Chuyển đến nội dung

Xuất TFLite, ONNX, CoreML, TensorRT

📚 Hướng dẫn này giải thích cách xuất mô hình YOLOv5 🚀 đã huấn luyện từ PyTorch sang các định dạng triển khai khác nhau bao gồm ONNX, TensorRT, CoreML và hơn thế nữa.

Trước Khi Bắt Đầu

Sao chép kho lưu trữ và cài đặt requirements.txt trong môi trường Python>=3.8.0, bao gồm PyTorch>=1.8. Mô hìnhbộ dữ liệu được tải xuống tự động từ phiên bản phát hành YOLOv5 mới nhất.

git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install

Cho TensorRT ví dụ xuất (yêu cầu GPU) xem Colab của chúng tôi notebook phần phụ lục. Mở Trong Colab

Các Định dạng Xuất được Hỗ trợ

Suy luận YOLOv5 được hỗ trợ chính thức ở 12 định dạng:

Mẹo nâng cao hiệu năng

  • Xuất sang ONNX hoặc OpenVINO để tăng tốc CPU lên đến 3 lần. Xem Điểm chuẩn CPU.
  • Xuất sang TensorRT để tăng tốc GPU lên đến 5 lần. Xem Điểm chuẩn GPU.
Định dạng export.py --include Mô hình
PyTorch - yolov5s.pt
TorchScript torchscript yolov5s.torchscript
ONNX onnx yolov5s.onnx
OpenVINO openvino yolov5s_openvino_model/
TensorRT engine yolov5s.engine
CoreML coreml yolov5s.mlmodel
TensorFlow SavedModel saved_model yolov5s_saved_model/
TensorFlow GraphDef pb yolov5s.pb
TensorFlow Lite tflite yolov5s.tflite
TensorFlow Edge TPU edgetpu yolov5s_edgetpu.tflite
TensorFlow.js tfjs yolov5s_web_model/
PaddlePaddle paddle yolov5s_paddle_model/

Điểm chuẩn

Điểm chuẩn bên dưới chạy trên Colab Pro với notebook hướng dẫn YOLOv5 Mở Trong Colab. Để tái tạo:

python benchmarks.py --weights yolov5s.pt --imgsz 640 --device 0

Colab Pro V100 GPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=0, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 46.7/166.8 GB disk)

Benchmarks complete (458.07s)
                   Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623                10.19
1             TorchScript        0.4623                 6.85
2                    ONNX        0.4623                14.63
3                OpenVINO           NaN                  NaN
4                TensorRT        0.4617                 1.89
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623                21.28
7     TensorFlow GraphDef        0.4623                21.22
8         TensorFlow Lite           NaN                  NaN
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

Colab Pro CPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=cpu, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CPU
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 41.5/166.8 GB disk)

Benchmarks complete (241.20s)
                   Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623               127.61
1             TorchScript        0.4623               131.23
2                    ONNX        0.4623                69.34
3                OpenVINO        0.4623                66.52
4                TensorRT           NaN                  NaN
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623               123.79
7     TensorFlow GraphDef        0.4623               121.57
8         TensorFlow Lite        0.4623               316.61
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

Xuất Mô hình YOLOv5 Đã Huấn luyện

Lệnh này xuất mô hình YOLOv5s đã được huấn luyện trước sang định dạng TorchScript và ONNX. yolov5s.pt là mô hình 'nhỏ', mô hình nhỏ thứ hai hiện có. Các tùy chọn khác là yolov5n.pt, yolov5m.pt, yolov5l.ptyolov5x.pt, cùng với các đối tác P6 của chúng, ví dụ: yolov5s6.pt hoặc checkpoint huấn luyện tùy chỉnh của riêng bạn, ví dụ: runs/exp/weights/best.pt. Để biết chi tiết về tất cả các mô hình có sẵn, vui lòng xem README của chúng tôi bảng.

python export.py --weights yolov5s.pt --include torchscript onnx

Mẹo

Thêm --half để xuất các mô hình ở độ chính xác FP16 half độ chính xác để có kích thước tệp nhỏ hơn

Đầu ra:

export: data=data/coco128.yaml, weights=['yolov5s.pt'], imgsz=[640, 640], batch_size=1, device=cpu, half=False, inplace=False, train=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=12, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['torchscript', 'onnx']
YOLOv5 🚀 v6.2-104-ge3e5122 Python-3.8.0 torch-1.12.1+cu113 CPU

Downloading https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 274MB/s]

Fusing layers...
YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients

PyTorch: starting from yolov5s.pt with output shape (1, 25200, 85) (14.1 MB)

TorchScript: starting export with torch 1.12.1+cu113...
TorchScript: export success ✅ 1.7s, saved as yolov5s.torchscript (28.1 MB)

ONNX: starting export with onnx 1.12.0...
ONNX: export success ✅ 2.3s, saved as yolov5s.onnx (28.0 MB)

Export complete (5.5s)
Results saved to /content/yolov5
Detect:          python detect.py --weights yolov5s.onnx
Validate:        python val.py --weights yolov5s.onnx
PyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.onnx')
Visualize:       https://netron.app/

3 mô hình đã xuất sẽ được lưu cùng với mô hình PyTorch gốc:

Vị trí xuất YOLO

Netron Viewer được khuyến nghị để trực quan hóa các mô hình đã xuất:

Trực quan hóa mô hình YOLO

Ví dụ về Cách sử dụng Mô hình đã Xuất

detect.py chạy suy luận trên các mô hình đã xuất:

python detect.py --weights yolov5s.pt             # PyTorch
python detect.py --weights yolov5s.torchscript    # TorchScript
python detect.py --weights yolov5s.onnx           # ONNX Runtime or OpenCV DNN with dnn=True
python detect.py --weights yolov5s_openvino_model # OpenVINO
python detect.py --weights yolov5s.engine         # TensorRT
python detect.py --weights yolov5s.mlmodel        # CoreML (macOS only)
python detect.py --weights yolov5s_saved_model    # TensorFlow SavedModel
python detect.py --weights yolov5s.pb             # TensorFlow GraphDef
python detect.py --weights yolov5s.tflite         # TensorFlow Lite
python detect.py --weights yolov5s_edgetpu.tflite # TensorFlow Edge TPU
python detect.py --weights yolov5s_paddle_model   # PaddlePaddle

val.py chạy xác thực trên các mô hình đã xuất:

python val.py --weights yolov5s.pt             # PyTorch
python val.py --weights yolov5s.torchscript    # TorchScript
python val.py --weights yolov5s.onnx           # ONNX Runtime or OpenCV DNN with dnn=True
python val.py --weights yolov5s_openvino_model # OpenVINO
python val.py --weights yolov5s.engine         # TensorRT
python val.py --weights yolov5s.mlmodel        # CoreML (macOS Only)
python val.py --weights yolov5s_saved_model    # TensorFlow SavedModel
python val.py --weights yolov5s.pb             # TensorFlow GraphDef
python val.py --weights yolov5s.tflite         # TensorFlow Lite
python val.py --weights yolov5s_edgetpu.tflite # TensorFlow Edge TPU
python val.py --weights yolov5s_paddle_model   # PaddlePaddle

Sử dụng PyTorch Hub với các mô hình YOLOv5 đã xuất:

import torch

# Model
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pt")
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.torchscript ")  # TorchScript
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.onnx")  # ONNX Runtime
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_openvino_model")  # OpenVINO
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.engine")  # TensorRT
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.mlmodel")  # CoreML (macOS Only)
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_saved_model")  # TensorFlow SavedModel
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pb")  # TensorFlow GraphDef
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.tflite")  # TensorFlow Lite
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_edgetpu.tflite")  # TensorFlow Edge TPU
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_paddle_model")  # PaddlePaddle

# Images
img = "https://ultralytics.com/images/zidane.jpg"  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

Suy luận OpenCV DNN

Suy luận OpenCV với các mô hình ONNX:

python export.py --weights yolov5s.pt --include onnx

python detect.py --weights yolov5s.onnx --dnn # detect
python val.py --weights yolov5s.onnx --dnn    # validate

Suy luận C++

Các ví dụ về suy luận YOLOv5 OpenCV DNN C++ trên mô hình ONNX đã xuất:

Các ví dụ về suy luận YOLOv5 OpenVINO C++:

Suy luận trên trình duyệt web TensorFlow.js

Môi trường được hỗ trợ

Ultralytics cung cấp một loạt các môi trường sẵn sàng sử dụng, mỗi môi trường được cài đặt sẵn các phần phụ thuộc thiết yếu như CUDA, CUDNN, PythonPyTorch, để khởi động các dự án của bạn.

Trạng thái dự án

YOLOv5 CI

Huy hiệu này cho biết rằng tất cả các thử nghiệm Tích hợp Liên tục (CI) YOLOv5 GitHub Actions đều vượt qua thành công. Các thử nghiệm CI này kiểm tra nghiêm ngặt chức năng và hiệu suất của YOLOv5 trên nhiều khía cạnh chính: huấn luyện, xác thực, suy luận, xuấtđiểm chuẩn. Chúng đảm bảo hoạt động nhất quán và đáng tin cậy trên macOS, Windows và Ubuntu, với các thử nghiệm được thực hiện sau mỗi 24 giờ và sau mỗi cam kết mới.



📅 Đã tạo 1 năm trước ✏️ Cập nhật 2 tháng trước

Bình luận