Salta para o conteúdo

Referência para ultralytics/nn/modules/block.py

Nota

Este ficheiro está disponível em https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/nn/modules/block .py. Se detectares um problema, por favor ajuda a corrigi-lo contribuindo com um Pull Request 🛠️. Obrigado 🙏!



ultralytics.nn.modules.block.DFL

Bases: Module

Módulo integral da perda focal de distribuição (DFL).

Propõe uma perda focal generalizada https://ieeexplore.ieee.org/document/9792391

Código fonte em ultralytics/nn/modules/block.py
class DFL(nn.Module):
    """
    Integral module of Distribution Focal Loss (DFL).

    Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
    """

    def __init__(self, c1=16):
        """Initialize a convolutional layer with a given number of input channels."""
        super().__init__()
        self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
        x = torch.arange(c1, dtype=torch.float)
        self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
        self.c1 = c1

    def forward(self, x):
        """Applies a transformer layer on input tensor 'x' and returns a tensor."""
        b, _, a = x.shape  # batch, channels, anchors
        return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)

__init__(c1=16)

Inicializa uma camada convolucional com um determinado número de canais de entrada.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1=16):
    """Initialize a convolutional layer with a given number of input channels."""
    super().__init__()
    self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
    x = torch.arange(c1, dtype=torch.float)
    self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
    self.c1 = c1

forward(x)

Aplica uma camada de transformação à entrada tensor 'x' e devolve um tensor.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Applies a transformer layer on input tensor 'x' and returns a tensor."""
    b, _, a = x.shape  # batch, channels, anchors
    return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)



ultralytics.nn.modules.block.Proto

Bases: Module

YOLOv8 Mascara o módulo Proto para modelos de segmentação.

Código fonte em ultralytics/nn/modules/block.py
class Proto(nn.Module):
    """YOLOv8 mask Proto module for segmentation models."""

    def __init__(self, c1, c_=256, c2=32):
        """
        Initializes the YOLOv8 mask Proto module with specified number of protos and masks.

        Input arguments are ch_in, number of protos, number of masks.
        """
        super().__init__()
        self.cv1 = Conv(c1, c_, k=3)
        self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True)  # nn.Upsample(scale_factor=2, mode='nearest')
        self.cv2 = Conv(c_, c_, k=3)
        self.cv3 = Conv(c_, c2)

    def forward(self, x):
        """Performs a forward pass through layers using an upsampled input image."""
        return self.cv3(self.cv2(self.upsample(self.cv1(x))))

__init__(c1, c_=256, c2=32)

Inicializa o módulo YOLOv8 mask Proto com o número especificado de protos e máscaras.

Os argumentos de entrada são ch_in, número de protos, número de máscaras.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c_=256, c2=32):
    """
    Initializes the YOLOv8 mask Proto module with specified number of protos and masks.

    Input arguments are ch_in, number of protos, number of masks.
    """
    super().__init__()
    self.cv1 = Conv(c1, c_, k=3)
    self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True)  # nn.Upsample(scale_factor=2, mode='nearest')
    self.cv2 = Conv(c_, c_, k=3)
    self.cv3 = Conv(c_, c2)

forward(x)

Executa uma passagem para a frente através de camadas utilizando uma imagem de entrada com amostragem melhorada.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Performs a forward pass through layers using an upsampled input image."""
    return self.cv3(self.cv2(self.upsample(self.cv1(x))))



ultralytics.nn.modules.block.HGStem

Bases: Module

StemBlock da PPHGNetV2 com 5 convoluções e uma maxpool2d.

https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py

Código fonte em ultralytics/nn/modules/block.py
class HGStem(nn.Module):
    """
    StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2):
        """Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""
        super().__init__()
        self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
        self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
        self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
        self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
        self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
        self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)

    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        x = self.stem1(x)
        x = F.pad(x, [0, 1, 0, 1])
        x2 = self.stem2a(x)
        x2 = F.pad(x2, [0, 1, 0, 1])
        x2 = self.stem2b(x2)
        x1 = self.pool(x)
        x = torch.cat([x1, x2], dim=1)
        x = self.stem3(x)
        x = self.stem4(x)
        return x

__init__(c1, cm, c2)

Inicializa a camada SPP com canais de entrada/saída e tamanhos de kernel especificados para pooling máximo.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, cm, c2):
    """Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""
    super().__init__()
    self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
    self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
    self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
    self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
    self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
    self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)

forward(x)

Passagem para a frente de uma camada de backbone PPHGNetV2.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass of a PPHGNetV2 backbone layer."""
    x = self.stem1(x)
    x = F.pad(x, [0, 1, 0, 1])
    x2 = self.stem2a(x)
    x2 = F.pad(x2, [0, 1, 0, 1])
    x2 = self.stem2b(x2)
    x1 = self.pool(x)
    x = torch.cat([x1, x2], dim=1)
    x = self.stem3(x)
    x = self.stem4(x)
    return x



ultralytics.nn.modules.block.HGBlock

Bases: Module

HG_Block de PPHGNetV2 com 2 convoluções e LightConv.

https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py

Código fonte em ultralytics/nn/modules/block.py
class HGBlock(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.ec(self.sc(torch.cat(y, 1)))
        return y + x if self.add else y

__init__(c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU())

Inicializa um Gargalo CSP com 1 convolução usando os canais de entrada e saída especificados.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
    """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
    super().__init__()
    block = LightConv if lightconv else Conv
    self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
    self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
    self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
    self.add = shortcut and c1 == c2

forward(x)

Passagem para a frente de uma camada de backbone PPHGNetV2.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass of a PPHGNetV2 backbone layer."""
    y = [x]
    y.extend(m(y[-1]) for m in self.m)
    y = self.ec(self.sc(torch.cat(y, 1)))
    return y + x if self.add else y



ultralytics.nn.modules.block.SPP

Bases: Module

Camada Spatial Pyramid Pooling (SPP) https://arxiv.org/abs/1406.4729.

Código fonte em ultralytics/nn/modules/block.py
class SPP(nn.Module):
    """Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729."""

    def __init__(self, c1, c2, k=(5, 9, 13)):
        """Initialize the SPP layer with input/output channels and pooling kernel sizes."""
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

    def forward(self, x):
        """Forward pass of the SPP layer, performing spatial pyramid pooling."""
        x = self.cv1(x)
        return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))

__init__(c1, c2, k=(5, 9, 13))

Inicializa a camada SPP com canais de entrada/saída e tamanhos de kernel de pooling.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, k=(5, 9, 13)):
    """Initialize the SPP layer with input/output channels and pooling kernel sizes."""
    super().__init__()
    c_ = c1 // 2  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
    self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

forward(x)

Passagem para a frente da camada SPP, realizando o agrupamento de pirâmides espaciais.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass of the SPP layer, performing spatial pyramid pooling."""
    x = self.cv1(x)
    return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))



ultralytics.nn.modules.block.SPPF

Bases: Module

Camada Spatial Pyramid Pooling - Fast (SPPF) para YOLOv5 por Glenn Jocher.

Código fonte em ultralytics/nn/modules/block.py
class SPPF(nn.Module):
    """Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""

    def __init__(self, c1, c2, k=5):
        """
        Initializes the SPPF layer with given input/output channels and kernel size.

        This module is equivalent to SPP(k=(5, 9, 13)).
        """
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        """Forward pass through Ghost Convolution block."""
        y = [self.cv1(x)]
        y.extend(self.m(y[-1]) for _ in range(3))
        return self.cv2(torch.cat(y, 1))

__init__(c1, c2, k=5)

Inicializa a camada SPPF com os canais de entrada/saída e o tamanho do kernel fornecidos.

Este módulo é equivalente a SPP(k=(5, 9, 13)).

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, k=5):
    """
    Initializes the SPPF layer with given input/output channels and kernel size.

    This module is equivalent to SPP(k=(5, 9, 13)).
    """
    super().__init__()
    c_ = c1 // 2  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c_ * 4, c2, 1, 1)
    self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

forward(x)

Passa pelo bloco de convolução fantasma.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through Ghost Convolution block."""
    y = [self.cv1(x)]
    y.extend(self.m(y[-1]) for _ in range(3))
    return self.cv2(torch.cat(y, 1))



ultralytics.nn.modules.block.C1

Bases: Module

Gargalo do CSP com 1 convolução.

Código fonte em ultralytics/nn/modules/block.py
class C1(nn.Module):
    """CSP Bottleneck with 1 convolution."""

    def __init__(self, c1, c2, n=1):
        """Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number."""
        super().__init__()
        self.cv1 = Conv(c1, c2, 1, 1)
        self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))

    def forward(self, x):
        """Applies cross-convolutions to input in the C3 module."""
        y = self.cv1(x)
        return self.m(y) + y

__init__(c1, c2, n=1)

Inicializa o CSP Bottleneck com configurações para 1 convolução com os argumentos ch_in, ch_out, number.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1):
    """Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number."""
    super().__init__()
    self.cv1 = Conv(c1, c2, 1, 1)
    self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))

forward(x)

Aplica as convoluções cruzadas à entrada no módulo C3.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Applies cross-convolutions to input in the C3 module."""
    y = self.cv1(x)
    return self.m(y) + y



ultralytics.nn.modules.block.C2

Bases: Module

Gargalo do CSP com 2 convoluções.

Código fonte em ultralytics/nn/modules/block.py
class C2(nn.Module):
    """CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initializes the CSP Bottleneck with 2 convolutions module with arguments ch_in, ch_out, number, shortcut,
        groups, expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c2, 1)  # optional act=FReLU(c2)
        # self.attention = ChannelAttention(2 * self.c)  # or SpatialAttention()
        self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))

    def forward(self, x):
        """Forward pass through the CSP bottleneck with 2 convolutions."""
        a, b = self.cv1(x).chunk(2, 1)
        return self.cv2(torch.cat((self.m(a), b), 1))

__init__(c1, c2, n=1, shortcut=True, g=1, e=0.5)

Inicializa o módulo CSP Bottleneck com 2 convoluções com os argumentos ch_in, ch_out, number, shortcut, grupos, expansão.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initializes the CSP Bottleneck with 2 convolutions module with arguments ch_in, ch_out, number, shortcut,
    groups, expansion.
    """
    super().__init__()
    self.c = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv(2 * self.c, c2, 1)  # optional act=FReLU(c2)
    # self.attention = ChannelAttention(2 * self.c)  # or SpatialAttention()
    self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))

forward(x)

Passa pelo gargalo do CSP com 2 convoluções.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through the CSP bottleneck with 2 convolutions."""
    a, b = self.cv1(x).chunk(2, 1)
    return self.cv2(torch.cat((self.m(a), b), 1))



ultralytics.nn.modules.block.C2f

Bases: Module

Implementação mais rápida do estrangulamento CSP com 2 convoluções.

Código fonte em ultralytics/nn/modules/block.py
class C2f(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

__init__(c1, c2, n=1, shortcut=False, g=1, e=0.5)

Inicializa a camada de estrangulamento CSP com duas convoluções com argumentos ch_in, ch_out, número, atalho, grupos, expansão.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
    """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
    expansion.
    """
    super().__init__()
    self.c = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
    self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

forward(x)

Passa para a frente através da camada C2f.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through C2f layer."""
    y = list(self.cv1(x).chunk(2, 1))
    y.extend(m(y[-1]) for m in self.m)
    return self.cv2(torch.cat(y, 1))

forward_split(x)

Passa para a frente utilizando split() em vez de chunk().

Código fonte em ultralytics/nn/modules/block.py
def forward_split(self, x):
    """Forward pass using split() instead of chunk()."""
    y = list(self.cv1(x).split((self.c, self.c), 1))
    y.extend(m(y[-1]) for m in self.m)
    return self.cv2(torch.cat(y, 1))



ultralytics.nn.modules.block.C3

Bases: Module

Gargalo do CSP com 3 convoluções.

Código fonte em ultralytics/nn/modules/block.py
class C3(nn.Module):
    """CSP Bottleneck with 3 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))

    def forward(self, x):
        """Forward pass through the CSP bottleneck with 2 convolutions."""
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

__init__(c1, c2, n=1, shortcut=True, g=1, e=0.5)

Inicializa o CSP Bottleneck com os valores de canais, número, atalho, grupos e expansão fornecidos.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c1, c_, 1, 1)
    self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
    self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))

forward(x)

Passa pelo gargalo do CSP com 2 convoluções.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through the CSP bottleneck with 2 convolutions."""
    return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))



ultralytics.nn.modules.block.C3x

Bases: C3

Módulo C3 com evoluções cruzadas.

Código fonte em ultralytics/nn/modules/block.py
class C3x(C3):
    """C3 module with cross-convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize C3TR instance and set default parameters."""
        super().__init__(c1, c2, n, shortcut, g, e)
        self.c_ = int(c2 * e)
        self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))

__init__(c1, c2, n=1, shortcut=True, g=1, e=0.5)

Inicializa a instância do C3TR e define os parâmetros padrão.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initialize C3TR instance and set default parameters."""
    super().__init__(c1, c2, n, shortcut, g, e)
    self.c_ = int(c2 * e)
    self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))



ultralytics.nn.modules.block.RepC3

Bases: Module

Rep C3.

Código fonte em ultralytics/nn/modules/block.py
class RepC3(nn.Module):
    """Rep C3."""

    def __init__(self, c1, c2, n=3, e=1.0):
        """Initialize CSP Bottleneck with a single convolution using input channels, output channels, and number."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c2, 1, 1)
        self.cv2 = Conv(c1, c2, 1, 1)
        self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
        self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()

    def forward(self, x):
        """Forward pass of RT-DETR neck layer."""
        return self.cv3(self.m(self.cv1(x)) + self.cv2(x))

__init__(c1, c2, n=3, e=1.0)

Inicializa o CSP Bottleneck com uma única convolução usando canais de entrada, canais de saída e número.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=3, e=1.0):
    """Initialize CSP Bottleneck with a single convolution using input channels, output channels, and number."""
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c2, 1, 1)
    self.cv2 = Conv(c1, c2, 1, 1)
    self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
    self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()

forward(x)

Passa para a frente da camada do pescoço RT-DETR .

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass of RT-DETR neck layer."""
    return self.cv3(self.m(self.cv1(x)) + self.cv2(x))



ultralytics.nn.modules.block.C3TR

Bases: C3

Módulo C3 com TransformerBlock().

Código fonte em ultralytics/nn/modules/block.py
class C3TR(C3):
    """C3 module with TransformerBlock()."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize C3Ghost module with GhostBottleneck()."""
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        self.m = TransformerBlock(c_, c_, 4, n)

__init__(c1, c2, n=1, shortcut=True, g=1, e=0.5)

Inicializa o módulo C3Ghost com GhostBottleneck().

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initialize C3Ghost module with GhostBottleneck()."""
    super().__init__(c1, c2, n, shortcut, g, e)
    c_ = int(c2 * e)
    self.m = TransformerBlock(c_, c_, 4, n)



ultralytics.nn.modules.block.C3Ghost

Bases: C3

Módulo C3 com GhostBottleneck().

Código fonte em ultralytics/nn/modules/block.py
class C3Ghost(C3):
    """C3 module with GhostBottleneck()."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling."""
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))

__init__(c1, c2, n=1, shortcut=True, g=1, e=0.5)

Inicializa o módulo 'SPP' com vários tamanhos de pooling para o pooling de pirâmides espaciais.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling."""
    super().__init__(c1, c2, n, shortcut, g, e)
    c_ = int(c2 * e)  # hidden channels
    self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))



ultralytics.nn.modules.block.GhostBottleneck

Bases: Module

Gargalo Fantasma https://github.com/huawei-noah/ghostnet.

Código fonte em ultralytics/nn/modules/block.py
class GhostBottleneck(nn.Module):
    """Ghost Bottleneck https://github.com/huawei-noah/ghostnet."""

    def __init__(self, c1, c2, k=3, s=1):
        """Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride."""
        super().__init__()
        c_ = c2 // 2
        self.conv = nn.Sequential(
            GhostConv(c1, c_, 1, 1),  # pw
            DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
            GhostConv(c_, c2, 1, 1, act=False),  # pw-linear
        )
        self.shortcut = (
            nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
        )

    def forward(self, x):
        """Applies skip connection and concatenation to input tensor."""
        return self.conv(x) + self.shortcut(x)

__init__(c1, c2, k=3, s=1)

Inicializa o módulo GhostBottleneck com os argumentos ch_in, ch_out, kernel, stride.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, k=3, s=1):
    """Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride."""
    super().__init__()
    c_ = c2 // 2
    self.conv = nn.Sequential(
        GhostConv(c1, c_, 1, 1),  # pw
        DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
        GhostConv(c_, c2, 1, 1, act=False),  # pw-linear
    )
    self.shortcut = (
        nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
    )

forward(x)

Aplica a ligação por saltos e a concatenação à entrada tensor.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Applies skip connection and concatenation to input tensor."""
    return self.conv(x) + self.shortcut(x)



ultralytics.nn.modules.block.Bottleneck

Bases: Module

O teu problema padrão.

Código fonte em ultralytics/nn/modules/block.py
class Bottleneck(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = Conv(c_, c2, k[1], 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

__init__(c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5)

Inicializa um módulo de gargalo com determinados canais de entrada/saída, opção de atalho, grupo, kernels e expansão.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
    """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
    expansion.
    """
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, k[0], 1)
    self.cv2 = Conv(c_, c2, k[1], 1, g=g)
    self.add = shortcut and c1 == c2

forward(x)

'forward()' aplica o YOLO FPN aos dados de entrada.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """'forward()' applies the YOLO FPN to input data."""
    return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))



ultralytics.nn.modules.block.BottleneckCSP

Bases: Module

Gargalo do CSP https://github.com/WongKinYiu/CrossStagePartialNetworks.

Código fonte em ultralytics/nn/modules/block.py
class BottleneckCSP(nn.Module):
    """CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
        self.cv4 = Conv(2 * c_, c2, 1, 1)
        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
        self.act = nn.SiLU()
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        """Applies a CSP bottleneck with 3 convolutions."""
        y1 = self.cv3(self.m(self.cv1(x)))
        y2 = self.cv2(x)
        return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))

__init__(c1, c2, n=1, shortcut=True, g=1, e=0.5)

Inicializa o CSP Bottleneck com argumentos para ch_in, ch_out, número, atalho, grupos, expansão.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion."""
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
    self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
    self.cv4 = Conv(2 * c_, c2, 1, 1)
    self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
    self.act = nn.SiLU()
    self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

forward(x)

Aplica um estrangulamento CSP com 3 convoluções.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Applies a CSP bottleneck with 3 convolutions."""
    y1 = self.cv3(self.m(self.cv1(x)))
    y2 = self.cv2(x)
    return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))



ultralytics.nn.modules.block.ResNetBlock

Bases: Module

Bloco ResNet com camadas de convolução padrão.

Código fonte em ultralytics/nn/modules/block.py
class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = Conv(c2, c3, k=1, act=False)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))

__init__(c1, c2, s=1, e=4)

Inicializa a convolução com os parâmetros fornecidos.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, s=1, e=4):
    """Initialize convolution with given parameters."""
    super().__init__()
    c3 = e * c2
    self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
    self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
    self.cv3 = Conv(c2, c3, k=1, act=False)
    self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

forward(x)

Passa para a frente através do bloco ResNet.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through the ResNet block."""
    return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))



ultralytics.nn.modules.block.ResNetLayer

Bases: Module

Camada ResNet com vários blocos ResNet.

Código fonte em ultralytics/nn/modules/block.py
class ResNetLayer(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)

__init__(c1, c2, s=1, is_first=False, n=1, e=4)

Inicializa o ResNetLayer com argumentos.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
    """Initializes the ResNetLayer given arguments."""
    super().__init__()
    self.is_first = is_first

    if self.is_first:
        self.layer = nn.Sequential(
            Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )
    else:
        blocks = [ResNetBlock(c1, c2, s, e=e)]
        blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
        self.layer = nn.Sequential(*blocks)

forward(x)

Passa para a frente através da camada ResNet.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through the ResNet layer."""
    return self.layer(x)



ultralytics.nn.modules.block.MaxSigmoidAttnBlock

Bases: Module

Bloqueio de atenção Sigmoid Max.

Código fonte em ultralytics/nn/modules/block.py
class MaxSigmoidAttnBlock(nn.Module):
    """Max Sigmoid attention block."""

    def __init__(self, c1, c2, nh=1, ec=128, gc=512, scale=False):
        """Initializes MaxSigmoidAttnBlock with specified arguments."""
        super().__init__()
        self.nh = nh
        self.hc = c2 // nh
        self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None
        self.gl = nn.Linear(gc, ec)
        self.bias = nn.Parameter(torch.zeros(nh))
        self.proj_conv = Conv(c1, c2, k=3, s=1, act=False)
        self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0

    def forward(self, x, guide):
        """Forward process."""
        bs, _, h, w = x.shape

        guide = self.gl(guide)
        guide = guide.view(bs, -1, self.nh, self.hc)
        embed = self.ec(x) if self.ec is not None else x
        embed = embed.view(bs, self.nh, self.hc, h, w)

        aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide)
        aw = aw.max(dim=-1)[0]
        aw = aw / (self.hc**0.5)
        aw = aw + self.bias[None, :, None, None]
        aw = aw.sigmoid() * self.scale

        x = self.proj_conv(x)
        x = x.view(bs, self.nh, -1, h, w)
        x = x * aw.unsqueeze(2)
        return x.view(bs, -1, h, w)

__init__(c1, c2, nh=1, ec=128, gc=512, scale=False)

Inicializa o MaxSigmoidAttnBlock com os argumentos especificados.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, nh=1, ec=128, gc=512, scale=False):
    """Initializes MaxSigmoidAttnBlock with specified arguments."""
    super().__init__()
    self.nh = nh
    self.hc = c2 // nh
    self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None
    self.gl = nn.Linear(gc, ec)
    self.bias = nn.Parameter(torch.zeros(nh))
    self.proj_conv = Conv(c1, c2, k=3, s=1, act=False)
    self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0

forward(x, guide)

Avança o processo.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x, guide):
    """Forward process."""
    bs, _, h, w = x.shape

    guide = self.gl(guide)
    guide = guide.view(bs, -1, self.nh, self.hc)
    embed = self.ec(x) if self.ec is not None else x
    embed = embed.view(bs, self.nh, self.hc, h, w)

    aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide)
    aw = aw.max(dim=-1)[0]
    aw = aw / (self.hc**0.5)
    aw = aw + self.bias[None, :, None, None]
    aw = aw.sigmoid() * self.scale

    x = self.proj_conv(x)
    x = x.view(bs, self.nh, -1, h, w)
    x = x * aw.unsqueeze(2)
    return x.view(bs, -1, h, w)



ultralytics.nn.modules.block.C2fAttn

Bases: Module

Módulo C2f com um módulo attn adicional.

Código fonte em ultralytics/nn/modules/block.py
class C2fAttn(nn.Module):
    """C2f module with an additional attn module."""

    def __init__(self, c1, c2, n=1, ec=128, nh=1, gc=512, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((3 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
        self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh)

    def forward(self, x, guide):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        y.append(self.attn(y[-1], guide))
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x, guide):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        y.append(self.attn(y[-1], guide))
        return self.cv2(torch.cat(y, 1))

__init__(c1, c2, n=1, ec=128, nh=1, gc=512, shortcut=False, g=1, e=0.5)

Inicializa a camada de estrangulamento CSP com duas convoluções com argumentos ch_in, ch_out, número, atalho, grupos, expansão.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, ec=128, nh=1, gc=512, shortcut=False, g=1, e=0.5):
    """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
    expansion.
    """
    super().__init__()
    self.c = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv((3 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
    self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
    self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh)

forward(x, guide)

Passa para a frente através da camada C2f.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x, guide):
    """Forward pass through C2f layer."""
    y = list(self.cv1(x).chunk(2, 1))
    y.extend(m(y[-1]) for m in self.m)
    y.append(self.attn(y[-1], guide))
    return self.cv2(torch.cat(y, 1))

forward_split(x, guide)

Passa para a frente utilizando split() em vez de chunk().

Código fonte em ultralytics/nn/modules/block.py
def forward_split(self, x, guide):
    """Forward pass using split() instead of chunk()."""
    y = list(self.cv1(x).split((self.c, self.c), 1))
    y.extend(m(y[-1]) for m in self.m)
    y.append(self.attn(y[-1], guide))
    return self.cv2(torch.cat(y, 1))



ultralytics.nn.modules.block.ImagePoolingAttn

Bases: Module

ImagePoolingAttn: Melhora as incorporações de texto com informações sensíveis à imagem.

Código fonte em ultralytics/nn/modules/block.py
class ImagePoolingAttn(nn.Module):
    """ImagePoolingAttn: Enhance the text embeddings with image-aware information."""

    def __init__(self, ec=256, ch=(), ct=512, nh=8, k=3, scale=False):
        """Initializes ImagePoolingAttn with specified arguments."""
        super().__init__()

        nf = len(ch)
        self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec))
        self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
        self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
        self.proj = nn.Linear(ec, ct)
        self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0
        self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch])
        self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)])
        self.ec = ec
        self.nh = nh
        self.nf = nf
        self.hc = ec // nh
        self.k = k

    def forward(self, x, text):
        """Executes attention mechanism on input tensor x and guide tensor."""
        bs = x[0].shape[0]
        assert len(x) == self.nf
        num_patches = self.k**2
        x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)]
        x = torch.cat(x, dim=-1).transpose(1, 2)
        q = self.query(text)
        k = self.key(x)
        v = self.value(x)

        # q = q.reshape(1, text.shape[1], self.nh, self.hc).repeat(bs, 1, 1, 1)
        q = q.reshape(bs, -1, self.nh, self.hc)
        k = k.reshape(bs, -1, self.nh, self.hc)
        v = v.reshape(bs, -1, self.nh, self.hc)

        aw = torch.einsum("bnmc,bkmc->bmnk", q, k)
        aw = aw / (self.hc**0.5)
        aw = F.softmax(aw, dim=-1)

        x = torch.einsum("bmnk,bkmc->bnmc", aw, v)
        x = self.proj(x.reshape(bs, -1, self.ec))
        return x * self.scale + text

__init__(ec=256, ch=(), ct=512, nh=8, k=3, scale=False)

Inicializa ImagePoolingAttn com os argumentos especificados.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, ec=256, ch=(), ct=512, nh=8, k=3, scale=False):
    """Initializes ImagePoolingAttn with specified arguments."""
    super().__init__()

    nf = len(ch)
    self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec))
    self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
    self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
    self.proj = nn.Linear(ec, ct)
    self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0
    self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch])
    self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)])
    self.ec = ec
    self.nh = nh
    self.nf = nf
    self.hc = ec // nh
    self.k = k

forward(x, text)

Executa o mecanismo de atenção na entrada tensor x e guia tensor.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x, text):
    """Executes attention mechanism on input tensor x and guide tensor."""
    bs = x[0].shape[0]
    assert len(x) == self.nf
    num_patches = self.k**2
    x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)]
    x = torch.cat(x, dim=-1).transpose(1, 2)
    q = self.query(text)
    k = self.key(x)
    v = self.value(x)

    # q = q.reshape(1, text.shape[1], self.nh, self.hc).repeat(bs, 1, 1, 1)
    q = q.reshape(bs, -1, self.nh, self.hc)
    k = k.reshape(bs, -1, self.nh, self.hc)
    v = v.reshape(bs, -1, self.nh, self.hc)

    aw = torch.einsum("bnmc,bkmc->bmnk", q, k)
    aw = aw / (self.hc**0.5)
    aw = F.softmax(aw, dim=-1)

    x = torch.einsum("bmnk,bkmc->bnmc", aw, v)
    x = self.proj(x.reshape(bs, -1, self.ec))
    return x * self.scale + text



ultralytics.nn.modules.block.ContrastiveHead

Bases: Module

Cabeça Contrastiva para YOLO-World calcula as pontuações região-texto de acordo com a semelhança entre a imagem e o texto características.

Código fonte em ultralytics/nn/modules/block.py
class ContrastiveHead(nn.Module):
    """Contrastive Head for YOLO-World compute the region-text scores according to the similarity between image and text
    features.
    """

    def __init__(self):
        """Initializes ContrastiveHead with specified region-text similarity parameters."""
        super().__init__()
        # NOTE: use -10.0 to keep the init cls loss consistency with other losses
        self.bias = nn.Parameter(torch.tensor([-10.0]))
        self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log())

    def forward(self, x, w):
        """Forward function of contrastive learning."""
        x = F.normalize(x, dim=1, p=2)
        w = F.normalize(w, dim=-1, p=2)
        x = torch.einsum("bchw,bkc->bkhw", x, w)
        return x * self.logit_scale.exp() + self.bias

__init__()

Inicializa o ContrastiveHead com os parâmetros de similaridade região-texto especificados.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self):
    """Initializes ContrastiveHead with specified region-text similarity parameters."""
    super().__init__()
    # NOTE: use -10.0 to keep the init cls loss consistency with other losses
    self.bias = nn.Parameter(torch.tensor([-10.0]))
    self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log())

forward(x, w)

Função de avanço da aprendizagem contrastiva.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x, w):
    """Forward function of contrastive learning."""
    x = F.normalize(x, dim=1, p=2)
    w = F.normalize(w, dim=-1, p=2)
    x = torch.einsum("bchw,bkc->bkhw", x, w)
    return x * self.logit_scale.exp() + self.bias



ultralytics.nn.modules.block.BNContrastiveHead

Bases: Module

Cabeça Contrastiva de Norma de Lote para YOLO-World usando norma de lote em vez de l2-normalização.

Parâmetros:

Nome Tipo Descrição Predefinição
embed_dims int

Incorpora dimensões de características de texto e imagem.

necessário
Código fonte em ultralytics/nn/modules/block.py
class BNContrastiveHead(nn.Module):
    """
    Batch Norm Contrastive Head for YOLO-World using batch norm instead of l2-normalization.

    Args:
        embed_dims (int): Embed dimensions of text and image features.
    """

    def __init__(self, embed_dims: int):
        """Initialize ContrastiveHead with region-text similarity parameters."""
        super().__init__()
        self.norm = nn.BatchNorm2d(embed_dims)
        # NOTE: use -10.0 to keep the init cls loss consistency with other losses
        self.bias = nn.Parameter(torch.tensor([-10.0]))
        # use -1.0 is more stable
        self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))

    def forward(self, x, w):
        """Forward function of contrastive learning."""
        x = self.norm(x)
        w = F.normalize(w, dim=-1, p=2)
        x = torch.einsum("bchw,bkc->bkhw", x, w)
        return x * self.logit_scale.exp() + self.bias

__init__(embed_dims)

Inicializa o ContrastiveHead com os parâmetros de similaridade região-texto.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, embed_dims: int):
    """Initialize ContrastiveHead with region-text similarity parameters."""
    super().__init__()
    self.norm = nn.BatchNorm2d(embed_dims)
    # NOTE: use -10.0 to keep the init cls loss consistency with other losses
    self.bias = nn.Parameter(torch.tensor([-10.0]))
    # use -1.0 is more stable
    self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))

forward(x, w)

Função de avanço da aprendizagem contrastiva.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x, w):
    """Forward function of contrastive learning."""
    x = self.norm(x)
    w = F.normalize(w, dim=-1, p=2)
    x = torch.einsum("bchw,bkc->bkhw", x, w)
    return x * self.logit_scale.exp() + self.bias



ultralytics.nn.modules.block.RepBottleneck

Bases: Bottleneck

Repete o estrangulamento.

Código fonte em ultralytics/nn/modules/block.py
class RepBottleneck(Bottleneck):
    """Rep bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a RepBottleneck module with customizable in/out channels, shortcut option, groups and expansion
        ratio.
        """
        super().__init__(c1, c2, shortcut, g, k, e)
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = RepConv(c1, c_, k[0], 1)

__init__(c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5)

Inicializa um módulo RepBottleneck com canais de entrada/saída personalizáveis, opção de atalho, grupos e taxa de expansão proporção.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
    """Initializes a RepBottleneck module with customizable in/out channels, shortcut option, groups and expansion
    ratio.
    """
    super().__init__(c1, c2, shortcut, g, k, e)
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = RepConv(c1, c_, k[0], 1)



ultralytics.nn.modules.block.RepCSP

Bases: C3

Rep CSP Bottleneck com 3 convoluções.

Código fonte em ultralytics/nn/modules/block.py
class RepCSP(C3):
    """Rep CSP Bottleneck with 3 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initializes RepCSP layer with given channels, repetitions, shortcut, groups and expansion ratio."""
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

__init__(c1, c2, n=1, shortcut=True, g=1, e=0.5)

Inicializa a camada RepCSP com os canais, repetições, atalho, grupos e taxa de expansão fornecidos.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initializes RepCSP layer with given channels, repetitions, shortcut, groups and expansion ratio."""
    super().__init__(c1, c2, n, shortcut, g, e)
    c_ = int(c2 * e)  # hidden channels
    self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))



ultralytics.nn.modules.block.RepNCSPELAN4

Bases: Module

CSP-ELAN.

Código fonte em ultralytics/nn/modules/block.py
class RepNCSPELAN4(nn.Module):
    """CSP-ELAN."""

    def __init__(self, c1, c2, c3, c4, n=1):
        """Initializes CSP-ELAN layer with specified channel sizes, repetitions, and convolutions."""
        super().__init__()
        self.c = c3 // 2
        self.cv1 = Conv(c1, c3, 1, 1)
        self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1))
        self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1))
        self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)

    def forward(self, x):
        """Forward pass through RepNCSPELAN4 layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
        return self.cv4(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
        return self.cv4(torch.cat(y, 1))

__init__(c1, c2, c3, c4, n=1)

Inicializa a camada CSP-ELAN com os tamanhos de canal, repetições e convoluções especificados.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, c3, c4, n=1):
    """Initializes CSP-ELAN layer with specified channel sizes, repetitions, and convolutions."""
    super().__init__()
    self.c = c3 // 2
    self.cv1 = Conv(c1, c3, 1, 1)
    self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1))
    self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1))
    self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)

forward(x)

Passa para a frente através da camada RepNCSPELAN4.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through RepNCSPELAN4 layer."""
    y = list(self.cv1(x).chunk(2, 1))
    y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
    return self.cv4(torch.cat(y, 1))

forward_split(x)

Passa para a frente utilizando split() em vez de chunk().

Código fonte em ultralytics/nn/modules/block.py
def forward_split(self, x):
    """Forward pass using split() instead of chunk()."""
    y = list(self.cv1(x).split((self.c, self.c), 1))
    y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
    return self.cv4(torch.cat(y, 1))



ultralytics.nn.modules.block.ELAN1

Bases: RepNCSPELAN4

ELAN1 module with 4 convolutions.

Código fonte em ultralytics/nn/modules/block.py
class ELAN1(RepNCSPELAN4):
    """ELAN1 module with 4 convolutions."""

    def __init__(self, c1, c2, c3, c4):
        """Initializes ELAN1 layer with specified channel sizes."""
        super().__init__(c1, c2, c3, c4)
        self.c = c3 // 2
        self.cv1 = Conv(c1, c3, 1, 1)
        self.cv2 = Conv(c3 // 2, c4, 3, 1)
        self.cv3 = Conv(c4, c4, 3, 1)
        self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)

__init__(c1, c2, c3, c4)

Initializes ELAN1 layer with specified channel sizes.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, c3, c4):
    """Initializes ELAN1 layer with specified channel sizes."""
    super().__init__(c1, c2, c3, c4)
    self.c = c3 // 2
    self.cv1 = Conv(c1, c3, 1, 1)
    self.cv2 = Conv(c3 // 2, c4, 3, 1)
    self.cv3 = Conv(c4, c4, 3, 1)
    self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)



ultralytics.nn.modules.block.AConv

Bases: Module

AConv.

Código fonte em ultralytics/nn/modules/block.py
class AConv(nn.Module):
    """AConv."""

    def __init__(self, c1, c2):
        """Initializes AConv module with convolution layers."""
        super().__init__()
        self.cv1 = Conv(c1, c2, 3, 2, 1)

    def forward(self, x):
        """Forward pass through AConv layer."""
        x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
        return self.cv1(x)

__init__(c1, c2)

Initializes AConv module with convolution layers.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2):
    """Initializes AConv module with convolution layers."""
    super().__init__()
    self.cv1 = Conv(c1, c2, 3, 2, 1)

forward(x)

Forward pass through AConv layer.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through AConv layer."""
    x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
    return self.cv1(x)



ultralytics.nn.modules.block.ADown

Bases: Module

Baixa-te.

Código fonte em ultralytics/nn/modules/block.py
class ADown(nn.Module):
    """ADown."""

    def __init__(self, c1, c2):
        """Initializes ADown module with convolution layers to downsample input from channels c1 to c2."""
        super().__init__()
        self.c = c2 // 2
        self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
        self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)

    def forward(self, x):
        """Forward pass through ADown layer."""
        x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
        x1, x2 = x.chunk(2, 1)
        x1 = self.cv1(x1)
        x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
        x2 = self.cv2(x2)
        return torch.cat((x1, x2), 1)

__init__(c1, c2)

Inicializa o módulo ADown com camadas de convolução para reduzir a amostragem da entrada dos canais c1 a c2.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2):
    """Initializes ADown module with convolution layers to downsample input from channels c1 to c2."""
    super().__init__()
    self.c = c2 // 2
    self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
    self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)

forward(x)

Passa para a frente através da camada ADown.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through ADown layer."""
    x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
    x1, x2 = x.chunk(2, 1)
    x1 = self.cv1(x1)
    x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
    x2 = self.cv2(x2)
    return torch.cat((x1, x2), 1)



ultralytics.nn.modules.block.SPPELAN

Bases: Module

SPP-ELAN.

Código fonte em ultralytics/nn/modules/block.py
class SPPELAN(nn.Module):
    """SPP-ELAN."""

    def __init__(self, c1, c2, c3, k=5):
        """Initializes SPP-ELAN block with convolution and max pooling layers for spatial pyramid pooling."""
        super().__init__()
        self.c = c3
        self.cv1 = Conv(c1, c3, 1, 1)
        self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
        self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
        self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
        self.cv5 = Conv(4 * c3, c2, 1, 1)

    def forward(self, x):
        """Forward pass through SPPELAN layer."""
        y = [self.cv1(x)]
        y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
        return self.cv5(torch.cat(y, 1))

__init__(c1, c2, c3, k=5)

Inicializa o bloco SPP-ELAN com camadas de convolução e pooling máximo para pooling de pirâmide espacial.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, c3, k=5):
    """Initializes SPP-ELAN block with convolution and max pooling layers for spatial pyramid pooling."""
    super().__init__()
    self.c = c3
    self.cv1 = Conv(c1, c3, 1, 1)
    self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
    self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
    self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
    self.cv5 = Conv(4 * c3, c2, 1, 1)

forward(x)

Passa para a frente através da camada SPPELAN.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through SPPELAN layer."""
    y = [self.cv1(x)]
    y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
    return self.cv5(torch.cat(y, 1))



ultralytics.nn.modules.block.CBLinear

Bases: Module

CBLinear.

Código fonte em ultralytics/nn/modules/block.py
class CBLinear(nn.Module):
    """CBLinear."""

    def __init__(self, c1, c2s, k=1, s=1, p=None, g=1):
        """Initializes the CBLinear module, passing inputs unchanged."""
        super(CBLinear, self).__init__()
        self.c2s = c2s
        self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)

    def forward(self, x):
        """Forward pass through CBLinear layer."""
        return self.conv(x).split(self.c2s, dim=1)

__init__(c1, c2s, k=1, s=1, p=None, g=1)

Inicializa o módulo CBLinear, passando as entradas inalteradas.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2s, k=1, s=1, p=None, g=1):
    """Initializes the CBLinear module, passing inputs unchanged."""
    super(CBLinear, self).__init__()
    self.c2s = c2s
    self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)

forward(x)

Passa para a frente através da camada CBLinear.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through CBLinear layer."""
    return self.conv(x).split(self.c2s, dim=1)



ultralytics.nn.modules.block.CBFuse

Bases: Module

CBFuse.

Código fonte em ultralytics/nn/modules/block.py
class CBFuse(nn.Module):
    """CBFuse."""

    def __init__(self, idx):
        """Initializes CBFuse module with layer index for selective feature fusion."""
        super(CBFuse, self).__init__()
        self.idx = idx

    def forward(self, xs):
        """Forward pass through CBFuse layer."""
        target_size = xs[-1].shape[2:]
        res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
        return torch.sum(torch.stack(res + xs[-1:]), dim=0)

__init__(idx)

Inicializa o módulo CBFuse com o índice de camadas para a fusão selectiva de características.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, idx):
    """Initializes CBFuse module with layer index for selective feature fusion."""
    super(CBFuse, self).__init__()
    self.idx = idx

forward(xs)

Passa para a frente através da camada CBFuse.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, xs):
    """Forward pass through CBFuse layer."""
    target_size = xs[-1].shape[2:]
    res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
    return torch.sum(torch.stack(res + xs[-1:]), dim=0)



ultralytics.nn.modules.block.RepVGGDW

Bases: Module

RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture.

Código fonte em ultralytics/nn/modules/block.py
class RepVGGDW(torch.nn.Module):
    """RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture."""

    def __init__(self, ed) -> None:
        super().__init__()
        self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False)
        self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False)
        self.dim = ed
        self.act = nn.SiLU()

    def forward(self, x):
        """
        Performs a forward pass of the RepVGGDW block.

        Args:
            x (torch.Tensor): Input tensor.

        Returns:
            (torch.Tensor): Output tensor after applying the depth wise separable convolution.
        """
        return self.act(self.conv(x) + self.conv1(x))

    def forward_fuse(self, x):
        """
        Performs a forward pass of the RepVGGDW block without fusing the convolutions.

        Args:
            x (torch.Tensor): Input tensor.

        Returns:
            (torch.Tensor): Output tensor after applying the depth wise separable convolution.
        """
        return self.act(self.conv(x))

    @torch.no_grad()
    def fuse(self):
        """
        Fuses the convolutional layers in the RepVGGDW block.

        This method fuses the convolutional layers and updates the weights and biases accordingly.
        """
        conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn)
        conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn)

        conv_w = conv.weight
        conv_b = conv.bias
        conv1_w = conv1.weight
        conv1_b = conv1.bias

        conv1_w = torch.nn.functional.pad(conv1_w, [2, 2, 2, 2])

        final_conv_w = conv_w + conv1_w
        final_conv_b = conv_b + conv1_b

        conv.weight.data.copy_(final_conv_w)
        conv.bias.data.copy_(final_conv_b)

        self.conv = conv
        del self.conv1

forward(x)

Performs a forward pass of the RepVGGDW block.

Parâmetros:

Nome Tipo Descrição Predefinição
x Tensor

Input tensor.

necessário

Devolve:

Tipo Descrição
Tensor

Output tensor after applying the depth wise separable convolution.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """
    Performs a forward pass of the RepVGGDW block.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after applying the depth wise separable convolution.
    """
    return self.act(self.conv(x) + self.conv1(x))

forward_fuse(x)

Performs a forward pass of the RepVGGDW block without fusing the convolutions.

Parâmetros:

Nome Tipo Descrição Predefinição
x Tensor

Input tensor.

necessário

Devolve:

Tipo Descrição
Tensor

Output tensor after applying the depth wise separable convolution.

Código fonte em ultralytics/nn/modules/block.py
def forward_fuse(self, x):
    """
    Performs a forward pass of the RepVGGDW block without fusing the convolutions.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after applying the depth wise separable convolution.
    """
    return self.act(self.conv(x))

fuse()

Fuses the convolutional layers in the RepVGGDW block.

This method fuses the convolutional layers and updates the weights and biases accordingly.

Código fonte em ultralytics/nn/modules/block.py
@torch.no_grad()
def fuse(self):
    """
    Fuses the convolutional layers in the RepVGGDW block.

    This method fuses the convolutional layers and updates the weights and biases accordingly.
    """
    conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn)
    conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn)

    conv_w = conv.weight
    conv_b = conv.bias
    conv1_w = conv1.weight
    conv1_b = conv1.bias

    conv1_w = torch.nn.functional.pad(conv1_w, [2, 2, 2, 2])

    final_conv_w = conv_w + conv1_w
    final_conv_b = conv_b + conv1_b

    conv.weight.data.copy_(final_conv_w)
    conv.bias.data.copy_(final_conv_b)

    self.conv = conv
    del self.conv1



ultralytics.nn.modules.block.CIB

Bases: Module

Conditional Identity Block (CIB) module.

Parâmetros:

Nome Tipo Descrição Predefinição
c1 int

Número de canais de entrada.

necessário
c2 int

Number of output channels.

necessário
shortcut bool

Whether to add a shortcut connection. Defaults to True.

True
e float

Scaling factor for the hidden channels. Defaults to 0.5.

0.5
lk bool

Whether to use RepVGGDW for the third convolutional layer. Defaults to False.

False
Código fonte em ultralytics/nn/modules/block.py
class CIB(nn.Module):
    """
    Conditional Identity Block (CIB) module.

    Args:
        c1 (int): Number of input channels.
        c2 (int): Number of output channels.
        shortcut (bool, optional): Whether to add a shortcut connection. Defaults to True.
        e (float, optional): Scaling factor for the hidden channels. Defaults to 0.5.
        lk (bool, optional): Whether to use RepVGGDW for the third convolutional layer. Defaults to False.
    """

    def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False):
        """Initializes the custom model with optional shortcut, scaling factor, and RepVGGDW layer."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = nn.Sequential(
            Conv(c1, c1, 3, g=c1),
            Conv(c1, 2 * c_, 1),
            RepVGGDW(2 * c_) if lk else Conv(2 * c_, 2 * c_, 3, g=2 * c_),
            Conv(2 * c_, c2, 1),
            Conv(c2, c2, 3, g=c2),
        )

        self.add = shortcut and c1 == c2

    def forward(self, x):
        """
        Forward pass of the CIB module.

        Args:
            x (torch.Tensor): Input tensor.

        Returns:
            (torch.Tensor): Output tensor.
        """
        return x + self.cv1(x) if self.add else self.cv1(x)

__init__(c1, c2, shortcut=True, e=0.5, lk=False)

Initializes the custom model with optional shortcut, scaling factor, and RepVGGDW layer.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False):
    """Initializes the custom model with optional shortcut, scaling factor, and RepVGGDW layer."""
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = nn.Sequential(
        Conv(c1, c1, 3, g=c1),
        Conv(c1, 2 * c_, 1),
        RepVGGDW(2 * c_) if lk else Conv(2 * c_, 2 * c_, 3, g=2 * c_),
        Conv(2 * c_, c2, 1),
        Conv(c2, c2, 3, g=c2),
    )

    self.add = shortcut and c1 == c2

forward(x)

Forward pass of the CIB module.

Parâmetros:

Nome Tipo Descrição Predefinição
x Tensor

Input tensor.

necessário

Devolve:

Tipo Descrição
Tensor

Output tensor.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """
    Forward pass of the CIB module.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor.
    """
    return x + self.cv1(x) if self.add else self.cv1(x)



ultralytics.nn.modules.block.C2fCIB

Bases: C2f

C2fCIB class represents a convolutional block with C2f and CIB modules.

Parâmetros:

Nome Tipo Descrição Predefinição
c1 int

Número de canais de entrada.

necessário
c2 int

Number of output channels.

necessário
n int

Number of CIB modules to stack. Defaults to 1.

1
shortcut bool

Whether to use shortcut connection. Defaults to False.

False
lk bool

Whether to use local key connection. Defaults to False.

False
g int

Number of groups for grouped convolution. Defaults to 1.

1
e float

Expansion ratio for CIB modules. Defaults to 0.5.

0.5
Código fonte em ultralytics/nn/modules/block.py
class C2fCIB(C2f):
    """
    C2fCIB class represents a convolutional block with C2f and CIB modules.

    Args:
        c1 (int): Number of input channels.
        c2 (int): Number of output channels.
        n (int, optional): Number of CIB modules to stack. Defaults to 1.
        shortcut (bool, optional): Whether to use shortcut connection. Defaults to False.
        lk (bool, optional): Whether to use local key connection. Defaults to False.
        g (int, optional): Number of groups for grouped convolution. Defaults to 1.
        e (float, optional): Expansion ratio for CIB modules. Defaults to 0.5.
    """

    def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5):
        """Initializes the module with specified parameters for channel, shortcut, local key, groups, and expansion."""
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))

__init__(c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5)

Initializes the module with specified parameters for channel, shortcut, local key, groups, and expansion.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5):
    """Initializes the module with specified parameters for channel, shortcut, local key, groups, and expansion."""
    super().__init__(c1, c2, n, shortcut, g, e)
    self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))



ultralytics.nn.modules.block.Attention

Bases: Module

Attention module that performs self-attention on the input tensor.

Parâmetros:

Nome Tipo Descrição Predefinição
dim int

The input tensor dimension.

necessário
num_heads int

O número de cabeças de atenção.

8
attn_ratio float

The ratio of the attention key dimension to the head dimension.

0.5

Atributos:

Nome Tipo Descrição
num_heads int

O número de cabeças de atenção.

head_dim int

The dimension of each attention head.

key_dim int

The dimension of the attention key.

scale float

The scaling factor for the attention scores.

qkv Conv

Convolutional layer for computing the query, key, and value.

proj Conv

Convolutional layer for projecting the attended values.

pe Conv

Convolutional layer for positional encoding.

Código fonte em ultralytics/nn/modules/block.py
class Attention(nn.Module):
    """
    Attention module that performs self-attention on the input tensor.

    Args:
        dim (int): The input tensor dimension.
        num_heads (int): The number of attention heads.
        attn_ratio (float): The ratio of the attention key dimension to the head dimension.

    Attributes:
        num_heads (int): The number of attention heads.
        head_dim (int): The dimension of each attention head.
        key_dim (int): The dimension of the attention key.
        scale (float): The scaling factor for the attention scores.
        qkv (Conv): Convolutional layer for computing the query, key, and value.
        proj (Conv): Convolutional layer for projecting the attended values.
        pe (Conv): Convolutional layer for positional encoding.
    """

    def __init__(self, dim, num_heads=8, attn_ratio=0.5):
        """Initializes multi-head attention module with query, key, and value convolutions and positional encoding."""
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.key_dim = int(self.head_dim * attn_ratio)
        self.scale = self.key_dim**-0.5
        nh_kd = nh_kd = self.key_dim * num_heads
        h = dim + nh_kd * 2
        self.qkv = Conv(dim, h, 1, act=False)
        self.proj = Conv(dim, dim, 1, act=False)
        self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)

    def forward(self, x):
        """
        Forward pass of the Attention module.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            (torch.Tensor): The output tensor after self-attention.
        """
        B, C, H, W = x.shape
        N = H * W
        qkv = self.qkv(x)
        q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split(
            [self.key_dim, self.key_dim, self.head_dim], dim=2
        )

        attn = (q.transpose(-2, -1) @ k) * self.scale
        attn = attn.softmax(dim=-1)
        x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
        x = self.proj(x)
        return x

__init__(dim, num_heads=8, attn_ratio=0.5)

Initializes multi-head attention module with query, key, and value convolutions and positional encoding.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, dim, num_heads=8, attn_ratio=0.5):
    """Initializes multi-head attention module with query, key, and value convolutions and positional encoding."""
    super().__init__()
    self.num_heads = num_heads
    self.head_dim = dim // num_heads
    self.key_dim = int(self.head_dim * attn_ratio)
    self.scale = self.key_dim**-0.5
    nh_kd = nh_kd = self.key_dim * num_heads
    h = dim + nh_kd * 2
    self.qkv = Conv(dim, h, 1, act=False)
    self.proj = Conv(dim, dim, 1, act=False)
    self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)

forward(x)

Forward pass of the Attention module.

Parâmetros:

Nome Tipo Descrição Predefinição
x Tensor

A entrada tensor.

necessário

Devolve:

Tipo Descrição
Tensor

The output tensor after self-attention.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """
    Forward pass of the Attention module.

    Args:
        x (torch.Tensor): The input tensor.

    Returns:
        (torch.Tensor): The output tensor after self-attention.
    """
    B, C, H, W = x.shape
    N = H * W
    qkv = self.qkv(x)
    q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split(
        [self.key_dim, self.key_dim, self.head_dim], dim=2
    )

    attn = (q.transpose(-2, -1) @ k) * self.scale
    attn = attn.softmax(dim=-1)
    x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
    x = self.proj(x)
    return x



ultralytics.nn.modules.block.PSA

Bases: Module

Position-wise Spatial Attention module.

Parâmetros:

Nome Tipo Descrição Predefinição
c1 int

Número de canais de entrada.

necessário
c2 int

Number of output channels.

necessário
e float

Expansion factor for the intermediate channels. Default is 0.5.

0.5

Atributos:

Nome Tipo Descrição
c int

Number of intermediate channels.

cv1 Conv

1x1 convolution layer to reduce the number of input channels to 2*c.

cv2 Conv

1x1 convolution layer to reduce the number of output channels to c.

attn Attention

Attention module for spatial attention.

ffn Sequential

Feed-forward network module.

Código fonte em ultralytics/nn/modules/block.py
class PSA(nn.Module):
    """
    Position-wise Spatial Attention module.

    Args:
        c1 (int): Number of input channels.
        c2 (int): Number of output channels.
        e (float): Expansion factor for the intermediate channels. Default is 0.5.

    Attributes:
        c (int): Number of intermediate channels.
        cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
        cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
        attn (Attention): Attention module for spatial attention.
        ffn (nn.Sequential): Feed-forward network module.
    """

    def __init__(self, c1, c2, e=0.5):
        """Initializes convolution layers, attention module, and feed-forward network with channel reduction."""
        super().__init__()
        assert c1 == c2
        self.c = int(c1 * e)
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c1, 1)

        self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
        self.ffn = nn.Sequential(Conv(self.c, self.c * 2, 1), Conv(self.c * 2, self.c, 1, act=False))

    def forward(self, x):
        """
        Forward pass of the PSA module.

        Args:
            x (torch.Tensor): Input tensor.

        Returns:
            (torch.Tensor): Output tensor.
        """
        a, b = self.cv1(x).split((self.c, self.c), dim=1)
        b = b + self.attn(b)
        b = b + self.ffn(b)
        return self.cv2(torch.cat((a, b), 1))

__init__(c1, c2, e=0.5)

Initializes convolution layers, attention module, and feed-forward network with channel reduction.

Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, e=0.5):
    """Initializes convolution layers, attention module, and feed-forward network with channel reduction."""
    super().__init__()
    assert c1 == c2
    self.c = int(c1 * e)
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv(2 * self.c, c1, 1)

    self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
    self.ffn = nn.Sequential(Conv(self.c, self.c * 2, 1), Conv(self.c * 2, self.c, 1, act=False))

forward(x)

Forward pass of the PSA module.

Parâmetros:

Nome Tipo Descrição Predefinição
x Tensor

Input tensor.

necessário

Devolve:

Tipo Descrição
Tensor

Output tensor.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """
    Forward pass of the PSA module.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor.
    """
    a, b = self.cv1(x).split((self.c, self.c), dim=1)
    b = b + self.attn(b)
    b = b + self.ffn(b)
    return self.cv2(torch.cat((a, b), 1))



ultralytics.nn.modules.block.SCDown

Bases: Module

Código fonte em ultralytics/nn/modules/block.py
class SCDown(nn.Module):
    def __init__(self, c1, c2, k, s):
        """
        Spatial Channel Downsample (SCDown) module.

        Args:
            c1 (int): Number of input channels.
            c2 (int): Number of output channels.
            k (int): Kernel size for the convolutional layer.
            s (int): Stride for the convolutional layer.
        """
        super().__init__()
        self.cv1 = Conv(c1, c2, 1, 1)
        self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)

    def forward(self, x):
        """
        Forward pass of the SCDown module.

        Args:
            x (torch.Tensor): Input tensor.

        Returns:
            (torch.Tensor): Output tensor after applying the SCDown module.
        """
        return self.cv2(self.cv1(x))

__init__(c1, c2, k, s)

Spatial Channel Downsample (SCDown) module.

Parâmetros:

Nome Tipo Descrição Predefinição
c1 int

Número de canais de entrada.

necessário
c2 int

Number of output channels.

necessário
k int

Kernel size for the convolutional layer.

necessário
s int

Stride for the convolutional layer.

necessário
Código fonte em ultralytics/nn/modules/block.py
def __init__(self, c1, c2, k, s):
    """
    Spatial Channel Downsample (SCDown) module.

    Args:
        c1 (int): Number of input channels.
        c2 (int): Number of output channels.
        k (int): Kernel size for the convolutional layer.
        s (int): Stride for the convolutional layer.
    """
    super().__init__()
    self.cv1 = Conv(c1, c2, 1, 1)
    self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)

forward(x)

Forward pass of the SCDown module.

Parâmetros:

Nome Tipo Descrição Predefinição
x Tensor

Input tensor.

necessário

Devolve:

Tipo Descrição
Tensor

Output tensor after applying the SCDown module.

Código fonte em ultralytics/nn/modules/block.py
def forward(self, x):
    """
    Forward pass of the SCDown module.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after applying the SCDown module.
    """
    return self.cv2(self.cv1(x))





Created 2023-11-12, Updated 2024-06-20
Authors: Burhan-Q (2), Laughing-q (3), glenn-jocher (7)