์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ

์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ ์„ธํŠธ

์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋‚จ์•„ํ”„๋ฆฌ์นด ์ž์—ฐ ๋ณดํ˜ธ๊ตฌ์—ญ์—์„œ ํ”ํžˆ ๋ณผ ์ˆ˜ ์žˆ๋Š” ๋„ค ๊ฐ€์ง€ ๋™๋ฌผ๊ตฐ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ๋ฒ„ํŒ”๋กœ, ์ฝ”๋ผ๋ฆฌ, ์ฝ”๋ฟ”์†Œ, ์–ผ๋ฃฉ๋ง๊ณผ ๊ฐ™์€ ์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ ๋™๋ฌผ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ๋™๋ฌผ์˜ ํŠน์ง•์— ๋Œ€ํ•œ ๊ท€์ค‘ํ•œ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ปดํ“จํ„ฐ ๋น„์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ›ˆ๋ จํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ธ ์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋™๋ฌผ์›์—์„œ ์ˆฒ์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ๋‹ค์–‘ํ•œ ์„œ์‹์ง€์—์„œ ๋™๋ฌผ์„ ์‹๋ณ„ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋˜๋ฉฐ ์•ผ์ƒ๋™๋ฌผ ์—ฐ๊ตฌ๋ฅผ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค.



Watch: ๋‹ค์Œ์„ ์‚ฌ์šฉํ•˜์—ฌ ์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ํƒ์ง€ Ultralytics YOLO11

๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์กฐ

์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๊ฐœ์ฒด ๊ฐ์ง€ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์„ธ ๊ฐœ์˜ ํ•˜์œ„ ์ง‘ํ•ฉ์œผ๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค:

  • ํŠธ๋ ˆ์ด๋‹ ์„ธํŠธ: 1052๊ฐœ์˜ ์ด๋ฏธ์ง€์™€ ๊ฐ๊ฐ ํ•ด๋‹น ์ฃผ์„์ด ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ ์„ธํŠธ: 225๊ฐœ์˜ ์ด๋ฏธ์ง€์™€ ๊ฐ๊ฐ ์Œ์„ ์ด๋ฃจ๋Š” ์ฃผ์„์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค.
  • ํ…Œ์ŠคํŠธ ์„ธํŠธ: 227๊ฐœ์˜ ์ด๋ฏธ์ง€์™€ ๊ฐ๊ฐ ์Œ์„ ์ด๋ฃจ๋Š” ์ฃผ์„์œผ๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค.

์• ํ”Œ๋ฆฌ์ผ€์ด์…˜

์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋ฌผ์ฒด ๊ฐ์ง€, ๋ฌผ์ฒด ์ถ”์ , ์—ฐ๊ตฌ ๋“ฑ ๋‹ค์–‘ํ•œ ์ปดํ“จํ„ฐ ๋น„์ „ ์ž‘์—…์— ์ ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์ด๋ฏธ์ง€์—์„œ ์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฌผ์ฒด๋ฅผ ์‹๋ณ„ํ•˜๋Š” ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ  ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์•ผ์ƒ๋™๋ฌผ ๋ณดํ˜ธ, ์ƒํƒœ ์—ฐ๊ตฌ, ์ž์—ฐ ๋ณดํ˜ธ ๊ตฌ์—ญ ๋ฐ ๋ณดํ˜ธ ์ง€์—ญ ๋ชจ๋‹ˆํ„ฐ๋ง์— ์‘์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ํ•™์ƒ๊ณผ ์—ฐ๊ตฌ์ž๊ฐ€ ๋‹ค์–‘ํ•œ ๋™๋ฌผ ์ข…์˜ ํŠน์ง•๊ณผ ํ–‰๋™์„ ์—ฐ๊ตฌํ•˜๊ณ  ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ต์œก ๋ชฉ์ ์œผ๋กœ๋„ ๊ท€์ค‘ํ•œ ์ž๋ฃŒ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋ฐ์ดํ„ฐ ์„ธํŠธ YAML

YAML(๋˜ ๋‹ค๋ฅธ ๋งˆํฌ์—… ์–ธ์–ด) ํŒŒ์ผ์€ ๊ฒฝ๋กœ, ํด๋ž˜์Šค ๋ฐ ๊ธฐํƒ€ ๊ด€๋ จ ์„ธ๋ถ€ ์ •๋ณด๋ฅผ ํฌํ•จํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์„ฑ์„ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. ์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ฒฝ์šฐ, ์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ african-wildlife.yaml ํŒŒ์ผ์€ ๋‹ค์Œ ์œ„์น˜์— ์žˆ์Šต๋‹ˆ๋‹ค. https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/african-wildlife.yaml.

ultralytics/cfg/๋ฐ์ดํ„ฐ์„ธํŠธ/์•„ํ”„๋ฆฌ์นด-์•ผ์ƒ๋™๋ฌผ.yaml

# Ultralytics YOLO ๐Ÿš€, AGPL-3.0 license
# African-wildlife dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
# Example usage: yolo train data=african-wildlife.yaml
# parent
# โ”œโ”€โ”€ ultralytics
# โ””โ”€โ”€ datasets
#     โ””โ”€โ”€ african-wildlife  โ† downloads here (100 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/african-wildlife # dataset root dir
train: train/images # train images (relative to 'path') 1052 images
val: valid/images # val images (relative to 'path') 225 images
test: test/images # test images (relative to 'path') 227 images

# Classes
names:
  0: buffalo
  1: elephant
  2: rhino
  3: zebra

# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/african-wildlife.zip

์‚ฌ์šฉ๋ฒ•

์ด๋ฏธ์ง€ ํฌ๊ธฐ๊ฐ€ 640์ธ ์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•ด 100๊ฐœ ์‹œ๊ธฐ์˜ YOLO11n ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ์ œ๊ณต๋œ ์ฝ”๋“œ ์ƒ˜ํ”Œ์„ ์‚ฌ์šฉํ•˜์„ธ์š”. ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ „์ฒด ๋ชฉ๋ก์€ ๋ชจ๋ธ์˜ ํ›ˆ๋ จ ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์—ด์ฐจ ์˜ˆ์‹œ

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="african-wildlife.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=african-wildlife.yaml model=yolo11n.pt epochs=100 imgsz=640

์ถ”๋ก  ์˜ˆ์ œ

from ultralytics import YOLO

# Load a model
model = YOLO("path/to/best.pt")  # load a brain-tumor fine-tuned model

# Inference using the model
results = model.predict("https://ultralytics.com/assets/african-wildlife-sample.jpg")
# Start prediction with a finetuned *.pt model
yolo detect predict model='path/to/best.pt' imgsz=640 source="https://ultralytics.com/assets/african-wildlife-sample.jpg"

์ƒ˜ํ”Œ ์ด๋ฏธ์ง€ ๋ฐ ์ฃผ์„

์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋‹ค์–‘ํ•œ ๋™๋ฌผ ์ข…๊ณผ ๊ทธ๋“ค์˜ ์ž์—ฐ ์„œ์‹์ง€๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ๋‹ค์–‘ํ•œ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์•„๋ž˜๋Š” ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ด๋ฏธ์ง€ ์˜ˆ์‹œ์ด๋ฉฐ, ๊ฐ ์ด๋ฏธ์ง€์—๋Š” ํ•ด๋‹น ์ฃผ์„์ด ํ•จ๊ป˜ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค.

์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ ์„ธํŠธ ์ƒ˜ํ”Œ ์ด๋ฏธ์ง€

  • ๋ชจ์ž์ดํฌ ์ด๋ฏธ์ง€: ์—ฌ๊ธฐ์—์„œ๋Š” ๋ชจ์ž์ดํฌ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋œ ํ›ˆ๋ จ ๋ฐฐ์น˜๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ํ›ˆ๋ จ ๊ธฐ๋ฒ•์ธ ๋ชจ์ž์ดํฌ๋Š” ์—ฌ๋Ÿฌ ์ด๋ฏธ์ง€๋ฅผ ํ•˜๋‚˜๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ ๋ฐฐ์น˜์˜ ๋‹ค์–‘์„ฑ์„ ํ’๋ถ€ํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๋‹ค์–‘ํ•œ ๊ฐ์ฒด ํฌ๊ธฐ, ์ข…ํšก๋น„ ๋ฐ ์ปจํ…์ŠคํŠธ์— ๊ฑธ์ณ ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๋ชจ๋ธ์˜ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค.

์ด ์˜ˆ๋Š” ์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ํฌํ•จ๋œ ์ด๋ฏธ์ง€์˜ ๋‹ค์–‘์„ฑ๊ณผ ๋ณต์žก์„ฑ์„ ๋ณด์—ฌ ์ฃผ๋ฉฐ, ํ›ˆ๋ จ ๊ณผ์ •์—์„œ ๋ชจ์ž์ดํ‚น์„ ํฌํ•จํ•  ๊ฒฝ์šฐ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ์ด์ ์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค.

์ธ์šฉ ๋ฐ ๊ฐ์‚ฌ

์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” AGPL-3.0 ๋ผ์ด์„ ์Šค์— ๋”ฐ๋ผ ๊ณต๊ฐœ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ

์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ์„ธํŠธ๋ž€ ๋ฌด์—‡์ด๋ฉฐ, ์ปดํ“จํ„ฐ ๋น„์ „ ํ”„๋กœ์ ํŠธ์—์„œ ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‚˜์š”?

์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—๋Š” ๋‚จ์•„ํ”„๋ฆฌ์นด ์ž์—ฐ ๋ณดํ˜ธ๊ตฌ์—ญ์—์„œ ํ”ํžˆ ๋ณผ ์ˆ˜ ์žˆ๋Š” ๋„ค ๊ฐ€์ง€ ๋™๋ฌผ ์ข…์ธ ๋ฒ„ํŒ”๋กœ, ์ฝ”๋ผ๋ฆฌ, ์ฝ”๋ฟ”์†Œ, ์–ผ๋ฃฉ๋ง์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฌผ์ฒด ๊ฐ์ง€ ๋ฐ ๋™๋ฌผ ์‹๋ณ„์„ ์œ„ํ•œ ์ปดํ“จํ„ฐ ๋น„์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ›ˆ๋ จํ•˜๋Š” ๋ฐ ์œ ์šฉํ•œ ๋ฆฌ์†Œ์Šค์ž…๋‹ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋ฌผ์ฒด ์ถ”์ , ์—ฐ๊ตฌ ๋ฐ ๋ณด์กด ๋…ธ๋ ฅ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์ž‘์—…์„ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ตฌ์กฐ์™€ ํ™œ์šฉ์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์กฐ ์„น์…˜๊ณผ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ํ™œ์šฉ์„ ์ฐธ์กฐํ•˜์„ธ์š”.

์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•˜์—ฌ YOLO11 ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•˜๋‚˜์š”?

๋‹ค์Œ์„ ์‚ฌ์šฉํ•˜์—ฌ ์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ YOLO11 ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. african-wildlife.yaml ๊ตฌ์„ฑ ํŒŒ์ผ์„ ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ์ด๋ฏธ์ง€ ํฌ๊ธฐ๊ฐ€ 640์ธ 100๊ฐœ์˜ ์—ํฌํฌ์— ๋Œ€ํ•ด YOLO11n ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋Š” ๋ฐฉ๋ฒ•์˜ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค:

์˜ˆ

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="african-wildlife.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=african-wildlife.yaml model=yolo11n.pt epochs=100 imgsz=640

์ถ”๊ฐ€ ๊ต์œก ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ฐ ์˜ต์…˜์€ ๊ต์œก ๋ฌธ์„œ๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ YAML ๊ตฌ์„ฑ ํŒŒ์ผ์€ ์–ด๋””์—์„œ ์ฐพ์„ ์ˆ˜ ์žˆ๋‚˜์š”?

์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์˜ YAML ๊ตฌ์„ฑ ํŒŒ์ผ ์ด๋ฆ„์€ african-wildlife.yaml์—์„œ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๊นƒํ—ˆ๋ธŒ ๋งํฌ. ์ด ํŒŒ์ผ์€ ๊ฒฝ๋กœ, ํด๋ž˜์Šค ๋ฐ ๊ต์œก์— ์ค‘์š”ํ•œ ๊ธฐํƒ€ ์„ธ๋ถ€ ์ •๋ณด๋ฅผ ํฌํ•จํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์„ฑ์„ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. ๋จธ์‹  ๋Ÿฌ๋‹ ๋ชจ๋ธ. ์ฐธ์กฐ ๋ฐ์ดํ„ฐ ์„ธํŠธ YAML ์„น์…˜์—์„œ ์ž์„ธํ•œ ๋‚ด์šฉ์„ ํ™•์ธํ•˜์„ธ์š”.

์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ƒ˜ํ”Œ ์ด๋ฏธ์ง€์™€ ์ฃผ์„์„ ๋ณผ ์ˆ˜ ์žˆ๋‚˜์š”?

์˜ˆ, ์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—๋Š” ์ž์—ฐ ์„œ์‹์ง€์—์„œ ๋‹ค์–‘ํ•œ ๋™๋ฌผ ์ข…์„ ๋ณด์—ฌ์ฃผ๋Š” ๋‹ค์–‘ํ•œ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ƒ˜ํ”Œ ์ด๋ฏธ์ง€ ๋ฐ ์ฃผ์„ ์„น์…˜์—์„œ ์ƒ˜ํ”Œ ์ด๋ฏธ์ง€์™€ ํ•ด๋‹น ์ฃผ์„์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์„น์…˜์—์„œ๋Š” ๋ชจ์ž์ดํฌ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์—ฌ๋Ÿฌ ์ด๋ฏธ์ง€๋ฅผ ํ•˜๋‚˜๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ ๋ฐฐ์น˜์˜ ๋‹ค์–‘์„ฑ์„ ํ’๋ถ€ํ•˜๊ฒŒ ํ•˜๊ณ  ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•๋„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.

์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ์…‹์„ ์–ด๋–ป๊ฒŒ ์•ผ์ƒ๋™๋ฌผ ๋ณดํ˜ธ์™€ ์—ฐ๊ตฌ๋ฅผ ์ง€์›ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‚˜์š”?

์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋‹ค์–‘ํ•œ ์„œ์‹์ง€์—์„œ ์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ์„ ์‹๋ณ„ํ•˜๋Š” ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ  ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์—ฌ ์•ผ์ƒ๋™๋ฌผ ๋ณดํ˜ธ ๋ฐ ์—ฐ๊ตฌ๋ฅผ ์ง€์›ํ•˜๋Š” ๋ฐ ์ด์ƒ์ ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์€ ๋™๋ฌผ ๊ฐœ์ฒด๊ตฐ ๋ชจ๋‹ˆํ„ฐ๋ง, ๋™๋ฌผ ํ–‰๋™ ์—ฐ๊ตฌ, ๋ณด์กด ํ•„์š”์„ฑ ์ธ์‹์— ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๊ต์œก ๋ชฉ์ ์œผ๋กœ๋„ ํ™œ์šฉ๋˜์–ด ํ•™์ƒ๊ณผ ์—ฐ๊ตฌ์ž๋“ค์ด ๋‹ค์–‘ํ•œ ๋™๋ฌผ ์ข…์˜ ํŠน์„ฑ๊ณผ ํ–‰๋™์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ž์„ธํ•œ ๋‚ด์šฉ์€ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์„น์…˜์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

8๊ฐœ์›” ์ „ ์ƒ์„ฑ๋จ โœ๏ธ 2๊ฐœ์›” ์ „ ์—…๋ฐ์ดํŠธ๋จ

๋Œ“๊ธ€