Overslaan naar inhoud

Referentie voor ultralytics/trackers/utils/gmc.py

Opmerking

Dit bestand is beschikbaar op https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/trackers/utils/gmc .py. Als je een probleem ziet, help het dan oplossen door een Pull Request 🛠️ bij te dragen. Bedankt 🙏!



ultralytics.trackers.utils.gmc.GMC

Klasse voor Generalized Motion Compensation (GMC) voor het volgen en detecteren van objecten in videoframes.

Deze klasse biedt methoden voor het volgen en detecteren van objecten op basis van verschillende volgalgoritmen, waaronder ORB, SIFT, ECC en Sparse Optical Flow. Het ondersteunt ook het verkleinen van frames voor computerefficiëntie.

Kenmerken:

Naam Type Beschrijving
method str

De methode die wordt gebruikt voor het volgen. Opties zijn onder andere 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.

downscale int

Factor waarmee de frames gedownscaled moeten worden voor verwerking.

prevFrame ndarray

Slaat het vorige frame op om te volgen.

prevKeyPoints list

Slaat de sleutelpunten van het vorige frame op.

prevDescriptors ndarray

Slaat de descriptors van het vorige frame op.

initializedFirstFrame bool

Vlag om aan te geven of het eerste frame is verwerkt.

Methoden:

Naam Beschrijving
__init__

Initialiseert een GMC-object met de opgegeven methode en downscale factor.

apply

Past de gekozen methode toe op een onbewerkt frame en gebruikt optioneel meegeleverde detecties.

applyEcc

Past het ECC-algoritme toe op een onbewerkt frame.

applyFeatures

Past op kenmerken gebaseerde methoden zoals ORB of SIFT toe op een onbewerkt frame.

applySparseOptFlow

Past de Sparse Optical Flow-methode toe op een onbewerkt frame.

Broncode in ultralytics/trackers/utils/gmc.py
class GMC:
    """
    Generalized Motion Compensation (GMC) class for tracking and object detection in video frames.

    This class provides methods for tracking and detecting objects based on several tracking algorithms including ORB,
    SIFT, ECC, and Sparse Optical Flow. It also supports downscaling of frames for computational efficiency.

    Attributes:
        method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
        downscale (int): Factor by which to downscale the frames for processing.
        prevFrame (np.ndarray): Stores the previous frame for tracking.
        prevKeyPoints (list): Stores the keypoints from the previous frame.
        prevDescriptors (np.ndarray): Stores the descriptors from the previous frame.
        initializedFirstFrame (bool): Flag to indicate if the first frame has been processed.

    Methods:
        __init__(self, method='sparseOptFlow', downscale=2): Initializes a GMC object with the specified method
                                                              and downscale factor.
        apply(self, raw_frame, detections=None): Applies the chosen method to a raw frame and optionally uses
                                                 provided detections.
        applyEcc(self, raw_frame, detections=None): Applies the ECC algorithm to a raw frame.
        applyFeatures(self, raw_frame, detections=None): Applies feature-based methods like ORB or SIFT to a raw frame.
        applySparseOptFlow(self, raw_frame, detections=None): Applies the Sparse Optical Flow method to a raw frame.
    """

    def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None:
        """
        Initialize a video tracker with specified parameters.

        Args:
            method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
            downscale (int): Downscale factor for processing frames.
        """
        super().__init__()

        self.method = method
        self.downscale = max(1, int(downscale))

        if self.method == "orb":
            self.detector = cv2.FastFeatureDetector_create(20)
            self.extractor = cv2.ORB_create()
            self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)

        elif self.method == "sift":
            self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
            self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
            self.matcher = cv2.BFMatcher(cv2.NORM_L2)

        elif self.method == "ecc":
            number_of_iterations = 5000
            termination_eps = 1e-6
            self.warp_mode = cv2.MOTION_EUCLIDEAN
            self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)

        elif self.method == "sparseOptFlow":
            self.feature_params = dict(
                maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04
            )

        elif self.method in {"none", "None", None}:
            self.method = None
        else:
            raise ValueError(f"Error: Unknown GMC method:{method}")

        self.prevFrame = None
        self.prevKeyPoints = None
        self.prevDescriptors = None
        self.initializedFirstFrame = False

    def apply(self, raw_frame: np.array, detections: list = None) -> np.array:
        """
        Apply object detection on a raw frame using specified method.

        Args:
            raw_frame (np.ndarray): The raw frame to be processed.
            detections (list): List of detections to be used in the processing.

        Returns:
            (np.ndarray): Processed frame.

        Examples:
            >>> gmc = GMC()
            >>> gmc.apply(np.array([[1, 2, 3], [4, 5, 6]]))
            array([[1, 2, 3],
                   [4, 5, 6]])
        """
        if self.method in {"orb", "sift"}:
            return self.applyFeatures(raw_frame, detections)
        elif self.method == "ecc":
            return self.applyEcc(raw_frame)
        elif self.method == "sparseOptFlow":
            return self.applySparseOptFlow(raw_frame)
        else:
            return np.eye(2, 3)

    def applyEcc(self, raw_frame: np.array) -> np.array:
        """
        Apply ECC algorithm to a raw frame.

        Args:
            raw_frame (np.ndarray): The raw frame to be processed.

        Returns:
            (np.ndarray): Processed frame.

        Examples:
            >>> gmc = GMC()
            >>> gmc.applyEcc(np.array([[1, 2, 3], [4, 5, 6]]))
            array([[1, 2, 3],
                   [4, 5, 6]])
        """
        height, width, _ = raw_frame.shape
        frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
        H = np.eye(2, 3, dtype=np.float32)

        # Downscale image
        if self.downscale > 1.0:
            frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
            frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
            width = width // self.downscale
            height = height // self.downscale

        # Handle first frame
        if not self.initializedFirstFrame:
            # Initialize data
            self.prevFrame = frame.copy()

            # Initialization done
            self.initializedFirstFrame = True

            return H

        # Run the ECC algorithm. The results are stored in warp_matrix.
        # (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria)
        try:
            (_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
        except Exception as e:
            LOGGER.warning(f"WARNING: find transform failed. Set warp as identity {e}")

        return H

    def applyFeatures(self, raw_frame: np.array, detections: list = None) -> np.array:
        """
        Apply feature-based methods like ORB or SIFT to a raw frame.

        Args:
            raw_frame (np.ndarray): The raw frame to be processed.
            detections (list): List of detections to be used in the processing.

        Returns:
            (np.ndarray): Processed frame.

        Examples:
            >>> gmc = GMC()
            >>> gmc.applyFeatures(np.array([[1, 2, 3], [4, 5, 6]]))
            array([[1, 2, 3],
                   [4, 5, 6]])
        """
        height, width, _ = raw_frame.shape
        frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
        H = np.eye(2, 3)

        # Downscale image
        if self.downscale > 1.0:
            frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
            width = width // self.downscale
            height = height // self.downscale

        # Find the keypoints
        mask = np.zeros_like(frame)
        mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255
        if detections is not None:
            for det in detections:
                tlbr = (det[:4] / self.downscale).astype(np.int_)
                mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0

        keypoints = self.detector.detect(frame, mask)

        # Compute the descriptors
        keypoints, descriptors = self.extractor.compute(frame, keypoints)

        # Handle first frame
        if not self.initializedFirstFrame:
            # Initialize data
            self.prevFrame = frame.copy()
            self.prevKeyPoints = copy.copy(keypoints)
            self.prevDescriptors = copy.copy(descriptors)

            # Initialization done
            self.initializedFirstFrame = True

            return H

        # Match descriptors
        knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)

        # Filter matches based on smallest spatial distance
        matches = []
        spatialDistances = []

        maxSpatialDistance = 0.25 * np.array([width, height])

        # Handle empty matches case
        if len(knnMatches) == 0:
            # Store to next iteration
            self.prevFrame = frame.copy()
            self.prevKeyPoints = copy.copy(keypoints)
            self.prevDescriptors = copy.copy(descriptors)

            return H

        for m, n in knnMatches:
            if m.distance < 0.9 * n.distance:
                prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
                currKeyPointLocation = keypoints[m.trainIdx].pt

                spatialDistance = (
                    prevKeyPointLocation[0] - currKeyPointLocation[0],
                    prevKeyPointLocation[1] - currKeyPointLocation[1],
                )

                if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and (
                    np.abs(spatialDistance[1]) < maxSpatialDistance[1]
                ):
                    spatialDistances.append(spatialDistance)
                    matches.append(m)

        meanSpatialDistances = np.mean(spatialDistances, 0)
        stdSpatialDistances = np.std(spatialDistances, 0)

        inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances

        goodMatches = []
        prevPoints = []
        currPoints = []
        for i in range(len(matches)):
            if inliers[i, 0] and inliers[i, 1]:
                goodMatches.append(matches[i])
                prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)
                currPoints.append(keypoints[matches[i].trainIdx].pt)

        prevPoints = np.array(prevPoints)
        currPoints = np.array(currPoints)

        # Draw the keypoint matches on the output image
        # if False:
        #     import matplotlib.pyplot as plt
        #     matches_img = np.hstack((self.prevFrame, frame))
        #     matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR)
        #     W = self.prevFrame.shape[1]
        #     for m in goodMatches:
        #         prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_)
        #         curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_)
        #         curr_pt[0] += W
        #         color = np.random.randint(0, 255, 3)
        #         color = (int(color[0]), int(color[1]), int(color[2]))
        #
        #         matches_img = cv2.line(matches_img, prev_pt, curr_pt, tuple(color), 1, cv2.LINE_AA)
        #         matches_img = cv2.circle(matches_img, prev_pt, 2, tuple(color), -1)
        #         matches_img = cv2.circle(matches_img, curr_pt, 2, tuple(color), -1)
        #
        #     plt.figure()
        #     plt.imshow(matches_img)
        #     plt.show()

        # Find rigid matrix
        if prevPoints.shape[0] > 4:
            H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)

            # Handle downscale
            if self.downscale > 1.0:
                H[0, 2] *= self.downscale
                H[1, 2] *= self.downscale
        else:
            LOGGER.warning("WARNING: not enough matching points")

        # Store to next iteration
        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)
        self.prevDescriptors = copy.copy(descriptors)

        return H

    def applySparseOptFlow(self, raw_frame: np.array) -> np.array:
        """
        Apply Sparse Optical Flow method to a raw frame.

        Args:
            raw_frame (np.ndarray): The raw frame to be processed.

        Returns:
            (np.ndarray): Processed frame.

        Examples:
            >>> gmc = GMC()
            >>> gmc.applySparseOptFlow(np.array([[1, 2, 3], [4, 5, 6]]))
            array([[1, 2, 3],
                   [4, 5, 6]])
        """
        height, width, _ = raw_frame.shape
        frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
        H = np.eye(2, 3)

        # Downscale image
        if self.downscale > 1.0:
            frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))

        # Find the keypoints
        keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params)

        # Handle first frame
        if not self.initializedFirstFrame or self.prevKeyPoints is None:
            self.prevFrame = frame.copy()
            self.prevKeyPoints = copy.copy(keypoints)
            self.initializedFirstFrame = True
            return H

        # Find correspondences
        matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)

        # Leave good correspondences only
        prevPoints = []
        currPoints = []

        for i in range(len(status)):
            if status[i]:
                prevPoints.append(self.prevKeyPoints[i])
                currPoints.append(matchedKeypoints[i])

        prevPoints = np.array(prevPoints)
        currPoints = np.array(currPoints)

        # Find rigid matrix
        if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == prevPoints.shape[0]):
            H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)

            if self.downscale > 1.0:
                H[0, 2] *= self.downscale
                H[1, 2] *= self.downscale
        else:
            LOGGER.warning("WARNING: not enough matching points")

        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)

        return H

    def reset_params(self) -> None:
        """Reset parameters."""
        self.prevFrame = None
        self.prevKeyPoints = None
        self.prevDescriptors = None
        self.initializedFirstFrame = False

__init__(method='sparseOptFlow', downscale=2)

Initialiseer een videotracker met opgegeven parameters.

Parameters:

Naam Type Beschrijving Standaard
method str

De methode die wordt gebruikt voor het volgen. Opties zijn onder andere 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.

'sparseOptFlow'
downscale int

Downscale factor voor het verwerken van frames.

2
Broncode in ultralytics/trackers/utils/gmc.py
def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None:
    """
    Initialize a video tracker with specified parameters.

    Args:
        method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
        downscale (int): Downscale factor for processing frames.
    """
    super().__init__()

    self.method = method
    self.downscale = max(1, int(downscale))

    if self.method == "orb":
        self.detector = cv2.FastFeatureDetector_create(20)
        self.extractor = cv2.ORB_create()
        self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)

    elif self.method == "sift":
        self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
        self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
        self.matcher = cv2.BFMatcher(cv2.NORM_L2)

    elif self.method == "ecc":
        number_of_iterations = 5000
        termination_eps = 1e-6
        self.warp_mode = cv2.MOTION_EUCLIDEAN
        self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)

    elif self.method == "sparseOptFlow":
        self.feature_params = dict(
            maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04
        )

    elif self.method in {"none", "None", None}:
        self.method = None
    else:
        raise ValueError(f"Error: Unknown GMC method:{method}")

    self.prevFrame = None
    self.prevKeyPoints = None
    self.prevDescriptors = None
    self.initializedFirstFrame = False

apply(raw_frame, detections=None)

Objectdetectie toepassen op een onbewerkt frame met behulp van een gespecificeerde methode.

Parameters:

Naam Type Beschrijving Standaard
raw_frame ndarray

Het onbewerkte frame dat verwerkt moet worden.

vereist
detections list

Lijst met detecties die moeten worden gebruikt in de verwerking.

None

Retourneert:

Type Beschrijving
ndarray

Verwerkt frame.

Voorbeelden:

>>> gmc = GMC()
>>> gmc.apply(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
       [4, 5, 6]])
Broncode in ultralytics/trackers/utils/gmc.py
def apply(self, raw_frame: np.array, detections: list = None) -> np.array:
    """
    Apply object detection on a raw frame using specified method.

    Args:
        raw_frame (np.ndarray): The raw frame to be processed.
        detections (list): List of detections to be used in the processing.

    Returns:
        (np.ndarray): Processed frame.

    Examples:
        >>> gmc = GMC()
        >>> gmc.apply(np.array([[1, 2, 3], [4, 5, 6]]))
        array([[1, 2, 3],
               [4, 5, 6]])
    """
    if self.method in {"orb", "sift"}:
        return self.applyFeatures(raw_frame, detections)
    elif self.method == "ecc":
        return self.applyEcc(raw_frame)
    elif self.method == "sparseOptFlow":
        return self.applySparseOptFlow(raw_frame)
    else:
        return np.eye(2, 3)

applyEcc(raw_frame)

ECC-algoritme toepassen op een onbewerkt frame.

Parameters:

Naam Type Beschrijving Standaard
raw_frame ndarray

Het onbewerkte frame dat verwerkt moet worden.

vereist

Retourneert:

Type Beschrijving
ndarray

Verwerkt frame.

Voorbeelden:

>>> gmc = GMC()
>>> gmc.applyEcc(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
       [4, 5, 6]])
Broncode in ultralytics/trackers/utils/gmc.py
def applyEcc(self, raw_frame: np.array) -> np.array:
    """
    Apply ECC algorithm to a raw frame.

    Args:
        raw_frame (np.ndarray): The raw frame to be processed.

    Returns:
        (np.ndarray): Processed frame.

    Examples:
        >>> gmc = GMC()
        >>> gmc.applyEcc(np.array([[1, 2, 3], [4, 5, 6]]))
        array([[1, 2, 3],
               [4, 5, 6]])
    """
    height, width, _ = raw_frame.shape
    frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
    H = np.eye(2, 3, dtype=np.float32)

    # Downscale image
    if self.downscale > 1.0:
        frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
        frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
        width = width // self.downscale
        height = height // self.downscale

    # Handle first frame
    if not self.initializedFirstFrame:
        # Initialize data
        self.prevFrame = frame.copy()

        # Initialization done
        self.initializedFirstFrame = True

        return H

    # Run the ECC algorithm. The results are stored in warp_matrix.
    # (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria)
    try:
        (_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
    except Exception as e:
        LOGGER.warning(f"WARNING: find transform failed. Set warp as identity {e}")

    return H

applyFeatures(raw_frame, detections=None)

Pas op kenmerken gebaseerde methoden zoals ORB of SIFT toe op een onbewerkt frame.

Parameters:

Naam Type Beschrijving Standaard
raw_frame ndarray

Het onbewerkte frame dat verwerkt moet worden.

vereist
detections list

Lijst met detecties die moeten worden gebruikt in de verwerking.

None

Retourneert:

Type Beschrijving
ndarray

Verwerkt frame.

Voorbeelden:

>>> gmc = GMC()
>>> gmc.applyFeatures(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
       [4, 5, 6]])
Broncode in ultralytics/trackers/utils/gmc.py
def applyFeatures(self, raw_frame: np.array, detections: list = None) -> np.array:
    """
    Apply feature-based methods like ORB or SIFT to a raw frame.

    Args:
        raw_frame (np.ndarray): The raw frame to be processed.
        detections (list): List of detections to be used in the processing.

    Returns:
        (np.ndarray): Processed frame.

    Examples:
        >>> gmc = GMC()
        >>> gmc.applyFeatures(np.array([[1, 2, 3], [4, 5, 6]]))
        array([[1, 2, 3],
               [4, 5, 6]])
    """
    height, width, _ = raw_frame.shape
    frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
    H = np.eye(2, 3)

    # Downscale image
    if self.downscale > 1.0:
        frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
        width = width // self.downscale
        height = height // self.downscale

    # Find the keypoints
    mask = np.zeros_like(frame)
    mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255
    if detections is not None:
        for det in detections:
            tlbr = (det[:4] / self.downscale).astype(np.int_)
            mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0

    keypoints = self.detector.detect(frame, mask)

    # Compute the descriptors
    keypoints, descriptors = self.extractor.compute(frame, keypoints)

    # Handle first frame
    if not self.initializedFirstFrame:
        # Initialize data
        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)
        self.prevDescriptors = copy.copy(descriptors)

        # Initialization done
        self.initializedFirstFrame = True

        return H

    # Match descriptors
    knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)

    # Filter matches based on smallest spatial distance
    matches = []
    spatialDistances = []

    maxSpatialDistance = 0.25 * np.array([width, height])

    # Handle empty matches case
    if len(knnMatches) == 0:
        # Store to next iteration
        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)
        self.prevDescriptors = copy.copy(descriptors)

        return H

    for m, n in knnMatches:
        if m.distance < 0.9 * n.distance:
            prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
            currKeyPointLocation = keypoints[m.trainIdx].pt

            spatialDistance = (
                prevKeyPointLocation[0] - currKeyPointLocation[0],
                prevKeyPointLocation[1] - currKeyPointLocation[1],
            )

            if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and (
                np.abs(spatialDistance[1]) < maxSpatialDistance[1]
            ):
                spatialDistances.append(spatialDistance)
                matches.append(m)

    meanSpatialDistances = np.mean(spatialDistances, 0)
    stdSpatialDistances = np.std(spatialDistances, 0)

    inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances

    goodMatches = []
    prevPoints = []
    currPoints = []
    for i in range(len(matches)):
        if inliers[i, 0] and inliers[i, 1]:
            goodMatches.append(matches[i])
            prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)
            currPoints.append(keypoints[matches[i].trainIdx].pt)

    prevPoints = np.array(prevPoints)
    currPoints = np.array(currPoints)

    # Draw the keypoint matches on the output image
    # if False:
    #     import matplotlib.pyplot as plt
    #     matches_img = np.hstack((self.prevFrame, frame))
    #     matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR)
    #     W = self.prevFrame.shape[1]
    #     for m in goodMatches:
    #         prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_)
    #         curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_)
    #         curr_pt[0] += W
    #         color = np.random.randint(0, 255, 3)
    #         color = (int(color[0]), int(color[1]), int(color[2]))
    #
    #         matches_img = cv2.line(matches_img, prev_pt, curr_pt, tuple(color), 1, cv2.LINE_AA)
    #         matches_img = cv2.circle(matches_img, prev_pt, 2, tuple(color), -1)
    #         matches_img = cv2.circle(matches_img, curr_pt, 2, tuple(color), -1)
    #
    #     plt.figure()
    #     plt.imshow(matches_img)
    #     plt.show()

    # Find rigid matrix
    if prevPoints.shape[0] > 4:
        H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)

        # Handle downscale
        if self.downscale > 1.0:
            H[0, 2] *= self.downscale
            H[1, 2] *= self.downscale
    else:
        LOGGER.warning("WARNING: not enough matching points")

    # Store to next iteration
    self.prevFrame = frame.copy()
    self.prevKeyPoints = copy.copy(keypoints)
    self.prevDescriptors = copy.copy(descriptors)

    return H

applySparseOptFlow(raw_frame)

Pas de Sparse Optical Flow-methode toe op een onbewerkt frame.

Parameters:

Naam Type Beschrijving Standaard
raw_frame ndarray

Het onbewerkte frame dat verwerkt moet worden.

vereist

Retourneert:

Type Beschrijving
ndarray

Verwerkt frame.

Voorbeelden:

>>> gmc = GMC()
>>> gmc.applySparseOptFlow(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
       [4, 5, 6]])
Broncode in ultralytics/trackers/utils/gmc.py
def applySparseOptFlow(self, raw_frame: np.array) -> np.array:
    """
    Apply Sparse Optical Flow method to a raw frame.

    Args:
        raw_frame (np.ndarray): The raw frame to be processed.

    Returns:
        (np.ndarray): Processed frame.

    Examples:
        >>> gmc = GMC()
        >>> gmc.applySparseOptFlow(np.array([[1, 2, 3], [4, 5, 6]]))
        array([[1, 2, 3],
               [4, 5, 6]])
    """
    height, width, _ = raw_frame.shape
    frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
    H = np.eye(2, 3)

    # Downscale image
    if self.downscale > 1.0:
        frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))

    # Find the keypoints
    keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params)

    # Handle first frame
    if not self.initializedFirstFrame or self.prevKeyPoints is None:
        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)
        self.initializedFirstFrame = True
        return H

    # Find correspondences
    matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)

    # Leave good correspondences only
    prevPoints = []
    currPoints = []

    for i in range(len(status)):
        if status[i]:
            prevPoints.append(self.prevKeyPoints[i])
            currPoints.append(matchedKeypoints[i])

    prevPoints = np.array(prevPoints)
    currPoints = np.array(currPoints)

    # Find rigid matrix
    if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == prevPoints.shape[0]):
        H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)

        if self.downscale > 1.0:
            H[0, 2] *= self.downscale
            H[1, 2] *= self.downscale
    else:
        LOGGER.warning("WARNING: not enough matching points")

    self.prevFrame = frame.copy()
    self.prevKeyPoints = copy.copy(keypoints)

    return H

reset_params()

Parameters resetten.

Broncode in ultralytics/trackers/utils/gmc.py
def reset_params(self) -> None:
    """Reset parameters."""
    self.prevFrame = None
    self.prevKeyPoints = None
    self.prevDescriptors = None
    self.initializedFirstFrame = False





Gemaakt 2023-11-12, Bijgewerkt 2024-05-08
Auteurs: Burhan-Q (1), glenn-jocher (3)