Skip to content

COCO8 Dataset

Introduction

Ultralytics COCO8 is a small, but versatile object detection dataset composed of the first 8 images of the COCO train 2017 set, 4 for training and 4 for validation. This dataset is ideal for testing and debugging object detection models, or for experimenting with new detection approaches. With 8 images, it is small enough to be easily manageable, yet diverse enough to test training pipelines for errors and act as a sanity check before training larger datasets.



Watch: Ultralytics COCO Dataset Overview

This dataset is intended for use with Ultralytics HUB and YOLO11.

Dataset YAML

A YAML (Yet Another Markup Language) file is used to define the dataset configuration. It contains information about the dataset's paths, classes, and other relevant information. In the case of the COCO8 dataset, the coco8.yaml file is maintained at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco8.yaml.

ultralytics/cfg/datasets/coco8.yaml

# Ultralytics YOLO ๐Ÿš€, AGPL-3.0 license
# COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8/
# Example usage: yolo train data=coco8.yaml
# parent
# โ”œโ”€โ”€ ultralytics
# โ””โ”€โ”€ datasets
#     โ””โ”€โ”€ coco8  โ† downloads here (1 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8 # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)

# Classes
names:
  0: person
  1: bicycle
  2: car
  3: motorcycle
  4: airplane
  5: bus
  6: train
  7: truck
  8: boat
  9: traffic light
  10: fire hydrant
  11: stop sign
  12: parking meter
  13: bench
  14: bird
  15: cat
  16: dog
  17: horse
  18: sheep
  19: cow
  20: elephant
  21: bear
  22: zebra
  23: giraffe
  24: backpack
  25: umbrella
  26: handbag
  27: tie
  28: suitcase
  29: frisbee
  30: skis
  31: snowboard
  32: sports ball
  33: kite
  34: baseball bat
  35: baseball glove
  36: skateboard
  37: surfboard
  38: tennis racket
  39: bottle
  40: wine glass
  41: cup
  42: fork
  43: knife
  44: spoon
  45: bowl
  46: banana
  47: apple
  48: sandwich
  49: orange
  50: broccoli
  51: carrot
  52: hot dog
  53: pizza
  54: donut
  55: cake
  56: chair
  57: couch
  58: potted plant
  59: bed
  60: dining table
  61: toilet
  62: tv
  63: laptop
  64: mouse
  65: remote
  66: keyboard
  67: cell phone
  68: microwave
  69: oven
  70: toaster
  71: sink
  72: refrigerator
  73: book
  74: clock
  75: vase
  76: scissors
  77: teddy bear
  78: hair drier
  79: toothbrush

# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8.zip

Usage

To train a YOLO11n model on the COCO8 dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.

Train Example

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=100 imgsz=640

Sample Images and Annotations

Here are some examples of images from the COCO8 dataset, along with their corresponding annotations:

Dataset sample image

  • Mosaiced Image: This image demonstrates a training batch composed of mosaiced dataset images. Mosaicing is a technique used during training that combines multiple images into a single image to increase the variety of objects and scenes within each training batch. This helps improve the model's ability to generalize to different object sizes, aspect ratios, and contexts.

The example showcases the variety and complexity of the images in the COCO8 dataset and the benefits of using mosaicing during the training process.

Citations and Acknowledgments

If you use the COCO dataset in your research or development work, please cite the following paper:

@misc{lin2015microsoft,
      title={Microsoft COCO: Common Objects in Context},
      author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollรกr},
      year={2015},
      eprint={1405.0312},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

We would like to acknowledge the COCO Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the COCO dataset and its creators, visit the COCO dataset website.

FAQ

What is the Ultralytics COCO8 dataset used for?

The Ultralytics COCO8 dataset is a compact yet versatile object detection dataset consisting of the first 8 images from the COCO train 2017 set, with 4 images for training and 4 for validation. It is designed for testing and debugging object detection models and experimentation with new detection approaches. Despite its small size, COCO8 offers enough diversity to act as a sanity check for your training pipelines before deploying larger datasets. For more details, view the COCO8 dataset.

How do I train a YOLO11 model using the COCO8 dataset?

To train a YOLO11 model using the COCO8 dataset, you can employ either Python or CLI commands. Here's how you can start:

Train Example

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=100 imgsz=640

For a comprehensive list of available arguments, refer to the model Training page.

Why should I use Ultralytics HUB for managing my COCO8 training?

Ultralytics HUB is an all-in-one web tool designed to simplify the training and deployment of YOLO models, including the Ultralytics YOLO11 models on the COCO8 dataset. It offers cloud training, real-time tracking, and seamless dataset management. HUB allows you to start training with a single click and avoids the complexities of manual setups. Discover more about Ultralytics HUB and its benefits.

What are the benefits of using mosaic augmentation in training with the COCO8 dataset?

Mosaic augmentation, demonstrated in the COCO8 dataset, combines multiple images into a single image during training. This technique increases the variety of objects and scenes in each training batch, improving the model's ability to generalize across different object sizes, aspect ratios, and contexts. This results in a more robust object detection model. For more details, refer to the training guide.

How can I validate my YOLO11 model trained on the COCO8 dataset?

Validation of your YOLO11 model trained on the COCO8 dataset can be performed using the model's validation commands. You can invoke the validation mode via CLI or Python script to evaluate the model's performance using precise metrics. For detailed instructions, visit the Validation page.

๐Ÿ“… Created 1 year ago โœ๏ธ Updated 1 month ago

Comments