์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ

CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ

CIFAR-100 (์บ๋‚˜๋‹ค ๊ณ ๊ธ‰ ์—ฐ๊ตฌ ์—ฐ๊ตฌ์†Œ) ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” 100๊ฐ€์ง€ ํด๋ž˜์Šค์˜ 32x32 ์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€ 60,000๊ฐœ๋กœ ๊ตฌ์„ฑ๋œ CIFAR-10 ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ค‘์š”ํ•œ ํ™•์žฅํŒ์ž…๋‹ˆ๋‹ค. CIFAR ์—ฐ๊ตฌ์†Œ์˜ ์—ฐ๊ตฌ์›๋“ค์ด ๊ฐœ๋ฐœํ–ˆ์œผ๋ฉฐ, ๋ณด๋‹ค ๋ณต์žกํ•œ ๋จธ์‹  ๋Ÿฌ๋‹ ๋ฐ ์ปดํ“จํ„ฐ ๋น„์ „ ์ž‘์—…์„ ์œ„ํ•œ ๋” ๊นŒ๋‹ค๋กœ์šด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

์ฃผ์š” ๊ธฐ๋Šฅ

  • CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” 60,000๊ฐœ์˜ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ, 100๊ฐœ์˜ ํด๋ž˜์Šค๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค.
  • ๊ฐ ํด๋ž˜์Šค์—๋Š” ๊ต์œก์šฉ ์ด๋ฏธ์ง€ 500๊ฐœ์™€ ํ…Œ์ŠคํŠธ์šฉ ์ด๋ฏธ์ง€ 100๊ฐœ๋กœ ๋‚˜๋‰œ 600๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์ด๋ฏธ์ง€๋Š” ์ปฌ๋Ÿฌ์ด๋ฉฐ ํฌ๊ธฐ๋Š” 32x32ํ”ฝ์…€์ž…๋‹ˆ๋‹ค.
  • 100๊ฐ€์ง€ ํด๋ž˜์Šค๋Š” ๋” ๋†’์€ ์ˆ˜์ค€์˜ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•ด 20๊ฐœ์˜ ๋Œ€๋žต์ ์ธ ์นดํ…Œ๊ณ ๋ฆฌ๋กœ ๊ทธ๋ฃนํ™”๋ฉ๋‹ˆ๋‹ค.
  • CIFAR-100์€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ฐ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์˜ ๊ต์œก ๋ฐ ํ…Œ์ŠคํŠธ์— ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.

๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์กฐ

CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋‘ ๊ฐœ์˜ ํ•˜์œ„ ์ง‘ํ•ฉ์œผ๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค:

  1. ํ›ˆ๋ จ ์„ธํŠธ: ์ด ํ•˜์œ„ ์ง‘ํ•ฉ์—๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ํ•™์Šต์— ์‚ฌ์šฉ๋˜๋Š” 50,000๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
  2. ํ…Œ์ŠคํŠธ ์„ธํŠธ: ์ด ํ•˜์œ„ ์ง‘ํ•ฉ์€ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ํ…Œ์ŠคํŠธํ•˜๊ณ  ๋ฒค์น˜๋งˆํ‚นํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” 10,000๊ฐœ์˜ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค.

์• ํ”Œ๋ฆฌ์ผ€์ด์…˜

CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง (CNN), ์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹ (SVM) ๋ฐ ๊ธฐํƒ€ ๋‹ค์–‘ํ•œ ๋จธ์‹  ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ฐ™์€ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์ž‘์—…์—์„œ ๋”ฅ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ  ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ํด๋ž˜์Šค ์ธก๋ฉด์—์„œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋‹ค์–‘์„ฑ๊ณผ ์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€์˜ ์กด์žฌ๋กœ ์ธํ•ด ๋จธ์‹  ๋Ÿฌ๋‹ ๋ฐ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์˜ ์—ฐ๊ตฌ ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ๋”์šฑ ๋„์ „์ ์ด๊ณ  ํฌ๊ด„์ ์ธ ๋ฐ์ดํ„ฐ ์„ธํŠธ๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

์‚ฌ์šฉ๋ฒ•

์ด๋ฏธ์ง€ ํฌ๊ธฐ๊ฐ€ 32x32์ธ 100๊ฐœ์˜ ์—ํฌํฌ์— ๋Œ€ํ•ด CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ YOLO ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ๋‹ค์Œ ์ฝ”๋“œ ์กฐ๊ฐ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ธ์ˆ˜์˜ ์ „์ฒด ๋ชฉ๋ก์€ ๋ชจ๋ธ ํ•™์Šต ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์—ด์ฐจ ์˜ˆ์‹œ

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-cls.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="cifar100", epochs=100, imgsz=32)
# Start training from a pretrained *.pt model
yolo classify train data=cifar100 model=yolo11n-cls.pt epochs=100 imgsz=32

์ƒ˜ํ”Œ ์ด๋ฏธ์ง€ ๋ฐ ์ฃผ์„

CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ์—๋Š” ๋‹ค์–‘ํ•œ ๋ฌผ์ฒด์˜ ์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์ž‘์—…์„ ์œ„ํ•œ ์ž˜ ๊ตฌ์กฐํ™”๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋ช‡ ๊ฐ€์ง€ ์ด๋ฏธ์ง€ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค:

๋ฐ์ดํ„ฐ ์„ธํŠธ ์ƒ˜ํ”Œ ์ด๋ฏธ์ง€

์ด ์˜ˆ๋Š” CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ํฌํ•จ๋œ ๊ฐ์ฒด์˜ ๋‹ค์–‘์„ฑ๊ณผ ๋ณต์žก์„ฑ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ๊ฐ•๋ ฅํ•œ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ๊ฐ€ ์ค‘์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค.

์ธ์šฉ ๋ฐ ๊ฐ์‚ฌ

์—ฐ๊ตฌ ๋˜๋Š” ๊ฐœ๋ฐœ ์ž‘์—…์— CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ๋‹ค์Œ ๋…ผ๋ฌธ์„ ์ธ์šฉํ•ด ์ฃผ์„ธ์š”:

@TECHREPORT{Krizhevsky09learningmultiple,
            author={Alex Krizhevsky},
            title={Learning multiple layers of features from tiny images},
            institution={},
            year={2009}
}

๋จธ์‹  ๋Ÿฌ๋‹ ๋ฐ ์ปดํ“จํ„ฐ ๋น„์ „ ์—ฐ๊ตฌ ์ปค๋ฎค๋‹ˆํ‹ฐ๋ฅผ ์œ„ํ•œ ๊ท€์ค‘ํ•œ ๋ฆฌ์†Œ์Šค์ธ CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๋งŒ๋“ค๊ณ  ์œ ์ง€ ๊ด€๋ฆฌํ•ด ์ฃผ์‹  Alex Krizhevsky์—๊ฒŒ ๊ฐ์‚ฌ์˜ ๋ง์”€์„ ์ „ํ•˜๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค. CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ์™€ ์ œ์ž‘์ž์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ ์›น์‚ฌ์ดํŠธ๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ

CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋ฌด์—‡์ด๋ฉฐ ์™œ ์ค‘์š”ํ•œ๊ฐ€์š”?

CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” 100๊ฐœ์˜ ํด๋ž˜์Šค๋กœ ๋ถ„๋ฅ˜๋œ 60,000๊ฐœ์˜ 32x32 ์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋œ ๋Œ€๊ทœ๋ชจ ์ปฌ๋ ‰์…˜์ž…๋‹ˆ๋‹ค. ์บ๋‚˜๋‹ค ๊ณ ๊ธ‰ ์—ฐ๊ตฌ ์—ฐ๊ตฌ์†Œ(CIFAR)์—์„œ ๊ฐœ๋ฐœํ•œ ์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋ณต์žกํ•œ ๋จธ์‹  ๋Ÿฌ๋‹ ๋ฐ ์ปดํ“จํ„ฐ ๋น„์ „ ์ž‘์—…์— ์ด์ƒ์ ์ธ ๊ณ ๋‚œ์ด๋„ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํด๋ž˜์Šค์˜ ๋‹ค์–‘์„ฑ๊ณผ ์ด๋ฏธ์ง€์˜ ์ž‘์€ ํฌ๊ธฐ๋กœ ์ธํ•ด ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง (CNN)๊ณผ ๊ฐ™์€ ๋”ฅ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ  ํ…Œ์ŠคํŠธํ•˜๋Š” ๋ฐ ์œ ์šฉํ•œ ๋ฆฌ์†Œ์Šค๋กœ์„œ Ultralytics YOLO ๊ณผ ๊ฐ™์€ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค.

CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ YOLO ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•˜๋‚˜์š”?

Python ๋˜๋Š” CLI ๋ช…๋ น์„ ์‚ฌ์šฉํ•˜์—ฌ CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ YOLO ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฐฉ๋ฒ•์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

์—ด์ฐจ ์˜ˆ์‹œ

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-cls.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="cifar100", epochs=100, imgsz=32)
# Start training from a pretrained *.pt model
yolo classify train data=cifar100 model=yolo11n-cls.pt epochs=100 imgsz=32

์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ธ์ˆ˜์˜ ์ „์ฒด ๋ชฉ๋ก์€ ๋ชจ๋ธ ๊ต์œก ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ฃผ์š” ํ™œ์šฉ ๋ถ„์•ผ๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”?

CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ๋”ฅ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ  ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. 20๊ฐœ์˜ ๋Œ€๋žต์ ์ธ ์นดํ…Œ๊ณ ๋ฆฌ๋กœ ๊ทธ๋ฃนํ™”๋œ 100๊ฐœ์˜ ๋‹ค์–‘ํ•œ ํด๋ž˜์Šค ์„ธํŠธ๋Š” ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง(CNN), ์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹  (SVM) ๋ฐ ๊ธฐํƒ€ ๋‹ค์–‘ํ•œ ๋จธ์‹  ๋Ÿฌ๋‹ ์ ‘๊ทผ๋ฒ•๊ณผ ๊ฐ™์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ…Œ์ŠคํŠธํ•  ์ˆ˜ ์žˆ๋Š” ๊นŒ๋‹ค๋กœ์šด ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋จธ์‹  ๋Ÿฌ๋‹ ๋ฐ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์˜ ์—ฐ๊ตฌ ๊ฐœ๋ฐœ์—์„œ ํ•ต์‹ฌ์ ์ธ ๋ฆฌ์†Œ์Šค์ž…๋‹ˆ๋‹ค.

CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์–ด๋–ป๊ฒŒ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‚˜์š”?

CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ•˜์œ„ ์ง‘ํ•ฉ์œผ๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค:

  1. ํŠธ๋ ˆ์ด๋‹ ์„ธํŠธ: ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ํ•™์Šต์— ์‚ฌ์šฉ๋˜๋Š” 50,000๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
  2. ํ…Œ์ŠคํŠธ ์„ธํŠธ: ํ•™์Šต๋œ ๋ชจ๋ธ์„ ํ…Œ์ŠคํŠธํ•˜๊ณ  ๋ฒค์น˜๋งˆํ‚นํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” 10,000๊ฐœ์˜ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค.

100๊ฐœ์˜ ํด๋ž˜์Šค์—๋Š” ๊ฐ๊ฐ 500๊ฐœ์˜ ๊ต์œก์šฉ ์ด๋ฏธ์ง€์™€ 100๊ฐœ์˜ ํ…Œ์ŠคํŠธ์šฉ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋œ 600๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ์—„๊ฒฉํ•œ ํ•™์ˆ  ๋ฐ ์‚ฐ์—… ์—ฐ๊ตฌ์— ๋งค์šฐ ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค.

CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ƒ˜ํ”Œ ์ด๋ฏธ์ง€์™€ ์ฃผ์„์€ ์–ด๋””์—์„œ ์ฐพ์„ ์ˆ˜ ์žˆ๋‚˜์š”?

CIFAR-100 ๋ฐ์ดํ„ฐ ์„ธํŠธ์—๋Š” ๋‹ค์–‘ํ•œ ๋ฌผ์ฒด์˜ ๋‹ค์–‘ํ•œ ์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์ž‘์—…์„ ์œ„ํ•œ ๊ตฌ์กฐํ™”๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค. ๋ฌธ์„œ ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ์ƒ˜ํ”Œ ์ด๋ฏธ์ง€์™€ ์ฃผ์„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์˜ˆ๋Š” ๊ฐ•๋ ฅํ•œ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋‹ค์–‘์„ฑ๊ณผ ๋ณต์žก์„ฑ์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ“…1 ๋…„ ์ „ ์ƒ์„ฑ๋จ โœ๏ธ 2๊ฐœ์›” ์ „ ์—…๋ฐ์ดํŠธ๋จ

๋Œ“๊ธ€