Salta para o conteúdo

Referência para ultralytics/models/rtdetr/train.py

Nota

Este ficheiro está disponível em https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/models/rtdetr/train .py. Se detectares um problema, por favor ajuda a corrigi-lo contribuindo com um Pull Request 🛠️. Obrigado 🙏!



ultralytics.models.rtdetr.train.RTDETRTrainer

Bases: DetectionTrainer

Classe de treino para o modelo RT-DETR desenvolvido pela Baidu para deteção de objectos em tempo real. Amplia a classe DetectionTrainer para YOLO para se adaptar às características e à arquitetura específicas de RT-DETR. Este modelo tira partido dos transformadores de visão e tem capacidades como a seleção de consultas sensíveis à IoU e a velocidade de inferência adaptável. Transformers e tem capacidades como a seleção de consultas com reconhecimento de IoU e a velocidade de inferência adaptável.

Notas
  • F.grid_sample utilizado em RT-DETR não suporta o deterministic=True argumenta.
  • O treino AMP pode levar a resultados NaN e pode produzir erros durante a correspondência de grafos bipartidos.
Exemplo
from ultralytics.models.rtdetr.train import RTDETRTrainer

args = dict(model='rtdetr-l.yaml', data='coco8.yaml', imgsz=640, epochs=3)
trainer = RTDETRTrainer(overrides=args)
trainer.train()
Código fonte em ultralytics/models/rtdetr/train.py
class RTDETRTrainer(DetectionTrainer):
    """
    Trainer class for the RT-DETR model developed by Baidu for real-time object detection. Extends the DetectionTrainer
    class for YOLO to adapt to the specific features and architecture of RT-DETR. This model leverages Vision
    Transformers and has capabilities like IoU-aware query selection and adaptable inference speed.

    Notes:
        - F.grid_sample used in RT-DETR does not support the `deterministic=True` argument.
        - AMP training can lead to NaN outputs and may produce errors during bipartite graph matching.

    Example:
        ```python
        from ultralytics.models.rtdetr.train import RTDETRTrainer

        args = dict(model='rtdetr-l.yaml', data='coco8.yaml', imgsz=640, epochs=3)
        trainer = RTDETRTrainer(overrides=args)
        trainer.train()
        ```
    """

    def get_model(self, cfg=None, weights=None, verbose=True):
        """
        Initialize and return an RT-DETR model for object detection tasks.

        Args:
            cfg (dict, optional): Model configuration. Defaults to None.
            weights (str, optional): Path to pre-trained model weights. Defaults to None.
            verbose (bool): Verbose logging if True. Defaults to True.

        Returns:
            (RTDETRDetectionModel): Initialized model.
        """
        model = RTDETRDetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
        if weights:
            model.load(weights)
        return model

    def build_dataset(self, img_path, mode="val", batch=None):
        """
        Build and return an RT-DETR dataset for training or validation.

        Args:
            img_path (str): Path to the folder containing images.
            mode (str): Dataset mode, either 'train' or 'val'.
            batch (int, optional): Batch size for rectangle training. Defaults to None.

        Returns:
            (RTDETRDataset): Dataset object for the specific mode.
        """
        return RTDETRDataset(
            img_path=img_path,
            imgsz=self.args.imgsz,
            batch_size=batch,
            augment=mode == "train",
            hyp=self.args,
            rect=False,
            cache=self.args.cache or None,
            prefix=colorstr(f"{mode}: "),
            data=self.data,
        )

    def get_validator(self):
        """
        Returns a DetectionValidator suitable for RT-DETR model validation.

        Returns:
            (RTDETRValidator): Validator object for model validation.
        """
        self.loss_names = "giou_loss", "cls_loss", "l1_loss"
        return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))

    def preprocess_batch(self, batch):
        """
        Preprocess a batch of images. Scales and converts the images to float format.

        Args:
            batch (dict): Dictionary containing a batch of images, bboxes, and labels.

        Returns:
            (dict): Preprocessed batch.
        """
        batch = super().preprocess_batch(batch)
        bs = len(batch["img"])
        batch_idx = batch["batch_idx"]
        gt_bbox, gt_class = [], []
        for i in range(bs):
            gt_bbox.append(batch["bboxes"][batch_idx == i].to(batch_idx.device))
            gt_class.append(batch["cls"][batch_idx == i].to(device=batch_idx.device, dtype=torch.long))
        return batch

build_dataset(img_path, mode='val', batch=None)

Constrói e devolve um conjunto de dados RT-DETR para treino ou validação.

Parâmetros:

Nome Tipo Descrição Predefinição
img_path str

Caminho para a pasta que contém as imagens.

necessário
mode str

Modo do conjunto de dados, "train" ou "val".

'val'
batch int

Tamanho do lote para a formação de rectângulos. A predefinição é Nenhum.

None

Devolve:

Tipo Descrição
RTDETRDataset

Objeto de conjunto de dados para o modo específico.

Código fonte em ultralytics/models/rtdetr/train.py
def build_dataset(self, img_path, mode="val", batch=None):
    """
    Build and return an RT-DETR dataset for training or validation.

    Args:
        img_path (str): Path to the folder containing images.
        mode (str): Dataset mode, either 'train' or 'val'.
        batch (int, optional): Batch size for rectangle training. Defaults to None.

    Returns:
        (RTDETRDataset): Dataset object for the specific mode.
    """
    return RTDETRDataset(
        img_path=img_path,
        imgsz=self.args.imgsz,
        batch_size=batch,
        augment=mode == "train",
        hyp=self.args,
        rect=False,
        cache=self.args.cache or None,
        prefix=colorstr(f"{mode}: "),
        data=self.data,
    )

get_model(cfg=None, weights=None, verbose=True)

Inicializa e devolve um modelo RT-DETR para tarefas de deteção de objectos.

Parâmetros:

Nome Tipo Descrição Predefinição
cfg dict

Configuração do modelo. A predefinição é Nenhum.

None
weights str

Caminho para os pesos do modelo pré-treinado. Usa como padrão Nenhum.

None
verbose bool

Regista o registo detalhado se for Verdadeiro. A predefinição é Verdadeiro.

True

Devolve:

Tipo Descrição
RTDETRDetectionModel

Iniciou o modelo.

Código fonte em ultralytics/models/rtdetr/train.py
def get_model(self, cfg=None, weights=None, verbose=True):
    """
    Initialize and return an RT-DETR model for object detection tasks.

    Args:
        cfg (dict, optional): Model configuration. Defaults to None.
        weights (str, optional): Path to pre-trained model weights. Defaults to None.
        verbose (bool): Verbose logging if True. Defaults to True.

    Returns:
        (RTDETRDetectionModel): Initialized model.
    """
    model = RTDETRDetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
    if weights:
        model.load(weights)
    return model

get_validator()

Devolve um DetectionValidator adequado para a validação do modelo RT-DETR .

Devolve:

Tipo Descrição
RTDETRValidator

Objeto validador para validação do modelo.

Código fonte em ultralytics/models/rtdetr/train.py
def get_validator(self):
    """
    Returns a DetectionValidator suitable for RT-DETR model validation.

    Returns:
        (RTDETRValidator): Validator object for model validation.
    """
    self.loss_names = "giou_loss", "cls_loss", "l1_loss"
    return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))

preprocess_batch(batch)

Pré-processa um lote de imagens. Dimensiona e converte as imagens para o formato float.

Parâmetros:

Nome Tipo Descrição Predefinição
batch dict

Dicionário que contém um lote de imagens, bboxes e etiquetas.

necessário

Devolve:

Tipo Descrição
dict

Lote pré-processado.

Código fonte em ultralytics/models/rtdetr/train.py
def preprocess_batch(self, batch):
    """
    Preprocess a batch of images. Scales and converts the images to float format.

    Args:
        batch (dict): Dictionary containing a batch of images, bboxes, and labels.

    Returns:
        (dict): Preprocessed batch.
    """
    batch = super().preprocess_batch(batch)
    bs = len(batch["img"])
    batch_idx = batch["batch_idx"]
    gt_bbox, gt_class = [], []
    for i in range(bs):
        gt_bbox.append(batch["bboxes"][batch_idx == i].to(batch_idx.device))
        gt_class.append(batch["cls"][batch_idx == i].to(device=batch_idx.device, dtype=torch.long))
    return batch





Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (5), Burhan-Q (1)