Zum Inhalt springen

Pruning/Sparsity Tutorial

📚 In diesem Leitfaden wird erklärt, wie Sie das Pruning auf YOLOv5 🚀 Modelle anwenden.

Bevor Sie beginnen

Repo klonen und requirements.txt in einem Python>=3.8.0 Umgebung, einschließlich PyTorch>=1.8. Modelle und Datensätze werden automatisch von der neuestenVersion von YOLOv5 heruntergeladen.

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Test Normalerweise

Vor dem Beschneiden wollen wir eine Basisleistung ermitteln, mit der wir vergleichen können. Dieser Befehl testet YOLOv5x auf COCO val2017 bei einer Bildgröße von 640 Pixeln. yolov5x.pt ist das größte und genaueste verfügbare Modell. Andere Optionen sind yolov5s.pt, yolov5m.pt und yolov5l.ptoder Ihren eigenen Kontrollpunkt aus dem Training eines benutzerdefinierten Datensatzes ./weights/best.pt. Details zu allen verfügbaren Modellen finden Sie in unserer README Tabelle.

python val.py --weights yolov5x.pt --data coco.yaml --img 640 --half

Ausgabe:

val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)

Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [01:12<00:00,  2.16it/s]
                 all       5000      36335      0.732      0.628      0.683      0.496
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640)  # <--- base speed

Evaluating pycocotools mAP... saving runs/val/exp2/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.507  # <--- base mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.689
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.552
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.559
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.652
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.381
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.630
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.682
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.731
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.829
Results saved to runs/val/exp

Test von YOLOv5x auf COCO (0,30 Sparsamkeit)

Wir wiederholen den obigen Test mit einem beschnittenen Modell, indem wir die torch_utils.prune() Befehl. Wir aktualisieren val.py um YOLOv5x auf 0,3 Sparsamkeit zu reduzieren:

Bildschirmfoto 2022-02-02 um 22 54 18

30% beschnittene Leistung:

val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)

Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
Pruning model...  0.3 global sparsity
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [01:11<00:00,  2.19it/s]
                 all       5000      36335      0.724      0.614      0.671      0.478
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640)  # <--- prune mAP

Evaluating pycocotools mAP... saving runs/val/exp3/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.489  # <--- prune mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.677
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.537
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.334
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.542
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.635
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.370
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.612
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.664
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.496
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.722
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.803
Results saved to runs/val/exp3

In den Ergebnissen können wir feststellen, dass wir eine Sparsamkeit von 30% in unserem Modell nach dem Pruning, was bedeutet, dass 30% der Gewichtungsparameter des Modells in nn.Conv2d Schichten gleich 0 sind. Die Inferenzzeit bleibt im Wesentlichen unverändert., während das Modell AP- und AR-Punkte eine leicht reduzierte.

Unterstützte Umgebungen

Ultralytics bietet eine Reihe gebrauchsfertiger Umgebungen, die jeweils mit wichtigen Abhängigkeiten vorinstalliert sind, z. B. CUDA, CUDNN, Python, und PyTorchvorinstalliert, um Ihre Projekte in Gang zu bringen.

Projektstatus

YOLOv5 CI

Dieses Abzeichen zeigt an, dass alle YOLOv5 GitHub Actions Continuous Integration (CI) Tests erfolgreich bestanden wurden. Diese CI-Tests überprüfen die Funktionalität und Leistung von YOLOv5 in verschiedenen Schlüsselbereichen: Training, Validierung, Inferenz, Export und Benchmarks. Sie gewährleisten einen konsistenten und zuverlässigen Betrieb unter macOS, Windows und Ubuntu, wobei die Tests alle 24 Stunden und bei jeder neuen Übertragung durchgeführt werden.

📅 Erstellt vor 1 Jahr ✏️ Aktualisiert vor 2 Monaten

Kommentare