Skip to content


YOLOv5 🚀 applies online imagespace and colorspace augmentations in the trainloader (but not the val_loader) to present a new and unique augmented Mosaic (original image + 3 random images) each time an image is loaded for training. Images are never presented twice in the same way.

YOLOv5 augmentation

Augmentation Hyperparameters

The hyperparameters used to define these augmentations are in your hyperparameter file (default data/hyp.scratch.yaml) defined when training:

python --hyp hyp.scratch-low.yaml

Augmentation Previews

You can view the effect of your augmentation policy in your train_batch*.jpg images once training starts. These images will be in your train logging directory, typically yolov5/runs/train/exp:

train_batch0.jpg shows train batch 0 mosaics and labels:

YOLOv5 Albumentations Integration

YOLOv5 🚀 is now fully integrated with Albumentations, a popular open-source image augmentation package. Now you can train the world's best Vision AI models even better with custom Albumentations 😃!

PR implements this integration, which will automatically apply Albumentations transforms during YOLOv5 training if albumentations>=1.0.3 is installed in your environment. See for full details.

Example train_batch0.jpg on COCO128 dataset with Blur, MedianBlur and ToGray. See the YOLOv5 Notebooks to reproduce: Open In Colab Open In Kaggle

Good luck 🍀 and let us know if you have any other questions!