TFLite, ONNX, CoreML, TensorRT Экспорт
📚 В этом руководстве объясняется, как экспортировать обученную модель YOLOv5 🚀 из PyTorch в форматы ONNX и TorchScript .
Прежде чем начать
Клонируйте репо и установите файл requirements.txt в Python>=3.8.0 в окружении, включая PyTorch>=1.8. Модели и наборы данных загружаются автоматически из последнегорелиза YOLOv5 .
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
Для TensorRT пример экспорта (требуется GPU) см. на нашем сайте Colab ноутбук раздел приложения.
Форматы
YOLOv5 вывод официально поддерживается в 11 форматах:
💡 Совет: экспортируйте в ONNX или OpenVINO , чтобы увеличить скорость работы до 3x CPU . См. CPU Бенчмарки. 💡 Совет: экспортируйте на TensorRT для ускорения до 5x GPU . См. GPU Бенчмарки.
Формат | export.py --include |
Модель |
---|---|---|
PyTorch | - | yolov5s.pt |
TorchScript | torchscript |
yolov5s.torchscript |
ONNX | onnx |
yolov5s.onnx |
OpenVINO | openvino |
yolov5s_openvino_model/ |
TensorRT | engine |
yolov5s.engine |
CoreML | coreml |
yolov5s.mlmodel |
TensorFlow SavedModel | saved_model |
yolov5s_saved_model/ |
TensorFlow GraphDef | pb |
yolov5s.pb |
TensorFlow Lite | tflite |
yolov5s.tflite |
TensorFlow Край TPU | edgetpu |
yolov5s_edgetpu.tflite |
TensorFlow.js | tfjs |
yolov5s_web_model/ |
PaddlePaddle | paddle |
yolov5s_paddle_model/ |
Бенчмарки
Приведенные ниже бенчмарки выполняются на ноутбуке Colab Pro с учебным блоком YOLOv5 . . Для воспроизведения:
Colab Pro V100 GPU
benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=0, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 46.7/166.8 GB disk)
Benchmarks complete (458.07s)
Format mAP@0.5:0.95 Inference time (ms)
0 PyTorch 0.4623 10.19
1 TorchScript 0.4623 6.85
2 ONNX 0.4623 14.63
3 OpenVINO NaN NaN
4 TensorRT 0.4617 1.89
5 CoreML NaN NaN
6 TensorFlow SavedModel 0.4623 21.28
7 TensorFlow GraphDef 0.4623 21.22
8 TensorFlow Lite NaN NaN
9 TensorFlow Edge TPU NaN NaN
10 TensorFlow.js NaN NaN
Colab Pro CPU
benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=cpu, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CPU
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 41.5/166.8 GB disk)
Benchmarks complete (241.20s)
Format mAP@0.5:0.95 Inference time (ms)
0 PyTorch 0.4623 127.61
1 TorchScript 0.4623 131.23
2 ONNX 0.4623 69.34
3 OpenVINO 0.4623 66.52
4 TensorRT NaN NaN
5 CoreML NaN NaN
6 TensorFlow SavedModel 0.4623 123.79
7 TensorFlow GraphDef 0.4623 121.57
8 TensorFlow Lite 0.4623 316.61
9 TensorFlow Edge TPU NaN NaN
10 TensorFlow.js NaN NaN
Экспорт обученной модели YOLOv5
Эта команда экспортирует предварительно обученную модель YOLOv5s в форматы TorchScript и ONNX . yolov5s.pt
это "маленькая" модель, вторая по размеру из доступных. Другие варианты yolov5n.pt
, yolov5m.pt
, yolov5l.pt
и yolov5x.pt
, наряду с их аналогами из P6, т.е. yolov5s6.pt
или собственную контрольную точку обучения, например. runs/exp/weights/best.pt
. Подробную информацию о всех доступных моделях можно найти в нашем README таблица.
💡 Совет: добавьте --half
для экспорта моделей в формате FP16 half точность для файлов меньшего размера
Выход:
export: data=data/coco128.yaml, weights=['yolov5s.pt'], imgsz=[640, 640], batch_size=1, device=cpu, half=False, inplace=False, train=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=12, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['torchscript', 'onnx']
YOLOv5 🚀 v6.2-104-ge3e5122 Python-3.8.0 torch-1.12.1+cu113 CPU
Downloading https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 274MB/s]
Fusing layers...
YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients
PyTorch: starting from yolov5s.pt with output shape (1, 25200, 85) (14.1 MB)
TorchScript: starting export with torch 1.12.1+cu113...
TorchScript: export success ✅ 1.7s, saved as yolov5s.torchscript (28.1 MB)
ONNX: starting export with onnx 1.12.0...
ONNX: export success ✅ 2.3s, saved as yolov5s.onnx (28.0 MB)
Export complete (5.5s)
Results saved to /content/yolov5
Detect: python detect.py --weights yolov5s.onnx
Validate: python val.py --weights yolov5s.onnx
PyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.onnx')
Visualize: https://netron.app/
Три экспортированные модели будут сохранены вместе с оригинальной моделью PyTorch :
Для визуализации экспортированных моделей рекомендуется использовать Netron Viewer:
Примеры использования экспортированной модели
detect.py
выполняет вывод на экспортированных моделях:
python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
val.py
выполняет проверку экспортированных моделей:
python val.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS Only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
Используйте концентратор PyTorch с экспортированными моделями YOLOv5 :
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pt")
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.torchscript ") # TorchScript
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.onnx") # ONNX Runtime
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_openvino_model") # OpenVINO
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.engine") # TensorRT
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.mlmodel") # CoreML (macOS Only)
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_saved_model") # TensorFlow SavedModel
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pb") # TensorFlow GraphDef
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.tflite") # TensorFlow Lite
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_edgetpu.tflite") # TensorFlow Edge TPU
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_paddle_model") # PaddlePaddle
# Images
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
Выводы OpenCV DNN
Выводы в OpenCV с помощью моделей ONNX :
python export.py --weights yolov5s.pt --include onnx
python detect.py --weights yolov5s.onnx --dnn # detect
python val.py --weights yolov5s.onnx --dnn # validate
Выводы в C++
YOLOv5 Вывод OpenCV DNN C++ на экспортированных примерах моделей ONNX :
- https://github.com/Hexmagic/ONNX-yolov5/blob/master/src/test.cpp
- https://github.com/doleron/yolov5-opencv-cpp-python
YOLOv5 OpenVINO Примеры выводов в C++:
- https://github.com/dacquaviva/yolov5-openvino-cpp-python
- https://github.com/UNeedCryDear/yolov5-seg-opencv-dnn-cpp
TensorFlowВывод о веб-браузере в .js
Поддерживаемые среды
Ultralytics предоставляет ряд готовых к использованию окружений, в каждом из которых предустановлены такие необходимые зависимости, как CUDA, CUDNN, Python, и PyTorchдля запуска ваших проектов.
- Бесплатные блокноты GPU:
- Google Облако: Руководство по быстрому запуску GCP
- Amazon: Руководство по быстрому запуску AWS
- Azure: Руководство по быстрому запуску AzureML
- Docker: Руководство по быстрому запуску Docker
Статус проекта
Этот значок означает, что все тесты непрерывной интеграции (CI) YOLOv5 GitHub Actions успешно пройдены. Эти CI-тесты тщательно проверяют функциональность и производительность YOLOv5 по различным ключевым аспектам: обучение, валидация, вывод, экспорт и контрольные показатели. Они обеспечивают стабильную и надежную работу на macOS, Windows и Ubuntu, причем тесты проводятся каждые 24 часа и при каждом новом коммите.