionalSmall value for numerical stability.1e-2

Returns

TypeDescription
anchors (torch.Tensor)Generated anchor boxes.
valid_mask (torch.Tensor)Valid mask for anchors.
Source code in ultralytics/nn/modules/head.pyView on GitHub
def _generate_anchors(
    self,
    shapes: list[list[int]],
    grid_size: float = 0.05,
    dtype: torch.dtype = torch.float32,
    device: str = "cpu",
    eps: float = 1e-2,
) -> tuple[torch.Tensor, torch.Tensor]:
    """Generate anchor bounding boxes for given shapes with specific grid size and validate them.

    Args:
        shapes (list): List of feature map shapes.
        grid_size (float, optional): Base size of grid cells.
        dtype (torch.dtype, optional): Data type for tensors.
        device (str, optional): Device to create tensors on.
        eps (float, optional): Small value for numerical stability.

    Returns:
        anchors (torch.Tensor): Generated anchor boxes.
        valid_mask (torch.Tensor): Valid mask for anchors.
    """
    anchors = []
    for i, (h, w) in enumerate(shapes):
        sy = torch.arange(end=h, dtype=dtype, device=device)
        sx = torch.arange(end=w, dtype=dtype, device=device)
        grid_y, grid_x = torch.meshgrid(sy, sx, indexing="ij") if TORCH_1_11 else torch.meshgrid(sy, sx)
        grid_xy = torch.stack([grid_x, grid_y], -1)  # (h, w, 2)

        valid_WH = torch.tensor([w, h], dtype=dtype, device=device)
        grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH  # (1, h, w, 2)
        wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0**i)
        anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4))  # (1, h*w, 4)

    anchors = torch.cat(anchors, 1)  # (1, h*w*nl, 4)
    valid_mask = ((anchors > eps) & (anchors < 1 - eps)).all(-1, keepdim=True)  # 1, h*w*nl, 1
    anchors = torch.log(anchors / (1 - anchors))
    anchors = anchors.masked_fill(~valid_mask, float("inf"))
    return anchors, valid_mask


method ultralytics.nn.modules.head.RTDETRDecoder._get_decoder_input

def _get_decoder_input(
    self,
    feats: torch.Tensor,
    shapes: list[list[int]],
    dn_embed: torch.Tensor | None = None,
    dn_bbox: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]

Generate and prepare the input required for the decoder from the provided features and shapes.

Args

NameTypeDescriptionDefault
featstorch.TensorProcessed features from encoder.required
shapeslistList of feature map shapes.required
dn_embedtorch.Tensor, optionalDenoising embeddings.None
dn_bboxtorch.Tensor, optionalDenoising bounding boxes.None

Returns

TypeDescription
embeddings (torch.Tensor)Query embeddings for decoder.
refer_bbox (torch.Tensor)Reference bounding boxes.
enc_bboxes (torch.Tensor)Encoded bounding boxes.
enc_scores (torch.Tensor)Encoded scores.
Source code in ultralytics/nn/modules/head.pyView on GitHub
def _get_decoder_input(
    self,
    feats: torch.Tensor,
    shapes: list[list[int]],
    dn_embed: torch.Tensor | None = None,
    dn_bbox: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    """Generate and prepare the input required for the decoder from the provided features and shapes.

    Args:
        feats (torch.Tensor): Processed features from encoder.
        shapes (list): List of feature map shapes.
        dn_embed (torch.Tensor, optional): Denoising embeddings.
        dn_bbox (torch.Tensor, optional): Denoising bounding boxes.

    Returns:
        embeddings (torch.Tensor): Query embeddings for decoder.
        refer_bbox (torch.Tensor): Reference bounding boxes.
        enc_bboxes (torch.Tensor): Encoded bounding boxes.
        enc_scores (torch.Tensor): Encoded scores.
    """
    bs = feats.shape[0]
    if self.dynamic or self.shapes != shapes:
        self.anchors, self.valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device)
        self.shapes = shapes

    # Prepare input for decoder
    features = self.enc_output(self.valid_mask * feats)  # bs, h*w, 256
    enc_outputs_scores = self.enc_score_head(features)  # (bs, h*w, nc)

    # Query selection
    # (bs, num_queries)
    topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1)
    # (bs, num_queries)
    batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1)

    # (bs, num_queries, 256)
    top_k_features = features[batch_ind, topk_ind].view(bs, self.num_queries, -1)
    # (bs, num_queries, 4)
    top_k_anchors = self.anchors[:, topk_ind].view(bs, self.num_queries, -1)

    # Dynamic anchors + static content
    refer_bbox = self.enc_bbox_head(top_k_features) + top_k_anchors

    enc_bboxes = refer_bbox.sigmoid()
    if dn_bbox is not None:
        refer_bbox = torch.cat([dn_bbox, refer_bbox], 1)
    enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1)

    embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1) if self.learnt_init_query else top_k_features
    if self.training:
        refer_bbox = refer_bbox.detach()
        if not self.learnt_init_query:
            embeddings = embeddings.detach()
    if dn_embed is not None:
        embeddings = torch.cat([dn_embed, embeddings], 1)

    return embeddings, refer_bbox, enc_bboxes, enc_scores


method ultralytics.nn.modules.head.RTDETRDecoder._get_encoder_input

def _get_encoder_input(self, x: list[torch.Tensor]) -> tuple[torch.Tensor, list[list[int]]]

Process and return encoder inputs by getting projection features from input and concatenating them.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]List of feature maps from the backbone.required

Returns

TypeDescription
feats (torch.Tensor)Processed features.
shapes (list)List of feature map shapes.
Source code in ultralytics/nn/modules/head.pyView on GitHub
def _get_encoder_input(self, x: list[torch.Tensor]) -> tuple[torch.Tensor, list[list[int]]]:
    """Process and return encoder inputs by getting projection features from input and concatenating them.

    Args:
        x (list[torch.Tensor]): List of feature maps from the backbone.

    Returns:
        feats (torch.Tensor): Processed features.
        shapes (list): List of feature map shapes.
    """
    # Get projection features
    x = [self.input_proj[i](feat) for i, feat in enumerate(x)]
    # Get encoder inputs
    feats = []
    shapes = []
    for feat in x:
        h, w = feat.shape[2:]
        # [b, c, h, w] -> [b, h*w, c]
        feats.append(feat.flatten(2).permute(0, 2, 1))
        # [nl, 2]
        shapes.append([h, w])

    # [b, h*w, c]
    feats = torch.cat(feats, 1)
    return feats, shapes


method ultralytics.nn.modules.head.RTDETRDecoder._reset_parameters

def _reset_parameters(self)

Initialize or reset the parameters of the model's various components with predefined weights and biases.

Source code in ultralytics/nn/modules/head.pyView on GitHub
def _reset_parameters(self):
    """Initialize or reset the parameters of the model's various components with predefined weights and biases."""
    # Class and bbox head init
    bias_cls = bias_init_with_prob(0.01) / 80 * self.nc
    # NOTE: the weight initialization in `linear_init` would cause NaN when training with custom datasets.
    # linear_init(self.enc_score_head)
    constant_(self.enc_score_head.bias, bias_cls)
    constant_(self.enc_bbox_head.layers[-1].weight, 0.0)
    constant_(self.enc_bbox_head.layers[-1].bias, 0.0)
    for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
        # linear_init(cls_)
        constant_(cls_.bias, bias_cls)
        constant_(reg_.layers[-1].weight, 0.0)
        constant_(reg_.layers[-1].bias, 0.0)

    linear_init(self.enc_output[0])
    xavier_uniform_(self.enc_output[0].weight)
    if self.learnt_init_query:
        xavier_uniform_(self.tgt_embed.weight)
    xavier_uniform_(self.query_pos_head.layers[0].weight)
    xavier_uniform_(self.query_pos_head.layers[1].weight)
    for layer in self.input_proj:
        xavier_uniform_(layer[0].weight)


method ultralytics.nn.modules.head.RTDETRDecoder.forward

def forward(self, x: list[torch.Tensor], batch: dict | None = None) -> tuple | torch.Tensor

Run the forward pass of the module, returning bounding box and classification scores for the input.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]List of feature maps from the backbone.required
batchdict, optionalBatch information for training.None

Returns

TypeDescription
outputs (tuple | torch.Tensor)During training, returns a tuple of bounding boxes, scores, and other
Source code in ultralytics/nn/modules/head.pyView on GitHub
def forward(self, x: list[torch.Tensor], batch: dict | None = None) -> tuple | torch.Tensor:
    """Run the forward pass of the module, returning bounding box and classification scores for the input.

    Args:
        x (list[torch.Tensor]): List of feature maps from the backbone.
        batch (dict, optional): Batch information for training.

    Returns:
        outputs (tuple | torch.Tensor): During training, returns a tuple of bounding boxes, scores, and other
            metadata. During inference, returns a tensor of shape (bs, 300, 4+nc) containing bounding boxes and
            class scores.
    """
    from ultralytics.models.utils.ops import get_cdn_group

    # Input projection and embedding
    feats, shapes = self._get_encoder_input(x)

    # Prepare denoising training
    dn_embed, dn_bbox, attn_mask, dn_meta = get_cdn_group(
        batch,
        self.nc,
        self.num_queries,
        self.denoising_class_embed.weight,
        self.num_denoising,
        self.label_noise_ratio,
        self.box_noise_scale,
        self.training,
    )

    embed, refer_bbox, enc_bboxes, enc_scores = self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)

    # Decoder
    dec_bboxes, dec_scores = self.decoder(
        embed,
        refer_bbox,
        feats,
        shapes,
        self.dec_bbox_head,
        self.dec_score_head,
        self.query_pos_head,
        attn_mask=attn_mask,
    )
    x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta
    if self.training:
        return x
    # (bs, 300, 4+nc)
    y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
    return y if self.export else (y, x)





class ultralytics.nn.modules.head.v10Detect

v10Detect(self, nc: int = 80, ch: tuple = ())

Bases: Detect

v10 Detection head from https://arxiv.org/pdf/2405.14458.

This class implements the YOLOv10 detection head with dual-assignment training and consistent dual predictions for improved efficiency and performance.

Args

NameTypeDescriptionDefault
ncintNumber of classes.80
chtupleTuple of channel sizes from backbone feature maps.()

Attributes

NameTypeDescription
end2endboolEnd-to-end detection mode.
max_detintMaximum number of detections.
cv3nn.ModuleListLight classification head layers.
one2one_cv3nn.ModuleListOne-to-one classification head layers.

Methods

NameDescription
fuseRemove the one2many head for inference optimization.

Examples

Create a v10Detect head
>>> v10_detect = v10Detect(nc=80, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = v10_detect(x)
Source code in ultralytics/nn/modules/head.pyView on GitHub
class v10Detect(Detect):
    """v10 Detection head from https://arxiv.org/pdf/2405.14458.

    This class implements the YOLOv10 detection head with dual-assignment training and consistent dual predictions for
    improved efficiency and performance.

    Attributes:
        end2end (bool): End-to-end detection mode.
        max_det (int): Maximum number of detections.
        cv3 (nn.ModuleList): Light classification head layers.
        one2one_cv3 (nn.ModuleList): One-to-one classification head layers.

    Methods:
        __init__: Initialize the v10Detect object with specified number of classes and input channels.
        forward: Perform forward pass of the v10Detect module.
        bias_init: Initialize biases of the Detect module.
        fuse: Remove the one2many head for inference optimization.

    Examples:
        Create a v10Detect head
        >>> v10_detect = v10Detect(nc=80, ch=(256, 512, 1024))
        >>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
        >>> outputs = v10_detect(x)
    """

    end2end = True

    def __init__(self, nc: int = 80, ch: tuple = ()):
        """Initialize the v10Detect object with the specified number of classes and input channels.

        Args:
            nc (int): Number of classes.
            ch (tuple): Tuple of channel sizes from backbone feature maps.
        """
        super().__init__(nc, ch)
        c3 = max(ch[0], min(self.nc, 100))  # channels
        # Light cls head
        self.cv3 = nn.ModuleList(
            nn.Sequential(
                nn.Sequential(Conv(x, x, 3, g=x), Conv(x, c3, 1)),
                nn.Sequential(Conv(c3, c3, 3, g=c3), Conv(c3, c3, 1)),
                nn.Conv2d(c3, self.nc, 1),
            )
            for x in ch
        )
        self.one2one_cv3 = copy.deepcopy(self.cv3)


method ultralytics.nn.modules.head.v10Detect.fuse

def fuse(self)

Remove the one2many head for inference optimization.

Source code in ultralytics/nn/modules/head.pyView on GitHub
def fuse(self):
    """Remove the one2many head for inference optimization."""
    self.cv2 = self.cv3 = nn.ModuleList([nn.Identity()] * self.nl)





📅 Created 2 years ago ✏️ Updated 10 days ago
glenn-jocherBurhan-QLaughing-qRizwanMunawarjk4e