์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ

์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ

์†Œ๊ฐœ

์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—๋Š” ํ‚คํฌ์ธํŠธ๋กœ ์ฃผ์„์ด ๋‹ฌ๋ฆฐ 26,768๊ฐœ์˜ ์† ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ํฌ์ฆˆ ์ถ”์ • ์ž‘์—…์„ ์œ„ํ•œ Ultralytics YOLO ๊ฐ™์€ ๋ชจ๋ธ ํ›ˆ๋ จ์— ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค. ์ฃผ์„์€ Google MediaPipe ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ƒ์„ฑ๋˜์–ด ๋†’์€ ์ •ํ™•๋„์™€ ์ผ๊ด€์„ฑ์„ ๋ณด์žฅํ•˜๋ฉฐ, ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋‹ค์Œ๊ณผ ํ˜ธํ™˜๋ฉ๋‹ˆ๋‹ค. Ultralytics YOLO11 ํ˜•์‹๊ณผ ํ˜ธํ™˜๋ฉ๋‹ˆ๋‹ค.



Watch: Ultralytics YOLO11 | ์‚ฌ๋žŒ์˜ ์† ํฌ์ฆˆ ์ถ”์ • ํŠœํ† ๋ฆฌ์–ผ์„ ํ†ตํ•œ ์† ํ‚คํฌ์ธํŠธ ์ถ”์ •

ํ•ธ๋“œ ๋žœ๋“œ๋งˆํฌ

ํ•ธ๋“œ ๋žœ๋“œ๋งˆํฌ

ํ‚คํฌ์ธํŠธ

๋ฐ์ดํ„ฐ ์„ธํŠธ์—๋Š” ์† ๊ฐ์ง€๋ฅผ ์œ„ํ•œ ํ‚คํฌ์ธํŠธ๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ํ‚คํฌ์ธํŠธ์—๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ฃผ์„์„ ๋‹ฌ์•˜์Šต๋‹ˆ๋‹ค:

  1. ์†๋ชฉ
  2. ์—„์ง€ ์†๊ฐ€๋ฝ(4์ )
  3. ๊ฒ€์ง€(4์ )
  4. ๊ฐ€์šด๋ฐ ์†๊ฐ€๋ฝ(4์ )
  5. ์•ฝ์ง€(4ํฌ์ธํŠธ)
  6. ์ƒˆ๋ผ ์†๊ฐ€๋ฝ(4์ )

๊ฐ ์†์—๋Š” ์ด 21๊ฐœ์˜ ํ‚คํฌ์ธํŠธ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.

์ฃผ์š” ๊ธฐ๋Šฅ

  • ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์„ธํŠธ: 26,768๊ฐœ์˜ ์ด๋ฏธ์ง€์™€ ์† ํ‚คํฌ์ธํŠธ ์ฃผ์„.
  • YOLO11 ํ˜ธํ™˜์„ฑ: YOLO11 ๋ชจ๋ธ๊ณผ ํ•จ๊ป˜ ์‚ฌ์šฉ ๊ฐ€๋Šฅ.
  • 21๊ฐœ์˜ ํ‚คํฌ์ธํŠธ: ์ƒ์„ธํ•œ ์† ํฌ์ฆˆ ํ‘œํ˜„.

๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์กฐ

์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋‘ ๊ฐœ์˜ ํ•˜์œ„ ์ง‘ํ•ฉ์œผ๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค:

  1. Train: ์ด ํ•˜์œ„ ์ง‘ํ•ฉ์—๋Š” ์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ 18,776๊ฐœ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์œผ๋ฉฐ, ํฌ์ฆˆ ์ถ”์ • ๋ชจ๋ธ ํ•™์Šต์„ ์œ„ํ•ด ์ฃผ์„์ด ์ถ”๊ฐ€๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
  2. Val: ์ด ํ•˜์œ„ ์ง‘ํ•ฉ์—๋Š” ๋ชจ๋ธ ํ•™์Šต ์ค‘ ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ ๋ชฉ์ ์œผ๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” 7992๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

์• ํ”Œ๋ฆฌ์ผ€์ด์…˜

์† ํ‚คํฌ์ธํŠธ๋Š” ์ œ์Šค์ฒ˜ ์ธ์‹, AR/VR ์ œ์–ด, ๋กœ๋ด‡ ์กฐ์ž‘, ํ—ฌ์Šค์ผ€์–ด ๋ถ„์•ผ์˜ ์† ์›€์ง์ž„ ๋ถ„์„์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ๋ชจ์…˜ ์บก์ฒ˜๋ฅผ ์œ„ํ•œ ์• ๋‹ˆ๋ฉ”์ด์…˜๊ณผ ๋ณด์•ˆ์„ ์œ„ํ•œ ์ƒ์ฒด ์ธ์ฆ ์‹œ์Šคํ…œ์—๋„ ์ ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋ฐ์ดํ„ฐ ์„ธํŠธ YAML

๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์„ฑ์„ ์ •์˜ํ•˜๋Š” ๋ฐ๋Š” YAML(๋˜ ๋‹ค๋ฅธ ๋งˆํฌ์—… ์–ธ์–ด) ํŒŒ์ผ์ด ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ฒฝ๋กœ, ํด๋ž˜์Šค ๋ฐ ๊ธฐํƒ€ ๊ด€๋ จ ์ •๋ณด์— ๋Œ€ํ•œ ์ •๋ณด๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ฒฝ์šฐ, ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ hand-keypoints.yaml ํŒŒ์ผ์€ ๋‹ค์Œ ์œ„์น˜์—์„œ ์œ ์ง€๋ฉ๋‹ˆ๋‹ค. https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/hand-keypoints.yaml.

ultralytics/cfg/๋ฐ์ดํ„ฐ์„ธํŠธ/์† ํ‚คํฌ์ธํŠธ.yaml

# Ultralytics YOLO ๐Ÿš€, AGPL-3.0 license
# Hand Keypoints dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/hand-keypoints/
# Example usage: yolo train data=hand-keypoints.yaml
# parent
# โ”œโ”€โ”€ ultralytics
# โ””โ”€โ”€ datasets
#     โ””โ”€โ”€ hand-keypoints  โ† downloads here (369 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/hand-keypoints # dataset root dir
train: train # train images (relative to 'path') 18776 images
val: val # val images (relative to 'path') 7992 images

# Keypoints
kpt_shape: [21, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx:
  [0, 1, 2, 4, 3, 10, 11, 12, 13, 14, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 20]

# Classes
names:
  0: hand

# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/hand-keypoints.zip

์‚ฌ์šฉ๋ฒ•

์ด๋ฏธ์ง€ ํฌ๊ธฐ๊ฐ€ 640์ธ 100๊ฐœ์˜ ์—ํฌํฌ์— ๋Œ€ํ•ด ์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ YOLO11n ํฌ์ฆˆ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ๋‹ค์Œ ์ฝ”๋“œ ์กฐ๊ฐ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ธ์ˆ˜์˜ ์ „์ฒด ๋ชฉ๋ก์€ ๋ชจ๋ธ ํ›ˆ๋ จ ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์—ด์ฐจ ์˜ˆ์‹œ

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="hand-keypoints.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo pose train data=hand-keypoints.yaml model=yolo11n-pose.pt epochs=100 imgsz=640

์ƒ˜ํ”Œ ์ด๋ฏธ์ง€ ๋ฐ ์ฃผ์„

์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—๋Š” ํ‚คํฌ์ธํŠธ๋กœ ์ฃผ์„์„ ๋‹จ ์‚ฌ๋žŒ์˜ ์†์ด ์žˆ๋Š” ๋‹ค์–‘ํ•œ ์ด๋ฏธ์ง€ ์„ธํŠธ๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ํ•ด๋‹น ์ฃผ์„๊ณผ ํ•จ๊ป˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ด๋ฏธ์ง€ ๋ช‡ ๊ฐ€์ง€ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค:

๋ฐ์ดํ„ฐ ์„ธํŠธ ์ƒ˜ํ”Œ ์ด๋ฏธ์ง€

  • ๋ชจ์ž์ดํฌ ์ด๋ฏธ์ง€: ์ด ์ด๋ฏธ์ง€๋Š” ๋ชจ์ž์ดํฌ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋œ ํ›ˆ๋ จ ๋ฐฐ์น˜์˜ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค. ๋ชจ์ž์ดํฌ๋Š” ์—ฌ๋Ÿฌ ์ด๋ฏธ์ง€๋ฅผ ํ•˜๋‚˜์˜ ์ด๋ฏธ์ง€๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ฐ ํ›ˆ๋ จ ๋ฐฐ์น˜ ๋‚ด์—์„œ ๋‹ค์–‘ํ•œ ๊ฐœ์ฒด์™€ ์žฅ๋ฉด์„ ๋Š˜๋ฆฌ๊ธฐ ์œ„ํ•ด ํ›ˆ๋ จ ์ค‘์— ์‚ฌ์šฉ๋˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๊ฐ์ฒด ํฌ๊ธฐ, ์ข…ํšก๋น„ ๋ฐ ์ปจํ…์ŠคํŠธ์— ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๋ชจ๋ธ์˜ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด ์˜ˆ๋Š” ํ•ธ๋“œ ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ํฌํ•จ๋œ ์ด๋ฏธ์ง€์˜ ๋‹ค์–‘์„ฑ๊ณผ ๋ณต์žก์„ฑ, ๊ทธ๋ฆฌ๊ณ  ํ›ˆ๋ จ ๊ณผ์ •์—์„œ ๋ชจ์ž์ดํฌ ์‚ฌ์šฉ์˜ ์ด์ ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

์ธ์šฉ ๋ฐ ๊ฐ์‚ฌ

์—ฐ๊ตฌ ๋˜๋Š” ๊ฐœ๋ฐœ ์ž‘์—…์— ํ•ธ๋“œํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ๋‹ค์Œ ์ถœ์ฒ˜๋ฅผ ์ธ์ •ํ•ด ์ฃผ์„ธ์š”:

์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€๋ฅผ ์ œ๊ณตํ•ด ์ฃผ์‹  ๋‹ค์Œ ์ถœ์ฒ˜์— ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค:

์ด๋ฏธ์ง€๋Š” ๊ฐ ํ”Œ๋žซํผ์—์„œ ์ œ๊ณตํ•˜๋Š” ๊ฐ ๋ผ์ด์„ ์Šค์— ๋”ฐ๋ผ ์ˆ˜์ง‘ ๋ฐ ์‚ฌ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ํฌ๋ฆฌ์—์ดํ‹ฐ๋ธŒ ์ปค๋จผ์ฆˆ ์ €์ž‘์žํ‘œ์‹œ-๋น„์˜๋ฆฌ-๋™์ผ์กฐ๊ฑด๋ณ€๊ฒฝํ—ˆ๋ฝ 4.0 ๊ตญ์ œ ๋ผ์ด์„ ์Šค์— ๋”ฐ๋ผ ๋ฐฐํฌ๋ฉ๋‹ˆ๋‹ค.

๋˜ํ•œ, ์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ œ์ž‘์ž์ธ ๋ฆฌ์˜จ ๋“œ์‹ค๋ฐ”์—๊ฒŒ ๋น„์ „ AI ์—ฐ๊ตฌ์— ํฐ ๊ธฐ์—ฌ๋ฅผ ํ•ด์ฃผ์‹  ๊ฒƒ์— ๋Œ€ํ•ด ๊ฐ์‚ฌ์˜ ๋ง์”€์„ ๋“œ๋ฆฝ๋‹ˆ๋‹ค.

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ

์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ YOLO11 ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•˜๋‚˜์š”?

์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•ด YOLO11 ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด Python ๋˜๋Š” ๋ช…๋ น์ค„ ์ธํ„ฐํŽ˜์ด์Šค(CLI)๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ์ด๋ฏธ์ง€ ํฌ๊ธฐ๊ฐ€ 640์ธ 100๊ฐœ์˜ ์—ํฌํฌ์— ๋Œ€ํ•œ YOLO11n ํฌ์ฆˆ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋Š” ์˜ˆ์ œ์ž…๋‹ˆ๋‹ค:

์˜ˆ

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="hand-keypoints.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo pose train data=hand-keypoints.yaml model=yolo11n-pose.pt epochs=100 imgsz=640

์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ธ์ˆ˜์˜ ์ „์ฒด ๋ชฉ๋ก์€ ๋ชจ๋ธ ๊ต์œก ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ฃผ์š” ๊ธฐ๋Šฅ์€ ๋ฌด์—‡์ธ๊ฐ€์š”?

์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๊ณ ๊ธ‰ ํฌ์ฆˆ ์ถ”์ • ์ž‘์—…์„ ์œ„ํ•ด ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ ๋ช‡ ๊ฐ€์ง€ ์ฃผ์š” ๊ธฐ๋Šฅ์ด ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค:

  • ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์„ธํŠธ: 26,768๊ฐœ์˜ ์ด๋ฏธ์ง€์™€ ์† ํ‚คํฌ์ธํŠธ ์ฃผ์„์ด ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
  • YOLO11 ํ˜ธํ™˜์„ฑ: YOLO11 ๋ชจ๋ธ๊ณผ ํ•จ๊ป˜ ์‚ฌ์šฉ ๊ฐ€๋Šฅ.
  • 21๊ฐœ์˜ ํ‚คํฌ์ธํŠธ: ์†๋ชฉ๊ณผ ์†๊ฐ€๋ฝ ๊ด€์ ˆ์„ ํฌํ•จํ•œ ์ƒ์„ธํ•œ ์† ํฌ์ฆˆ ํ‘œํ˜„.

์ž์„ธํ•œ ๋‚ด์šฉ์€ ์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ์„ธํŠธ ์„น์…˜์„ ์ฐธ์กฐํ•˜์„ธ์š”.

ํ•ธ๋“œ ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์–ด๋–ค ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์ด ์ด์ ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‚˜์š”?

์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

  • ์ œ์Šค์ฒ˜ ์ธ์‹: ์ธ๊ฐ„๊ณผ ์ปดํ“จํ„ฐ์˜ ์ƒํ˜ธ ์ž‘์šฉ ํ–ฅ์ƒ.
  • AR/VR ์ปจํŠธ๋กค: ์ฆ๊ฐ• ๋ฐ ๊ฐ€์ƒ ํ˜„์‹ค์—์„œ ์‚ฌ์šฉ์ž ๊ฒฝํ—˜์„ ๊ฐœ์„ ํ•ฉ๋‹ˆ๋‹ค.
  • ๋กœ๋ด‡ ์กฐ์ž‘: ๋กœ๋ด‡ ์†์„ ์ •๋ฐ€ํ•˜๊ฒŒ ์ œ์–ดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ํ—ฌ์Šค์ผ€์–ด: ์˜๋ฃŒ ์ง„๋‹จ์„ ์œ„ํ•œ ์†๋™์ž‘ ๋ถ„์„.
  • ์• ๋‹ˆ๋ฉ”์ด์…˜: ์‚ฌ์‹ค์ ์ธ ์• ๋‹ˆ๋ฉ”์ด์…˜์„ ์œ„ํ•œ ๋ชจ์…˜ ์บก์ฒ˜.
  • ์ƒ์ฒด ์ธ์ฆ: ๋ณด์•ˆ ์‹œ์Šคํ…œ ๊ฐ•ํ™”.

์ž์„ธํ•œ ๋‚ด์šฉ์€ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์„น์…˜์„ ์ฐธ์กฐํ•˜์„ธ์š”.

์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์–ด๋–ป๊ฒŒ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‚˜์š”?

์† ํ‚คํฌ์ธํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋‘ ๊ฐœ์˜ ํ•˜์œ„ ์ง‘ํ•ฉ์œผ๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค:

  1. Train: ํ›ˆ๋ จ: 18,776๊ฐœ์˜ ํฌ์ฆˆ ์ถ”์ • ๋ชจ๋ธ ํ›ˆ๋ จ์šฉ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
  2. Val: ๋ชจ๋ธ ํ•™์Šต ์ค‘ ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ ๋ชฉ์ ์œผ๋กœ 7,992๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

์ด ๊ตฌ์กฐ๋Š” ํฌ๊ด„์ ์ธ ๊ต์œก ๋ฐ ๊ฒ€์ฆ ํ”„๋กœ์„ธ์Šค๋ฅผ ๋ณด์žฅํ•ฉ๋‹ˆ๋‹ค. ์ž์„ธํ•œ ๋‚ด์šฉ์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์กฐ ์„น์…˜์„ ์ฐธ์กฐํ•˜์„ธ์š”.

๋ฐ์ดํ„ฐ ์„ธํŠธ YAML ํŒŒ์ผ์„ ๊ต์œก์— ์‚ฌ์šฉํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•˜๋‚˜์š”?

๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์„ฑ์€ ๊ฒฝ๋กœ, ํด๋ž˜์Šค ๋ฐ ๊ธฐํƒ€ ๊ด€๋ จ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๋Š” YAML ํŒŒ์ผ์— ์ •์˜๋ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ hand-keypoints.yaml ํŒŒ์ผ์€ ๋‹ค์Œ์—์„œ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์† ํ‚คํฌ์ธํŠธ.yaml.

์ด YAML ํŒŒ์ผ์„ ํŠธ๋ ˆ์ด๋‹์— ์‚ฌ์šฉํ•˜๋ ค๋ฉด ์œ„์˜ ํŠธ๋ ˆ์ด๋‹ ์˜ˆ์‹œ์™€ ๊ฐ™์ด ํŠธ๋ ˆ์ด๋‹ ์Šคํฌ๋ฆฝํŠธ ๋˜๋Š” CLI ๋ช…๋ น์— ์ง€์ •ํ•˜์„ธ์š”. ์ž์„ธํ•œ ๋‚ด์šฉ์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ YAML ์„น์…˜์„ ์ฐธ์กฐํ•˜์„ธ์š”.

๐Ÿ“… 3 ๊ฐœ์›” ์ „์— ์ƒ์„ฑ๋จ โœ๏ธ 1๊ฐœ์›” ์ „ ์—…๋ฐ์ดํŠธ๋จ

๋Œ“๊ธ€