Skip to content

Transfer learning with frozen layers

📚 This guide explains how to freeze YOLOv5 🚀 layers when transfer learning. Transfer learning is a useful way to quickly retrain a model on new data without having to retrain the entire network. Instead, part of the initial weights are frozen in place, and the rest of the weights are used to compute loss and are updated by the optimizer. This requires less resources than normal training and allows for faster training times, though it may also result in reductions to final trained accuracy.

Before You Start

Clone repo and install requirements.txt in a Python>=3.8.0 environment, including PyTorch>=1.8. Models and datasets download automatically from the latest YOLOv5 release.

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Freeze Backbone

All layers that match the train.py freeze list in train.py will be frozen by setting their gradients to zero before training starts.

# Freeze
freeze = [f'model.{x}.' for x in range(freeze)]  # layers to freeze
for k, v in model.named_parameters():
    v.requires_grad = True  # train all layers
    if any(x in k for x in freeze):
        print(f'freezing {k}')
        v.requires_grad = False

To see a list of module names:

for k, v in model.named_parameters():
    print(k)

"""Output:
model.0.conv.conv.weight
model.0.conv.bn.weight
model.0.conv.bn.bias
model.1.conv.weight
model.1.bn.weight
model.1.bn.bias
model.2.cv1.conv.weight
model.2.cv1.bn.weight
...
model.23.m.0.cv2.bn.weight
model.23.m.0.cv2.bn.bias
model.24.m.0.weight
model.24.m.0.bias
model.24.m.1.weight
model.24.m.1.bias
model.24.m.2.weight
model.24.m.2.bias
"""

Looking at the model architecture we can see that the model backbone is layers 0-9:

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  - [-1, 1, Conv, [64, 6, 2, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C3, [128]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C3, [256]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 9, C3, [512]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C3, [1024]]
  - [-1, 1, SPPF, [1024, 5]]  # 9


# YOLOv5 v6.0 head
head:
  - [-1, 1, Conv, [512, 1, 1]]
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C3, [512, False]]  # 13

  - [-1, 1, Conv, [256, 1, 1]]
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C3, [256, False]]  # 17 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 14], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C3, [512, False]]  # 20 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C3, [1024, False]]  # 23 (P5/32-large)

  - [[17, 20, 23], 1, Detect, [nc]]  # Detect(P3, P4, P5)

so we can define the freeze list to contain all modules with 'model.0.' - 'model.9.' in their names:

python train.py --freeze 10

Freeze All Layers

To freeze the full model except for the final output convolution layers in Detect(), we set freeze list to contain all modules with 'model.0.' - 'model.23.' in their names:

python train.py --freeze 24

Results

We train YOLOv5m on VOC on both of the above scenarios, along with a default model (no freezing), starting from the official COCO pretrained --weights yolov5m.pt:

train.py --batch 48 --weights yolov5m.pt --data voc.yaml --epochs 50 --cache --img 512 --hyp hyp.finetune.yaml

Accuracy Comparison

The results show that freezing speeds up training, but reduces final accuracy slightly.

Freezing training mAP50 results

Freezing training mAP50-95 results

Table results

GPU Utilization Comparison

Interestingly, the more modules are frozen the less GPU memory is required to train, and the lower GPU utilization. This indicates that larger models, or models trained at larger --image-size may benefit from freezing in order to train faster.

Training GPU memory allocated percent

Training GPU memory utilization percent

Supported Environments

Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as CUDA, CUDNN, Python, and PyTorch, to kickstart your projects.

Project Status

YOLOv5 CI

This badge indicates that all YOLOv5 GitHub Actions Continuous Integration (CI) tests are successfully passing. These CI tests rigorously check the functionality and performance of YOLOv5 across various key aspects: training, validation, inference, export, and benchmarks. They ensure consistent and reliable operation on macOS, Windows, and Ubuntu, with tests conducted every 24 hours and upon each new commit.



Created 2023-11-12, Updated 2024-01-14
Authors: glenn-jocher (4)

Comments